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Chapter 1

Foundations

The present foundational chapter will introduce the notion of a ring and, next, that of a module
over a ring. These notions will be the focus of the present book. Most of the chapter will be
definitions.

We begin with a few historical remarks. Fermat’s last theorem states that the equation

xn + yn = zn

has no nontrivial solutions in the integers, for n ≥ 3. We could try to prove this by factoring the
expression on the left hand side. We can write

(x+ y)(x+ ζy)(x+ ζ2y) . . . (x+ ζn−1y) = zn,

where ζ is a primitive nth root of unity. Unfortunately, the factors lie in Z[ζ], not the integers Z.
Though Z[ζ] is still a ring where we have notions of primes and factorization, just as in Z, we will
see that prime factorization is not always unique in Z[ζ]. (If it were always unique, then we could
at least one important case of Fermat’s last theorem rather easily; see the introductory chapter of
[Was97] for an argument.)

For instance, consider the ring Z[
√
−5] of complex numbers of the form a + b

√
−5, where

a, b ∈ Z. Then we have the two factorizations

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5).

Both of these are factorizations of 6 into irreducible factors, but they are fundamentally different.
In part, commutative algebra grew out of the need to understand this failure of unique factor-

ization more generally. We shall have more to say on factorization in the future, but here we just
focus on the formalism. The basic definition for studying this problem is that of a ring, which we
now introduce.

§1 Commutative rings and their ideals

1.1 Rings

We shall mostly just work with commutative rings in this book, and consequently will just say
“ring” for one such.

Definition 1.1 A commutative ring is a set R with an addition map + : R × R → R and a
multiplication map × : R×R→ R that satisfy the following conditions.

1. R is a group under addition.
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2. The multiplication map is commutative and distributes over addition. This means that
x× (y + z) = x× y + x× z and x× y = y × x.

3. There is a unit (or identity element), denoted by 1, such that 1× x = x for all x ∈ R.

We shall typically write xy for x× y.
Given a ring, a subring is a subset that contains the identity element and is closed under

addition and multiplication.

A noncommutative (i.e. not necessarily commutative) ring is one satisfying the above con-
ditions, except possibly for the commutativity requirement xy = yx. For instance, there is a
noncommutative ring of 2-by-2 matrices over C. We shall not work too much with noncommuta-
tive rings in the sequel, though many of the basic results (e.g. on modules) do generalize.

Example 1.2 Z is the simplest example of a ring.

Exercise 1.1 Let R be a commutative ring. Show that the set of polynomials in one variable
over R is a commutative ring R[x]. Give a rigorous definition of this.

Example 1.3 For any ring R, we can consider the polynomial ring R[x1, . . . , xn] which con-
sists of the polynomials in n variables with coefficients in R. This can be defined inductively as
(R[x1, . . . , xn−1])[xn], where the procedure of adjoining a single variable comes from the previous
?? 1.1.

We shall see a more general form of this procedure in Example 1.9.

Exercise 1.2 If R is a commutative ring, recall that an invertible element (or, somewhat
confusingly, a unit) u ∈ R is an element such that there exists v ∈ R with uv = 1. Prove that v
is necessarily unique.

Exercise 1.3 Let X be a set and R a ring. The set RX of functions f : X → R is a ring.

1.2 The category of rings

The class of rings forms a category. Its morphisms are called ring homomorphisms.

Definition 1.4 A ring homomorphism between two rings R and S as a map f : R → S that
respects addition and multiplication. That is,

1. f(1R) = 1S , where 1R and 1S are the respective identity elements.

2. f(a+ b) = f(a) + f(b) for a, b ∈ R.

3. f(ab) = f(a)f(b) for a, b ∈ R.

There is thus a category Ring whose objects are commutative rings and whose morphisms are
ring-homomorphisms.

The philosophy of Grothendieck, as expounded in his EGA [GD], is that one should always do
things in a relative context. This means that instead of working with objects, one should work
with morphisms of objects. Motivated by this, we introduce:

Definition 1.5 Given a ring A, an A-algebra is a ring R together with a morphism of rings (a
structure morphism) A → R. There is a category of A-algebras, where a morphism between
A-algebras is a ring-homomorphism that is required to commute with the structure morphisms.
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So if R is an A-algebra, then R is not only a ring, but there is a way to multiply elements of R
by elements of A (namely, to multiply a ∈ A with r ∈ R, take the image of a in R, and multiply
that by r). For instance, any ring is an algebra over any subring.

We can think of an A-algebra as an arrow A→ R, and a morphism from A→ R to A→ S as
a commutative diagram

R // S

A

__@@@@@@@

??�������

This is a special case of the undercategory construction.
If B is an A-algebra and C a B-algebra, then C is an A-algebra in a natural way. Namely, by

assumption we are given morphisms of rings A → B and B → C, so composing them gives the
structure morphism A→ C of C as an A-algebra.

Example 1.6 Every ring is a Z-algebra in a natural and unique way. There is a unique map (of
rings) Z→ R for any ring R because a ring-homomorphism is required to preserve the identity. In
fact, Z is the initial object in the category of rings: this is a restatement of the preceding discussion.

Example 1.7 If R is a ring, the polynomial ring R[x] is an R-algebra in a natural manner. Each
element of R is naturally viewed as a “constant polynomial.”

Example 1.8 C is an R-algebra.

Here is an example that generalizes the case of the polynomial ring.

Example 1.9 If R is a ring and G a commutative monoid,1 then the set R[G] of formal finite
sums

∑
rigi with ri ∈ R, gi ∈ G is a commutative ring, called the moniod ring or group ring

when G is a group. Alternatively, we can think of elements of R[G] as infinite sums
∑
g∈G rgg with

R-coefficients, such that almost all the rg are zero. We can define the multiplication law such that

(∑
rgg
)(∑

sgg
)

=
∑
h

 ∑
gg′=h

rgsg′

h.

This process is called convolution. We can think of the multiplication law as extended the group
multiplication law (because the product of the ring-elements corresponding to g, g′ is the ring
element corresponding to gg′ ∈ G).

The case of G = Z≥0 is the polynomial ring. In some cases, we can extend this notion to formal
infinite sums, as in the case of the formal power series ring; see ?? below.

Exercise 1.4 The ring Z is an initial object in the category of rings. That is, for any ring R,
there is a unique morphism of rings Z→ R. We discussed this briefly earlier; show more generally
that A is the initial object in the category of A-algebras for any ring A.

Exercise 1.5 The ring where 0 = 1 (the zero ring) is a final object in the category of rings.
That is, every ring admits a unique map to the zero ring.

Exercise 1.6 Let C be a category and F : C → Sets a covariant functor. Recall that F is said
to be corepresentable if F is naturally isomorphic to X → HomC(U,X) for some object U ∈ C.
For instance, the functor sending everything to a one-point set is corepresentable if and only if C
admits an initial object.

Prove that the functor Rings→ Sets assigning to each ring its underlying set is representable.
(Hint: use a suitable polynomial ring.)

1That is, there is a commutative multiplication on G with an identity element, but not necessarily with inverses.
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The category of rings is both complete and cocomplete. To show this in full will take more
work, but we can here describe what certain cases (including all limits) look like. As we saw in
?? 1.6, the forgetful functor Rings→ Sets is corepresentable. Thus, if we want to look for limits
in the category of rings, here is the approach we should follow: we should take the limit first of
the underlying sets, and then place a ring structure on it in some natural way.

Example 1.10 (Products) The product of two rings R1, R2 is the set-theoretic product R1×R2

with the multiplication law (r1, r2)(s1, s2) = (r1s1, r2s2). It is easy to see that this is a product in
the category of rings. More generally, we can easily define the product of any collection of rings.

To describe the coproduct is more difficult: this will be given by the tensor product to be
developed in the sequel.

Example 1.11 (Equalizers) Let f, g : R ⇒ S be two ring-homomorphisms. Then we can con-
struct the equalizer of f, g as the subring of R consisting of elements x ∈ R such that f(x) = g(x).
This is clearly a subring, and one sees quickly that it is the equalizer in the category of rings.

As a result, we find:

Proposition 1.12 Rings is complete.

As we said, we will not yet show that Rings is cocomplete. But we can describe filtered
colimits. In fact, filtered colimits will be constructed just as in the set-theoretic fashion. That
is, the forgetful functor Rings → Sets commutes with filtered colimits (though not with general
colimits).

Example 1.13 (Filtered colimits) Let I be a filtering category, F : I → Rings a functor. We
can construct lim−→I

F as follows. An object is an element (x, i) for i ∈ I and x ∈ F (i), modulo

equivalence; we say that (x, i) and (y, j) are equivalent if there is a k ∈ I with maps i→ k, j → k
sending x, y to the same thing in the ring F (k).

To multiply (x, i) and (y, j), we find some k ∈ I receiving maps from i, j, and replace x, y with
elements of F (k). Then we multiply those two in F (k). One easily sees that this is a well-defined
multiplication law that induces a ring structure, and that what we have described is in fact the
filtered colimit.

1.3 Ideals

An ideal in a ring is analogous to a normal subgroup of a group. As we shall see, one may quotient
by ideals just as one quotients by normal subgroups. The idea is that one wishes to have a suitable
equivalence relation on a ring R such that the relevant maps (addition and multiplication) factor
through this equivalence relation. It is easy to check that any such relation arises via an ideal.

Definition 1.14 Let R be a ring. An ideal in R is a subset I ⊂ R that satisfies the following.

1. 0 ∈ I.

2. If x, y ∈ I, then x+ y ∈ I.

3. If x ∈ I and y ∈ R, then xy ∈ I.

There is a simple way of obtaining ideals, which we now describe. Given elements x1, . . . , xn ∈
R, we denote by (x1, . . . , xn) ⊂ R the subset of linear combinations

∑
rixi, where ri ∈ R. This is

clearly an ideal, and in fact the smallest one containing all xi. It is called the ideal generated by
x1, . . . , xn. A principal ideal (x) is one generated by a single x ∈ R.
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Example 1.15 Ideals generalize the notion of divisibility. Note that in Z, the set of elements
divisible by n ∈ Z forms the ideal I = nZ = (n). We shall see that every ideal in Z is of this form:
Z is a principal ideal domain.

Indeed, one can think of an ideal as axiomatizing the notions that “divisibility” ought to
satisfy. Clearly, if two elements are divisible by something, then their sum and product should also
be divisible by it. More generally, if an element is divisible by something, then the product of that
element with anything else should also be divisible. In general, we will extend (in the chapter on
Dedekind domains) much of the ordinary arithmetic with Z to arithmetic with ideals (e.g. unique
factorization).

Example 1.16 We saw in ?? 1.3 that if X is a set and R a ring, then the set RX of functions
X → R is naturally a ring. If Y ⊂ X is a subset, then the subset of functions vanishing on Y is
an ideal.

Exercise 1.7 Show that the ideal (2, 1 +
√
−5) ⊂ Z[

√
−5] is not principal.

1.4 Operations on ideals

There are a number of simple operations that one may do with ideals, which we now describe.

Definition 1.17 The sum I + J of two ideals I, J ⊂ R is defined as the set of sums

{x+ y : x ∈ I, y ∈ J} .

Definition 1.18 The product IJ of two ideals I, J ⊂ R is defined as the smallest ideal containing
the products xy for all x ∈ I, y ∈ J . This is just the set{∑

xiyi : xi ∈ I, yi ∈ J
}
.

We leave the basic verification of properties as an exercise:

Exercise 1.8 Given ideals I, J ⊂ R, verify the following.

1. I + J is the smallest ideal containing I and J .

2. IJ is contained in I and J .

3. I ∩ J is an ideal.

Example 1.19 In Z, we have the following for any m,n.

1. (m) + (n) = (gcd{m,n}),

2. (m)(n) = (mn),

3. (m) ∩ (n) = (lcm{m,n}).

Proposition 1.20 For ideals I, J,K ⊂ R, we have the following.

1. Distributivity: I(J +K) = IJ + IK.

2. I ∩ (J +K) = I ∩ J + I ∩K if I ⊃ J or I ⊃ K.

3. If I + J = R, I ∩ J = IJ .
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Proof. 1 and 2 are clear. For 3, note that (I + J)(I ∩ J) = I(I ∩ J) + J(I ∩ J) ⊂ IJ . Since
IJ ⊂ I ∩ J , the result follows. N

Exercise 1.9 There is a contravariant functor Rings → Sets that sends each ring to its set of
ideals. Given a map f : R → S and an ideal I ⊂ S, we define an ideal f−1(I) ⊂ R; this defines
the functoriality. This functor is not representable, as it does not send the initial object in Rings
to the one-element set. We will later use a subfunctor of this functor, the Spec construction, when
we replace ideals with “prime” ideals.

1.5 Quotient rings

We next describe a procedure for producing new rings from old ones. If R is a ring and I ⊂ R an
ideal, then the quotient group R/I is a ring in its own right. If a+ I, b+ I are two cosets, then the
multiplication is (a+ I)(b+ I) = ab+ I. It is easy to check that this does not depend on the coset
representatives a, b. In other words, as mentioned earlier, the arithmetic operations on R factor
through the equivalence relation defined by I.

As one easily checks, this becomes to a multiplication

R/I ×R/I → R/I

which is commutative and associative, and whose identity element is 1 + I. In particular, R/I is
a ring, under multiplication (a+ I)(b+ I) = ab+ I.

Definition 1.21 R/I is called the quotient ring by the ideal I.

The process is analogous to quotienting a group by a normal subgroup: again, the point is
that the equivalence relation induced on the algebraic structure—either the group or the ring—by
the subgroup (or ideal)—is compatible with the algebraic structure, which thus descends to the
quotient.

The reduction map φ : R → R/I is a ring-homomorphism with a universal property. Namely,
for any ring B, there is a map

Hom(R/I,B)→ Hom(R,B)

on the hom-sets by composing with the ring-homomorphism φ; this map is injective and the image
consists of all homomorphisms R→ B which vanish on I. Stated alternatively, to map out of R/I
(into some ring B) is the same thing as mapping out of R while killing the ideal I ⊂ R.

This is best thought out for oneself, but here is the detailed justification. The reason is that any
map R/I → B pulls back to a map R→ R/I → B which annihilates I since R→ R/I annihilates
I. Conversely, if we have a map

f : R→ B

killing I, then we can define R/I → B by sending a + I to f(a); this is uniquely defined since f
annihilates I.

Exercise 1.10 If R is a commutative ring, an element e ∈ R is said to be idempotent if e2 = e.
Define a covariant functor Rings → Sets sending a ring to its idempotents. Prove that it is
corepresentable. (Answer: the corepresenting object is Z[X]/(X −X2).)

Exercise 1.11 Show that the functor assigning to each ring the set of elements annihilated by 2
is corepresentable.

Exercise 1.12 If I ⊂ J ⊂ R, then J/I is an ideal of R/I, and there is a canonical isomorphism

(R/I)/(J/I) ' R/J.
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1.6 Zerodivisors

Let R be a commutative ring.

Definition 1.22 If r ∈ R, then r is called a zerodivisor if there is s ∈ R, s 6= 0 with sr = 0.
Otherwise r is called a nonzerodivisor.

As an example, we prove a basic result on the zerodivisors in a polynomial ring.

Proposition 1.23 Let A = R[x]. Let f = anx
n + · · ·+ a0 ∈ A. If there is a non-zero polynomial

g ∈ A such that fg = 0, then there exists r ∈ Rr {0} such that f · r = 0.

So all the coefficients are zerodivisors.

Proof. Choose g to be of minimal degree, with leading coefficient bxd. We may assume that d > 0.
Then f · b 6= 0, lest we contradict minimality of g. We must have aig 6= 0 for some i. To see this,
assume that ai · g = 0, then aib = 0 for all i and then fb = 0. Now pick j to be the largest integer
such that ajg 6= 0. Then 0 = fg = (a0 + a1x + · · · ajxj)g, and looking at the leading coefficient,
we get ajb = 0. So deg(ajg) < d. But then f · (ajg) = 0, contradicting minimality of g. N

Exercise 1.13 The product of two nonzerodivisors is a nonzerodivisor, and the product of two
zerodivisors is a zerodivisor. It is, however, not necessarily true that the sum of two zerodivisors
is a zerodivisor.

§2 Further examples

We now illustrate a few important examples of commutative rings. The section is in large measure
an advertisement for why one might care about commutative algebra; nonetheless, the reader is
encouraged at least to skim this section.

2.1 Rings of holomorphic functions

The following subsection may be omitted without impairing understanding.

There is a fruitful analogy in number theory between the rings Z and C[t], the latter being the
polynomial ring over C in one variable (?? 1.1). Why are they analogous? Both of these rings
have a theory of unique factorization: that is, factorization into primes or irreducible polynomials.
(In the latter, the irreducible polynomials have degree one.) Indeed we know:

1. Any nonzero integer factors as a product of primes (possibly times −1).

2. Any nonzero polynomial factors as a product of an element of C∗ = C−{0} and polynomials
of the form t− a, a ∈ C.

There is another way of thinking of C[t] in terms of complex analysis. This is equal to the
ring of holomorphic functions on C which are meromorphic at infinity. Alternatively, consider the
Riemann sphere C∪{∞}; then the ring C[t] consists of meromorphic functions on the sphere whose
poles (if any) are at ∞.

This description admits generalizations. Let X be a Riemann surface. (Example: take the
complex numbers modulo a lattice, i.e. an elliptic curve.) Suppose that x ∈ X. Define Rx to be
the ring of meromorphic functions on X which are allowed poles only at x (so are everywhere else
holomorphic).
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Example 2.1 Fix the notations of the previous discussion. Fix y 6= x ∈ X. Let Rx be the ring of
meromorphic functions on the Riemann surface X which are holomorphic on X − {x}, as before.
Then the collection of functions that vanish at y forms an ideal in Rx.

There are lots of other ideals. For instance, fix two points y0, y1 6= x; we look at the ideal of
Rx that vanish at both y0, y1.

For any Riemann surface X, the conclusion of Dedekind’s theorem (??) applies.
In other words, the ring Rx as defined in the example admits unique factorization of ideals. We
shall call such rings Dedekind domains in the future.

Example 2.2 Keep the preceding notation.
Let f ∈ Rx, nonzero. By definition, f may have a pole at x, but no poles elsewhere. f vanishes

at finitely many points y1, . . . , ym. When X was the Riemann sphere, knowing the zeros of f told
us something about f . Indeed, in this case f is just a polynomial, and we have a nice factorization
of f into functions in Rx that vanish only at one point. In general Riemann surfaces, this is not
generally possible. This failure turns out to be very interesting.

Let X = C/Λ be an elliptic curve (for Λ ⊂ C2 a lattice), and suppose x = 0. Suppose we are
given y1, y2, . . . , ym ∈ X that are nonzero; we ask whether there exists a function f ∈ Rx having
simple zeros at y1, . . . , ym and nowhere else. The answer is interesting, and turns out to recover
the group structure on the lattice.

Proposition 2.3 A function f ∈ Rx with simple zeros only at the {yi} exists if and only if
y1 + y2 + · · ·+ yn = 0 (modulo Λ).

So this problem of finding a function with specified zeros is equivalent to checking that the specific
zeros add up to zero with the group structure.

In any case, there might not be such a nice function, but we have at least an ideal I of functions
that have zeros (not necessarily simple) at y1, . . . , yn. This ideal has unique factorization into the
ideals of functions vanishing at y1, functions vanishing at y2, so on.

2.2 Ideals and varieties

We saw in the previous subsection that ideals can be thought of as the vanishing of functions. This,
like divisibility, is another interpretation, which is particularly interesting in algebraic geometry.

Recall the ring C[t] of complex polynomials discussed in the last subsection. More generally, if
R is a ring, we saw in ?? 1.1 that the set R[t] of polynomials with coefficients in R is a ring. This
is a construction that can be iterated to get a polynomial ring in several variables over R.

Example 2.4 Consider the polynomial ring C[x1, . . . , xn]. Recall that before we thought of the
ring C[t] as a ring of meromorphic functions. Similarly each element of the polynomial ring
C[x1, . . . , xn] gives a function Cn → C; we can think of the polynomial ring as sitting inside the
ring of all functions Cn → C.

A question you might ask: What are the ideals in this ring? One way to get an ideal is to
pick a point x = (x1, . . . , xn) ∈ Cn; consider the collection of all functions f ∈ C[x1, . . . , xn] which
vanish on x; by the usual argument, this is an ideal.

There are, of course, other ideals. More generally, if Y ⊂ Cn, consider the collection of
polynomial functions f : Cn → C such that f ≡ 0 on Y . This is easily seen to be an ideal in the
polynomial ring. We thus have a way of taking a subset of Cn and producing an ideal. Let IY be
the ideal corresponding to Y .

This construction is not injective. One can have Y 6= Y ′ but IY = IY ′ . For instance, if Y is
dense in Cn, then IY = (0), because the only way a continuous function on Cn can vanish on Y is
for it to be zero.

10
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There is a much closer connection in the other direction. You might ask whether all ideals can
arise in this way. The quick answer is no—not even when n = 1. The ideal (x2) ⊂ C[x] cannot be
obtained in this way. It is easy to see that the only way we could get this as IY is for Y = {0},
but IY in this case is just (x), not (x2). What’s going wrong in this example is that (x2) is not a
radical ideal.

Definition 2.5 An ideal I ⊂ R is radical if whenever x2 ∈ I, then x ∈ I.

The ideals IY in the polynomial ring are all radical. This is obvious. You might now ask
whether this is the only obstruction. We now state a theorem that we will prove later.

Theorem 2.6 (Hilbert’s Nullstellensatz) If I ⊂ C[x1, . . . , xn] is a radical ideal, then I = IY
for some Y ⊂ Cn. In fact, the canonical choice of Y is the set of points where all the functions in
Y vanish.2

This will be one of the highlights of the present course. But before we can get to it, there is
much to do.

Exercise 1.14 Assuming the Nullstellensatz, show that any maximal ideal in the polynomial ring
C[x1, . . . , xn] is of the form (x1 − a1, . . . , xn − an) for a1, . . . , an ∈ C. An ideal of a ring is called
maximal if the only ideal that contains it is the whole ring (and it itself is not the whole ring).

As a corollary, deduce that if I ⊂ C[x1, . . . , xn] is a proper ideal (an ideal is called proper if
it is not equal to the entire ring), then there exists (x1, . . . , xn) ∈ Cn such that every polynomial
in I vanishes on the point (x1, . . . , xn). This is called the weak Nullstellensatz.

§3 Modules over a commutative ring

We will now establish some basic terminology about modules.

3.1 Definitions

Suppose R is a commutative ring.

Definition 3.1 An R-module M is an abelian group M with a map R × M → M (written
(a,m)→ am) such that

M 1 (ab)m = a(bm) for a, b ∈ R,m ∈M , i.e. there is an associative law.

M 2 1m = m; the unit acts as the identity.

M 3 There are distributive laws on both sides: (a+ b)m = am+ bm and a(m+ n) = am+ an for
a, b ∈ R, m, n ∈M .

Another definition can be given as follows.

Definition 3.2 If M is an abelian group, End(M) is the set of homomorphisms f : M →M . This
can be made into a (noncommutative) ring.3 Addition is defined pointwise, and multiplication is
by composition. The identity element is the identity function 1M .

We made the following definition earlier for commutative rings, but for clarity we re-state it:

2Such a subset is called an algebraic variety.
3A noncommutative ring is one satisfying all the usual axioms of a ring except that multiplication is not required

to be commutative.
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Definition 3.3 If R,R′ are rings (possibly noncommutative) then a function f : R → R′ is a
ring-homomorphism or morphism if it is compatible with the ring structures, i.e

1. f(x+ y) = f(x) + f(y)

2. f(xy) = f(x)f(y)

3. f(1) = 1.

The last condition is not redundant because otherwise the zero map would automatically be
a homomorphism. The alternative definition of a module is left to the reader in the following
exercise.

Exercise 1.15 If R is a ring and R → End(M) a homomorphism, then M is made into an
R-module, and vice versa.

Example 3.4 If R is a ring, then R is an R-module by multiplication on the left.

Example 3.5 A Z-module is the same thing as an abelian group.

Definition 3.6 If M is an R-module, a subset M0 ⊂M is a submodule if it is a subgroup (closed
under addition and inversion) and is closed under multiplication by elements of R, i.e. aM0 ⊂M0

for a ∈ R. A submodule is a module in its own right. If M0 ⊂ M is a submodule, there is a
commutative diagram:

R×M0

��

// M0

��
R×M // M

.

Here the horizontal maps are multiplication.

Example 3.7 Let R be a (commutative) ring; then an ideal in R is the same thing as a sub-
module of R.

Example 3.8 If A is a ring, an A-algebra is an A-module in an obvious way. More generally,
if A is a ring and R is an A-algebra, any R-module becomes an A-module by pulling back the
multiplication map via A→ R.

Dual to submodules is the notion of a quotient module, which we define next:

Definition 3.9 Suppose M is an R-module and M0 a submodule. Then the abelian group M/M0

(of cosets) is an R-module, called the quotient module by M0.
Multiplication is as follows. If one has a coset x + M0 ∈ M/M0, one multiplies this by a ∈ R

to get the coset ax+M0. This does not depend on the coset representative.

3.2 The categorical structure on modules

So far, we have talked about modules, but we have not discussed morphisms between modules,
and have yet to make the class of modules over a given ring into a category. This we do next.

Let us thus introduce a few more basic notions.

Definition 3.10 Let R be a ring. Suppose M,N are R-modules. A map f : M → N is a module-
homomorphism if it preserves all the relevant structures. Namely, it must be a homomorphism
of abelian groups, f(x+ y) = f(x) + f(y), and second it must preserve multiplication:

f(ax) = af(x)

for a ∈ R, x ∈M .

12
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A simple way of getting plenty of module-homomorphisms is simply to consider multiplication
by a fixed element of the ring.

Example 3.11 If a ∈ R, then multiplication by a is a module-homomorphism M
a→ M for any

R-module M .4 Such homomorphisms are called homotheties.

If M
f→ N and N

g→ P are module-homomorphisms, their composite M
g◦f→ P clearly is too.

Thus, for any commutative ring R, the class of R-modules and module-homomorphisms forms a
category.

Exercise 1.16 The initial object in this category is the zero module, and this is also the final
object.

In general, a category where the initial object and final object are the same (that is, isomorphic)
is called a pointed category. The common object is called the zero object. In a pointed category C,
there is a morphism X → Y for any two objects X,Y ∈ C: if ∗ is the zero object, then we can take
X → ∗ → Y . This is well-defined and is called the zero morphism. One can easily show that the
composition (on the left or the right) of a zero morphism is a zero morphism (between a possibly
different set of objects).

In the case of the category of modules, the zero object is clearly the zero module, and the zero
morphism M → N sends m 7→ 0 for each m ∈M .

Definition 3.12 Let f : M → N be a module homomorphism. In this case, the kernel ker f of
f is the set of elements m ∈M with f(m) = 0. This is a submodule of M , as is easy to see.

The image Im f of f (the set-theoretic image, i.e. the collection of all f(x), x ∈ M) is also a
submodule of N .

The cokernel of f is defined by N/ Im(f).

Exercise 1.17 The universal property of the kernel is as follows. Let M
f→ N be a morphism

with kernel K ⊂ M . Let T → M be a map. Then T → M factors through the kernel K → M if
and only if its composition with f (a morphism T → N) is zero. That is, an arrow T → K exists
in the diagram (where the dotted arrow indicates we are looking for a map that need not exist)

T

~~|
|

|
|

��
K // M

f // N

if and only if the composite T → N is zero. In particular, if we think of the hom-sets as abelian
groups (i.e. Z-modules)

HomR(T,K) = ker (HomR(T,M)→ HomR(T,N)) .

In other words, one may think of the kernel as follows. If X
f→ Y is a morphism, then the

kernel ker(f) is the equalizer of f and the zero morphism X
0→ Y .

Exercise 1.18 What is the universal property of the cokernel?

Exercise 1.19 On the category of modules, the functor assigning to each moduleM its underlying
set is corepresentable (cf. ?? 1.6). What is the corepresenting object?

We shall now introduce the notions of direct sum and direct product. Let I be a set, and suppose
that for each i ∈ I, we are given an R-module Mi.

4When one considers modules over noncommutative rings, this is no longer true.
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Definition 3.13 The direct product
∏
Mi is set-theoretically the cartesian product. It is given

the structure of an R-module by addition and multiplication pointwise on each factor.

Definition 3.14 The direct sum
⊕

IMi is the set of elements in the direct product such that
all but finitely many entries are zero. The direct sum is a submodule of the direct product.

Example 3.15 The direct product is a product in the category of modules, and the direct sum
is a coproduct. This is easy to verify: given maps fi : M → Mi, then we get get a unique map
f : M →

∏
Mi by taking the product in the category of sets. The case of a coproduct is dual:

given maps gi : Mi → N , then we get a map
⊕
Mi → N by taking the sum g of the gi: on a

family (mi) ∈
⊕
Mi, we take g(mi) =

∑
I gi(mi); this is well-defined as almost all the mi are zero.

Example 3.15 shows that the category of modules over a fixed commutative ring has products
and coproducts. In fact, the category of modules is both complete and cocomplete (see ?? for the
definition). To see this, it suffices to show that (by ?? and its dual) that this category admits
equalizers and coequalizers.

The equalizer of two maps

M
f,g

⇒ N

is easily checked to be the submodule of M consisting of m ∈ M such that f(m) = g(m), or, in
other words, the kernel of f − g. The coequalizer of these two maps is the quotient module of N
by the submodule {f(m)− g(m),m ∈M}, or, in other words, the cokernel of f − g.

Thus:

Proposition 3.16 If R is a ring, the category of R-modules is complete and cocomplete.

Example 3.17 Note that limits in the category of R-modules are calculated in the same way as
they are for sets, but colimits are not. That is, the functor from R-modules to Sets, the forgetful
functor, preserves limits but not colimits. Indeed, we will see that the forgetful functor is a right
adjoint (Proposition 6.3), which implies it preserves limits (by ??).

3.3 Exactness

Finally, we introduce the notion of exactness.

Definition 3.18 Let f : M → N be a morphism of R-modules. Suppose g : N → P is another
morphism of R-modules.

The pair of maps is a complex if g ◦ f = 0 : M → N → P . This is equivalent to the condition
that Im(f) ⊂ ker(g).

This complex is exact (or exact at N) if Im(f) = ker(g). In other words, anything that is
killed when mapped to P actually comes from something in M .

We shall often write pairs of maps as sequences

A
f→ B

g→ C

and say that the sequence is exact if the pair of maps is, as in Definition 3.18. A longer (possibly
infinite) sequence of modules

A0 → A1 → A2 → . . .

will be called a complex if each set of three consecutive terms is a complex, and exact if it is
exact at each step.

14
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Example 3.19 The sequence 0→ A
f→ B is exact if and only if the map f is injective. Similarly,

A
f→ B → 0 is exact if and only if f is surjective. Thus, 0→ A

f→ B → 0 is exact if and only if f
is an isomorphism.

One typically sees this definition applied to sequences of the form

0→M ′
f→M

g→M ′′ → 0,

which, if exact, is called a short exact sequence. Exactness here means that f is injective, g is
surjective, and f maps onto the kernel of g. So M ′′ can be thought of as the quotient M/M ′.

Example 3.20 Conversely, if M is a module and M ′ ⊂ M a submodule, then there is a short
exact sequence

0→M ′ →M →M/M ′ → 0.

So every short exact sequence is of this form.

Suppose F is a functor from the category of R-modules to the category of S-modules, where
R,S are rings. Then:

Definition 3.21 1. F is called additive if F preserves direct sums.

2. F is called exact if F is additive and preserves exact sequences.

3. F is called left exact if F is additive and preserves exact sequences of the form 0→M ′ →
M →M ′′. Equivalently, F preserves kernels.

4. F is right exact if F is additive and F preserves exact sequences of the form M ′ → M →
M ′′ → 0, i.e. F preserves cokernels.

The reader should note that much of homological algebra can be developed using the more
general setting of an abelian category, which axiomatizes much of the standard properties of the
category of modules over a ring. Such a generalization turns out to be necessary when many natural
categories, such as the category of chain complexes or the category of sheaves on a topological space,
are not naturally categories of modules. We do not go into this here, cf. [ML98].

A functor F is exact if and only if it is both left and right exact. This actually requires proof,
though it is not hard. Namely, right-exactness implies that F preserves cokernels. Left-exactness
implies that F preserves kernels. F thus preserves images, as the image of a morphism is the kernel
of its cokernel. So if

A→ B → C

is a short exact sequence, then the kernel of the second map is equal to the image of the first; we
have just seen that this is preserved under F .

From this, one can check that left-exactness is equivalent to requiring that F preserve finite
limits (as an additive functor, F automatically preserves products, and we have just seen that F
is left-exact iff it preserves kernels). Similarly, right-exactness is equivalent to requiring that F
preserve finite colimits. So, in any category with finite limits and colimits, we can talk about right
or left exactness of a functor, but the notion is used most often for categories with an additive
structure (e.g. categories of modules over a ring).

Exercise 1.20 Suppose whenever 0 → A′ → A → A′′ → 0 is short exact, then FA′ → FA →
FA′′ → 0 is exact. Prove that F is right-exact. So we get a slightly weaker criterion for right-
exactness.

Do the same for left-exact functors.

15
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3.4 Split exact sequences

Let f : A→ B be a map of sets which is injective. Then there is a map g : A→ B such that the

composite g ◦ f : A
f→ B

g→ A is the identity. Namely, we define g to be the inverse of f on f(A)
and arbitrarily on B − f(A). Conversely, if f : A → B admits an element g : B → A such that
g ◦ f = 1A, then f is injective. This is easy to see, as any a ∈ A can be “recovered” from f(a) (by
applying g).

In general, however, this observation does not generalize to arbitrary categories.

Definition 3.22 Let C be a category. A morphism A
f→ B is called a split injection if there is

g : B → A with g ◦ f = 1A.

Exercise 1.21 (General nonsense) Suppose f : A → B is a split injection. Show that f is a
categorical monomorphism. (Idea: the map Hom(C,A)→ Hom(C,B) becomes a split injection of
sets thanks to g.)

TO BE ADDED: what is a categorical monomorphism? Maybe omit the exercise

In the category of sets, we have seen above that any monomorphism is a split injection. This
is not true in other categories, in general.

Exercise 1.22 Consider the morphism Z → Z given by multiplication by 2. Show that this is
not a split injection: no left inverse g can exist.

We are most interested in the case of modules over a ring.

Proposition 3.23 A morphism f : A→ B in the category of R-modules is a split injection if and
only if:

1. f is injective.

2. f(A) is a direct summand in B.

The second condition means that there is a submodule B′ ⊂ B such that B = B′⊕ f(A) (internal
direct sum). In other words, B = B′ + f(A) and B′ ∩ f(A) = {0}.

Proof. Suppose the two conditions hold, and we have a module B′ which is a complement to f(A).
Then we define a left inverse

B
g→ A

by letting g|f(A) = f−1 (note that f becomes an isomorphism A→ f(A)) and g|B′ = 0. It is easy
to see that this is indeed a left inverse, though in general not a right inverse, as g is likely to be
non-injective.

Conversely, suppose f : A → B admits a left inverse g : B → A. The usual argument (as for
sets) shows that f is injective. The essentially new observation is that f(A) is a direct summand
in B. To define the complement, we take ker(g) ⊂ B. It is easy to see (as g ◦ f = 1A) that
ker(g) ∩ f(A) = {0}. Moreover, ker(g) + f(A) fills B: given b ∈ B, it is easy to check that

b− f(g(b)) ∈ ker(g).

Thus we find that the two conditions are satisfied. N

TO BE ADDED: further explanation, exactness of filtered colimits
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3.5 The five lemma

The five lemma will be a useful tool for us in proving that maps are isomorphisms. Often this
argument is used in inductive proofs. Namely, we will see that often “long exact sequences”
(extending infinitely in one or both directions) arise from short exact sequences in a natural way.
In such events, the five lemma will allow us to prove that certain morphisms are isomorphisms by
induction on the dimension.

Theorem 3.24 Suppose given a commutative diagram

A

��

// B

��

// C

��

// D

��

// E

��
A′ // B′ // C ′ // D′ // E′

such that the rows are exact and the four vertical maps A → A′, B → B′, D → D′, E → E′ are
isomorphisms. Then C → C ′ is an isomorphism.

This is the type of proof that goes by the name of “diagram-chasing,” and is best thought out
visually for oneself, even though we give a complete proof.

Proof. We have the diagram

A
k //

a

��

B
l //

b

��

C
m //

g

��

D
n //

d

��

E

e

��
F p

// G q
// H r

// I s
// J N

where the rows are exact at B,C,D,G,H, I and the squares commute. In addition, suppose that
a, b, d, e are isomorphisms. We will show that g is an isomorphism.

We show that g is surjective:
Suppose that h ∈ H. Since d is surjective, there exists an element d ∈ D such that r(h) =

d(d) ∈ I. By the commutativity of the rightmost square, s(r(h)) = e(n(d)). The exactness at I
means that Im r = ker s, so hence e(n(d)) = s(r(h)) = 0. Because e is injective, n(d) = 0. Then
d ∈ ker(n) = Im(m) by exactness at D. Therefore, there is some c ∈ C such that m(c) = d.
Now, d(m(c)) = d(d) = r(h) and by the commutativity of squares, d(m(c)) = r(g(c)), so therefore
r(g(c)) = r(h). Since r is a homomorphism, r(g(c) − h) = 0. Hence g(c) − h ∈ ker r = Im q by
exactness at H.

Therefore, there exists g ∈ G such that q(g) = g(c) − h. b is surjective, so there is some
b ∈ B such that b(b) = g and hence q(b(b)) = g(c) − h. By the commutativity of squares,
q(b(b)) = g(l(b)) = g(c)− h. Hence h = g(c)− g(l(b)) = g(c− l(b)), and therefore g is surjective.

So far, we’ve used that b and g are surjective, e is injective, and exactness at D, H, I.
We show that g is injective:
Suppose that c ∈ C and g(c) = 0. Then r(g(c)) = 0, and by the commutativity of squares,

d(m(c)) = 0. Since d is injective, m(c) = 0, so c ∈ kerm = Im l by exactness at C. Therefore,
there is b ∈ B such that l(b) = c. Then g(l(b)) = g(c) = 0, and by the commutativity of squares,
q(b(b)) = 0. Therefore, b(b) ∈ ker q, and by exactness at G, b(b) ∈ ker q = Im p.

There is now f ∈ F such that p(f) = b(b). Since a is surjective, this means that there is a ∈ A
such that f = a(a), so then b(b) = p(a(a)). By commutativity of squares, b(b) = p(a(a)) = b(k(a)),
and hence b(k(a) − b) = 0. Since b is injective, we have k(a) − b = 0, so k(a) = b. Hence
b ∈ Im k = ker l by commutativity of squares, so l(b) = 0. However, we defined b to satisfy
l(b) = c, so therefore c = 0 and hence g is injective.
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Here, we used that a is surjective, b, d are injective, and exactness at B,C,G.
Putting the two statements together, we see that g is both surjective and injective, so g is an

isomorphism. We only used that b, d are isomorphisms and that a is surjective, e is injective, so
we can slightly weaken the hypotheses; injectivity of a and surjectivity of e were unnecessary.

§4 Ideals

The notion of an ideal has already been defined. Now we will introduce additional terminology
related to the theory of ideals.

4.1 Prime and maximal ideals

Recall that the notion of an ideal generalizes that of divisibility. In elementary number theory,
though, one finds that questions of divisibility basically reduce to questions about primes. The
notion of a “prime ideal” is intended to generalize the familiar idea of a prime number.

Definition 4.1 An ideal I ⊂ R is said to be prime if

P 1 1 /∈ I (by convention, 1 is not a prime number)

P 2 If xy ∈ I, either x ∈ I or y ∈ I.

Example 4.2 If R = Z and p ∈ R, then (p) ⊂ Z is a prime ideal iff p or −p is a prime number in
N or if p is zero.

If R is any commutative ring, there are two obvious ideals. These obvious ones are the zero
ideal (0) consisting only of the zero element, and the unit element (1) consisting of all of R.

Definition 4.3 An ideal I ⊂ R is called maximal5 if

M 1 1 /∈ I

M 2 Any larger ideal contains 1 (i.e., is all of R).

So a maximal ideal is a maximal element in the partially ordered set of proper ideals (an ideal
is proper if it does not contain 1).

Exercise 1.23 Find the maximal ideals in C[t].

Proposition 4.4 A maximal ideal is prime.

Proof. First, a maximal ideal does not contain 1.
Let I ⊂ R be a maximal ideal. We need to show that if xy ∈ I, then one of x, y ∈ I. If x /∈ I,

then (I, x) = I+(x) (the ideal generated by I and x) strictly contains I, so by maximality contains
1. In particular, 1 ∈ I + (x), so we can write

1 = a+ xb

where a ∈ I, b ∈ R. Multiply both sides by y:

y = ay + bxy. N

Both terms on the right here are in I (a ∈ I and xy ∈ I), so we find that y ∈ I.

5Maximal with respect to not being the unit ideal.
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Given a ring R, what can we say about the collection of ideals in R? There are two obvious
ideals in R, namely (0) and (1). These are the same if and only if 0 = 1, i.e. R is the zero ring.
So for any nonzero commutative ring, we have at least two distinct ideals.

Next, we show that maximal ideals always do exist, except in the case of the zero ring.

Proposition 4.5 Let R be a commutative ring. Let I ⊂ R be a proper ideal. Then I is contained
in a maximal ideal.

Proof. This requires the axiom of choice in the form of Zorn’s lemma. Let P be the collection of
all ideals J ⊂ R such that I ⊂ J and J 6= R. Then P is a poset with respect to inclusion. P
is nonempty because it contains I. Note that given a (nonempty) linearly ordered collection of
ideals Jα ∈ P , the union

⋃
Jα ⊂ R is an ideal: this is easily seen in view of the linear ordering (if

x, y ∈
⋃
Jα, then both x, y belong to some Jγ , so x+ y ∈ Jγ ; multiplicative closure is even easier).

The union is not all of R because it does not contain 1.
This implies that P has a maximal element by Zorn’s lemma. This maximal element may be

called M; it’s a proper element containing I. I claim that M is a maximal ideal, because if it were
contained in a larger ideal, that would be in P (which cannot happen by maximality) unless it
were all of R. N

Corollary 4.6 Let R be a nonzero commutative ring. Then R has a maximal ideal.

Proof. Apply the lemma to the zero ideal. N

Corollary 4.7 Let R be a nonzero commutative ring. Then x ∈ R is invertible if and only if it
belongs to no maximal ideal m ⊂ R.

Proof. Indeed, x is invertible if and only if (x) = 1. That is, if and only if (x) is not a proper ideal;
now Proposition 4.5 finishes the argument. N

4.2 Fields and integral domains

Recall:

Definition 4.8 A commutative ring R is called a field if 1 6= 0 and for every x ∈ R − {0} there
exists an inverse x−1 ∈ R such that xx−1 = 1.

This condition has an obvious interpretation in terms of ideals.

Proposition 4.9 A commutative ring with 1 6= 0 is a field iff it has only the two ideals (1), (0).

Alternatively, a ring is a field if and only if (0) is a maximal ideal.

Proof. Assume R is a field. Suppose I ⊂ R. If I 6= (0), then there is a nonzero x ∈ I. Then there
is an inverse x−1. We have x−1x = 1 ∈ I, so I = (1). In a field, there is thus no room for ideals
other than (0) and (1).

To prove the converse, assume every ideal of R is (0) or (1). Then for each x ∈ R, (x) = (0)
or (1). If x 6= 0, the first cannot happen, so that means that the ideal generated by x is the unit
ideal. So 1 is a multiple of x, implying that x has a multiplicative inverse. N

So fields also have an uninteresting ideal structure.

Corollary 4.10 If R is a ring and I ⊂ R is an ideal, then I is maximal if and only if R/I is a
field.
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Proof. The basic point here is that there is a bijection between the ideals of R/I and ideals of R
containing I.

Denote by φ : R→ R/I the reduction map. There is a construction mapping ideals of R/I to
ideals of R. This sends an ideal in R/I to its inverse image. This is easily seen to map to ideals
of R containing I. The map from ideals of R/I to ideals of R containing I is a bijection, as one
checks easily.

It follows that R/I is a field precisely if R/I has precisely two ideals, i.e. precisely if there are
precisely two ideals in R containing I. These ideals must be (1) and I, so this holds if and only if
I is maximal. N

There is a similar characterization of prime ideals.

Definition 4.11 A commutative ring R is an integral domain if for all x, y ∈ R, x 6= 0 and
y 6= 0 imply xy 6= 0.

Proposition 4.12 An ideal I ⊂ R is prime iff R/I is a domain.

Exercise 1.24 Prove Proposition 4.12.

Any field is an integral domain. This is because in a field, nonzero elements are invertible, and
the product of two invertible elements is invertible. This statement translates in ring theory to
the statement that a maximal ideal is prime.

Finally, we include an example that describes what some of the prime ideals in a polynomial
ring look like.

Example 4.13 Let R be a ring and P a prime ideal. We claim that PR[x] ⊂ R[x] is a prime
ideal.

Consider the map φ̃ : R[x]→ (R/P )[x] with φ̃(a0+· · ·+anxn) = (a0+P )+· · ·+(an+P )xn. This
is clearly a homomorphism because φ : R → R/P is, and its kernel consists of those polynomials
a0 + · · · + anx

n with a0, . . . , an ∈ P , which is precisely P [x]. Thus R[x]/P [x] ' (R/P )[x], which
is an integral domain because R/P is an integral domain. Thus P [x] is a prime ideal.

However, if P is a maximal ideal, then P [x] is never a maximal ideal because the ideal P [x]+(x)
(the polynomials with constant term in P ) always strictly contains P [x] (because if x ∈ P [x] then
1 ∈ P , which is impossible). Note that P [x] + (x) is the kernel of the composition of φ̃ with
evaluation at 0, i.e (ev0 ◦ φ̃) : R[x]→ R/P , and this map is a surjection and R/P is a field, so that
P [x] + (x) is the maximal ideal in R[x] containing P [x].

Exercise 1.25 Let R be a domain. Consider the set of formal quotients a/b, a, b ∈ R with b 6= 0.
Define addition and multiplication using usual rules. Show that the resulting object K(R) is a
ring, and in fact a field. The natural map R→ K(R), r → r/1, has a universal property. If R ↪→ L
is an injection of R into a field L, then there is a unique morphism K(R)→ L of fields extending
R → L. This construction will be generalized when we consider localization. This construction is
called the quotient field.

Note that a non-injective map R→ L will not factor through the quotient field!

Exercise 1.26 Let R be a commutative ring. Then the Jacobson radical of R is the intersection⋂
m of all maximal ideals m ⊂ R. Prove that an element x is in the Jacobson radical if and only

if 1− yx is invertible for all y ∈ R.

4.3 Prime avoidance

The following fact will come in handy occasionally. We will, for instance, use it much later to show
that an ideal consisting of zerodivisors on a module M is contained in associated prime.
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Theorem 4.14 (Prime avoidance) Let I1, . . . , In ⊂ R be ideals. Let A ⊂ R be a subset which
is closed under addition and multiplication. Assume that at least n− 2 of the ideals are prime. If
A ⊂ I1 ∪ · · · ∪ In, then A ⊂ Ij for some j.

The result is frequently used in the following specific case: if an ideal I is contained in a finite
union

⋃
pi of primes, then I ⊂ pi for some i.

Proof. Induct on n. If n = 1, the result is trivial. The case n = 2 is an easy argument: if
a1 ∈ Ar I1 and a2 ∈ Ar I2, then a1 + a2 ∈ Ar (I1 ∪ I2).

Now assume n ≥ 3. We may assume that for each j, A 6⊂ I1 ∪ · · · ∪ Îj ∪ · · · In.6 Fix an element

aj ∈ Ar (I1 ∪ · · · ∪ Îj ∪ · · · In). Then this aj must be contained in Ij since A ⊂
⋃
Ij . Since n ≥ 3,

one of the Ij must be prime. We may assume that I1 is prime. Define x = a1 + a2a3 · · · an, which
is an element of A. Let’s show that x avoids all of the Ij . If x ∈ I1, then a2a3 · · · an ∈ I1, which
contradicts the fact that ai 6∈ Ij for i 6= j and that I1 is prime. If x ∈ Ij for j ≥ 2. Then a1 ∈ Ij ,
which contradicts ai 6∈ Ij for i 6= j. N

4.4 The Chinese remainder theorem

Let m,n be relatively prime integers. Suppose a, b ∈ Z; then one can show that the two congruences
x ≡ a mod m and x ≡ b mod n can be solved simultaneously in x ∈ Z. The solution is unique,
moreover, modulo mn. The Chinese remainder theorem generalizes this fact:

Theorem 4.15 (Chinese remainder theorem) Let I1, . . . In be ideals in a ring R which satisfy
Ii + Ij = R for i 6= j. Then we have I1 ∩ · · · ∩ In = I1 . . . In and the morphism of rings

R→
⊕

R/Ii

is an epimorphism with kernel I1 ∩ · · · ∩ In.

Proof. First, note that for any two ideals I1 and I2, we have I1I2 ⊂ I1 ∩ I2 and (I1 + I2)(I1 ∩ I2) ⊂
I1I2 (because any element of I1 + I2 multiplied by any element of I1 ∩ I2 will clearly be a sum of
products of elements from both I1 and I2). Thus, if I1 and I2 are coprime, i.e. I1 + I2 = (1) = R,
then (1)(I1 ∩ I2) = (I1 ∩ I2) ⊂ I1I2 ⊂ I1 ∩ I2, so that I1 ∩ I2 = I1I2. This establishes the result for
n = 2.

If the ideals I1, . . . , In are pairwise coprime and the result holds for n− 1, then

n−1⋂
i=1

Ii =

n−1∏
i=1

Ii.

Because In+Ii = (1) for each 1 ≤ i ≤ n−1, there must be xi ∈ In and yi ∈ Ii such that xi+yi = 1.

Thus, zn =
∏n−1
i=1 yi =

∏n−1
i=1 (1 − xi) ∈

∏n−1
i=1 Ii, and clearly zn + In = 1 + In since each xi ∈ In.

Thus In +
∏n−1
i=1 Ii = In +

⋂n−1
i=1 Ii = (1), and we can now apply the n = 2 case to conclude that⋂n

i=1 Ii =
∏n
i=1 Ii.

Note that for any i, we can construct a zi with zi ∈ Ij for j 6= i and zi + Ii = 1 + Ii via the
same procedure.

Define φ : R →
⊕
R/Ii by φ(a) = (a + I1, . . . , a + In). The kernel of φ is

⋂n
i=1 Ii, because

a+ Ii = 0 + Ii iff a ∈ Ii, so that φ(a) = (0 + I1, . . . , 0 + In) iff a ∈ Ii for all i, that is, a ∈
⋂n
i=1 Ii.

Combined with our previous result, the kernel of φ is
∏n
i=1 Ii.

Finally, recall that we constructed zi ∈ R such that zi+Ii = 1+Ii, and z+Ij = 0+Ij for all j 6= i,
so that φ(zi) = (0+I1, . . . , 1+Ii, . . . , 0+In). Thus, φ(a1z1+· · ·+anzn) = (a1+I1, . . . , an+In) for all
ai ∈ R, so that φ is onto. By the first isomorphism theorem, we have that R/I1 · · · In '

⊕n
i=1R/Ii.

6The hat means omit Ij .
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§5 Some special classes of domains

5.1 Principal ideal domains

Definition 5.1 A ring R is a principal ideal domain or PID if R 6= 0, R is not a field, R is a
domain, and every ideal of R is principal.

These have the next simplest theory of ideals. Each ideal is very simple—it’s principal—though
there might be a lot of ideals.

Example 5.2 Z is a PID. The only nontrivial fact to check here is that:

Proposition 5.3 Any nonzero ideal I ⊂ Z is principal.

Proof. If I = (0), then this is obvious. Else there is n ∈ I − {0}; we can assume n > 0. Choose
n ∈ I as small as possible and positive. Then I claim that the ideal I is generated by (n). Indeed,
we have (n) ⊂ I obviously. If m ∈ I is another integer, then divide m by n, to find m = nb+ r for
r ∈ [0, n). We find that r ∈ I and 0 ≤ r < n, so r = 0, and m is divisible by n. And I ⊂ (n).

So I = (n). N

A module M is said to be finitely generated if there exist elements x1, . . . , xn ∈ M such that
any element of M is a linear combination (with coefficients in R) of the xi. (We shall define this
more formally below.) One reason that PIDs are so convenient is:

Theorem 5.4 (Structure theorem) If M is a finitely generated module over a principal ideal
domain R, then M is isomorphic to a direct sum

M '
n⊕
i=1

R/ai,

for various ai ∈ R (possibly zero).

TO BE ADDED: at some point, the proof should be added. This is important!

5.2 Unique factorization domains

The integers Z are especially nice because of the fundamental theorem of arithmetic, which states
that every integer has a unique factorization into primes. This is not true for every integral domain.

Definition 5.5 An element of a domain R is irreducible if it cannot be written as the product
of two non-unit elements of R.

Example 5.6 Consider the integral domain Z[
√
−5]. We saw earlier that

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5),

which means that 6 was written as the product of two non-unit elements in different ways. Z[
√
−5]

does not have unique factorization.

Definition 5.7 A domain R is a unique factorization domain or UFD if every non-unit x ∈ R
satisfies

1. x can be written as a product x = p1p2 · · · pn of irreducible elements pi ∈ R
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2. if x = q1q2 · · · qm where qi ∈ R are irreducible then the pi and qi are the same up to order
and multiplication by units.

Example 5.8 Z is a UFD, while Z[
√
−5] is not. In fact, many of our favorite domains have unique

factorization. We will prove that all PIDs are UFDs. In particular, in ?? 1.27 and ?? 1.28, we saw
that Z[i] and F [t] are PIDs, so they also have unique factorization.

Theorem 5.9 Every principal ideal domain is a unique factorization domain.

Proof. Suppose that R is a principal ideal domain and x is an element of R. We first demonstrate
that x can be factored into irreducibles. If x is a unit or an irreducible, then we are done. Therefore,
we can assume that x is reducible, which means that x = x1x2 for non-units x1, x2 ∈ R. If there
are irreducible, then we are again done, so we assume that they are reducible and repeat this
process. We need to show that this process terminates.

Suppose that this process continued infinitely. Then we have an infinite ascending chain of
ideals, where all of the inclusions are proper: (x) ⊂ (x1) ⊂ (x11) ⊂ · · · ⊂ R. We will show that this
is impossible because any infinite ascending chain of ideals I1 ⊂ I2 ⊂ · · · ⊂ R of a principal ideal
domain eventually becomes stationary, i.e. for some n, Ik = In for k ≥ n. Indeed, let I =

⋃∞
i=1 Ii.

This is an ideal, so it is principally generated as I = (a) for some a. Since a ∈ I, we must have
a ∈ IN for some N , which means that the chain stabilizes after IN .

It remains to prove that this factorization of x is unique. We induct on the number of irreducible
factors n of x. If n = 0, then x is a unit, which has unique factorization up to units. Now, suppose
that x = p1 · · · pn = q1 · · · qm for some m ≥ n. Since p1 divides x, it must divide the product
q1 · · · qm and by irreducibility, one of the factors qi. Reorder the qi so that p1 divides q1. However,
q1 is irreducible, so this means that p1 and q1 are the same up to multiplication by a unit u.
Canceling p1 from each of the two factorizations, we see that p2 · · · pn = uq2 · · · qm = q′2 · · · qm.
By induction, this shows that the factorization of x is unique up to order and multiplication by
units. N

5.3 Euclidean domains

A euclidean domain is a special type of principal ideal domain. In practice, it will often happen
that one has an explicit proof that a given domain is euclidean, while it might not be so trivial to
prove that it is a UFD without the general implication below.

Definition 5.10 An integral domain R is a euclidean domain if there is a function |·| : R→ Z≥0
(called the norm) such that the following hold.

1. |a| = 0 iff a = 0.

2. For any nonzero a, b ∈ R there exist q, r ∈ R such that b = aq + r and |r| < |a|.

In other words, the norm is compatible with division with remainder.

Theorem 5.11 A euclidean domain is a principal ideal domain.

Proof. Let R be an euclidean domain, I ⊂ R and ideal, and b be the nonzero element of smallest
norm in I. Suppose a ∈ I. Then we can write a = qb+ r with 0 ≤ r < |b|, but since b has minimal
nonzero absolute value, r = 0 and b|a. Thus I = (b) is principal. N

As we will see, this implies that any euclidean domain admits unique factorization.

Proposition 5.12 Let F be a field. Then the polynomial ring F [t] is a euclidean domain. In
particular, it is a PID.

23



CRing Project, Chapter 1

Proof. We define TO BE ADDED: N

Exercise 1.27 Prove that Z[i] is principal. (Define the norm as N(a+ ib) = a2 + b2.)

Exercise 1.28 Prove that the polynomial ring F [t] for F a field is principal.

It is not true that a PID is necessarily euclidean. Nevertheless, it was shown in [Gre97] that the
converse is “almost” true. Namely, [Gre97] defines the notion of an almost euclidean domain.
A domain R is almost euclidean if there is a function d : R→ Z≥0 such that

1. d(a) = 0 iff a = 0.

2. d(ab) ≥ d(a) if b 6= 0.

3. If a, b ∈ R− {0}, then either b | a or there is r ∈ (a, b) with d(r) < d(b).

It is easy to see by the same argument that an almost euclidean domain is a PID. (Indeed, let
R be an almost euclidean domain, and I ⊂ R a nonzero ideal. Then choose x ∈ I − {0} such that
d(x) is minimal among elements in I. Then if y ∈ I − {0}, either x | y or (x, y) ⊂ I contains an
element with smaller d. The latter cannot happen, so the former does.) However, in fact:

Proposition 5.13 ([Gre97]) A domain is a PID if and only if it is almost euclidean.

Proof. Indeed, let R be a PID. Then R is a UFD (Theorem 5.9), so for any x ∈ R, there is
a factorization into prime elements, unique up to units. If x factors into n elements, we define
d(x) = n; we set d(0) = 0. The first two conditions for an almost euclidean domain are then
evident.

Let x = p1 . . . pm and y = q1 . . . qn be two elements of R, factored into irreducibles. Suppose
x - y. Choose a generator b of the (principal) ideal (x, y); then obviously y | b so d(y) ≤ d(b). But
if d(y) = d(b), then the number of factors of y and b is the same, so y | b would imply that y and
b are associates. This is a contradiction, and implies that d(y) < d(b).

Remark We have thus seen that a euclidean domain is a PID, and a PID is a UFD. Both converses,
however, fail. By Gauss’s lemma (??), the polynomial ring Z[X] has unique factorization, though
the ideal (2, X) is not principal.

In [Cam88], it is shown that the ring Z[ 1+
√
−19
2 ] is a PID but not euclidean (i.e. there is no

euclidean norm on it).

According to [Cla11], sec. 8.3, Proposition 5.13 actually goes back to Hasse (and these norms
are sometimes called “Dedekind-Hasse norms”).

§6 Basic properties of modules

6.1 Free modules

We now describe a simple way of constructing modules over a ring, and an important class of
modules.

Definition 6.1 A module M is free if it is isomorphic to
⊕

I R for some index set I. The
cardinality of I is called the rank.

Example 6.2 R is the simplest example of a free module.
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Free modules have a universal property. Namely, recall that if M is an R-module, then to give
a homomorphism

R→M

is equivalent to giving an element m ∈M (the image of 1). By the universal product of the direct
sum (which is the coproduct in the category of modules), it follows that to give a map⊕

I

→M

is the same as giving a map of sets I →M . In particular:

Proposition 6.3 The functor I 7→
⊕

I R from Sets to R-modules is the left adjoint to the forgetful
functor from R-modules to Sets.

The claim now is that the notion of “rank” is well-defined for a free module. To see this, we
will have to use the notion of a maximal ideal (Definition 4.3) and Corollary 4.10. Indeed, suppose⊕

I R and
⊕

J R are isomorphic; we must show that I and J have the same cardinality. Choose a
maximal ideal m ⊂ R. Then, by applying the functor M →M/mM , we find that the R/m-vector
spaces ⊕

I

R/m,
⊕
J

R/m

are isomorphic. By linear algebra, I and J have the same cardinality.
Free modules have a bunch of nice properties. The first is that it is very easy to map out of a

free module.

Example 6.4 Let I be an indexing set, and M an R-module. Then to give a morphism⊕
I

R→M

is equivalent to picking an element of M for each i ∈ I. Indeed, given such a collection of elements
{mi}, we send the generator of

⊕
I R with a 1 in the ith spot and zero elsewhere to mi.

Example 6.5 In a domain, every principal ideal (other than zero) is a free module of rank one.

Another way of saying this is that the free module
⊕

I R represents the functor on modules
sending M to the set M I . We have already seen a special case of this for I a one-element set
(?? 1.19).

The next claim is that free modules form a reasonably large class of the category of R-modules.

Proposition 6.6 Given an R-module M , there is a free module F and a surjection

F �M.

Proof. We let F to be the free R-module on the elements em, one for each m ∈M . We define the
map

F →M

by describing the image of each of the generators em: we just send each em to m ∈M . It is clear
that this map is surjective. N

We close by making a few remarks on matrices. Let M be a free module of rank n, and fix
an isomorphism M ' Rn. Then we can do linear algebra with M , even though we are work-
ing over a ring and not necessarily a field, at least to some extent. For instance, we can talk
about n-by-n matrices over the ring R, and then each of them induces a transformation, i.e. a
module-homomorphism, M → M ; it is easy to see that every module-homomorphism between
free modules is of this form. Moreover, multiplication of matrices corresponds to composition of
homomorphisms, as usual.
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Example 6.7 Let us consider the question of when the transformation induced by an n-by-n
matrix is invertible. The answer is similar to the familiar one from linear algebra in the case of a
field. Namely, the condition is that the determinant be invertible.

Suppose that an n× n matrix A over a ring R is invertible. This means that there exists A−1

so that AA−1 = I, so hence 1 = det I = det(AA−1) = (detA)(detA−1), and therefore, detA must
be a unit in R.

Suppose instead that an n × n matrix A over a ring R has an invertible determinant. Then,
using Cramer’s rule, we can actually construct the inverse of A.

We next show that if R is a commutative ring, the category of modules over R contains enough
information to reconstruct R. This is a small part of the story of Morita equivalence, which we
shall not enter into here.

Example 6.8 Suppose R is a commutative ring, and let C be the category of R-modules. The
claim is that C, as an abstract category, determines R. Indeed, the claim is that R is canonically
the ring of endomorphisms of the identity functor 1C .

Such an endomorphism is given by a natural transformation φ : 1C → 1C . In other words,
one requires for each R-module M , a homomorphism of R-modules φM : M → M such that if
f : M → N is any homomorphism of modules, then there is a commutative square

M

f

��

φM // M

��
N

φN // N.

Here is a simple way of obtaining such endomorphisms. Given r ∈ R, we consider the map
r : M → m which just multiplies each element by r. This is a homomorphism, and it is clear
that it is natural in the above sense. There is thus a map R→ End(1C) (note that multiplication
corresponds to composition of natural transformations). This map is clearly injective; different
r, s ∈ R lead to different natural transformations (e.g. on the R-module R).

The claim is that any natural transformation of 1C is obtained in this way. Namely, let φ :
1C → 1C be such a natural transformation. On the R-module R, φ must be multiplication by
some element r ∈ R (because HomR(R,R) is given by such homotheties). Consequently, one sees
by drawing commutative diagrams that φ : R⊕S → R⊕S is of this form for any set S. So φ is
multiplication by r on any free R-module. Since any module M is a quotient of a free module F ,
we can draw a diagram

F

��

φF // F

��
M

φM // M.

Since the vertical arrows are surjective, we find that φF must be given by multiplication by r too.

6.2 Finitely generated modules

The notion of a “finitely generated” module is analogous to that of a finite-dimensional vector
space.

Definition 6.9 An R-module M is finitely generated if there exists a surjection Rn → M for
some n. In other words, it has a finite number of elements whose “span” contains M .

The basic properties of finitely generated modules follow from the fact that they are stable
under extensions and quotients.
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Proposition 6.10 Let 0 → M ′ → M → M ′′ → 0 be an exact sequence. If M ′,M ′′ are finitely
generated, so is M .

Proof. Suppose 0 → M ′
f→ M

g→ M ′′ → 0 is exact. Then g is surjective, f is injective, and
ker(g) = im(f). Now suppose M ′ is finitely generated, say by {a1, . . . , as}, and M ′′ is finitely
generated, say by {b1, . . . , bt}. Because g is surjective, each g−1(bi) is non-empty. Thus, we can
fix some ci ∈ g−1(bi) for each i.

For any m ∈M , we have g(m) = r1b1 + · · ·+ rtbt for some ri ∈ R because g(m) ∈M ′′ and M ′′

is generated by the bi. Thus g(m) = r1g(ci) + · · · rtg(ct) = g(r1c1 + · · ·+ rtct), and because g is a
homomorphism we have m− (r1c1 + · · ·+ rtct) ∈ ker(g) = im(f). But M ′ is generated by the ai,
so the submodule im(f) ⊂M is finitely generated by the di = f(ai).

Thus, any m ∈M has m− (r1c1 + · · ·+ rtct) = rt+1d1 + · · ·+ rt+sds for some r1, . . . , rt+s, thus
M is finitely generated by c1, . . . , ct, d1, . . . , ds.

The converse is false. It is possible for finitely generated modules to have submodules which
are not finitely generated. As we shall see in Chapter 5, this does not happen over noetherian
rings.

Example 6.11 Consider the ring R = C[X1, X2, . . . , ] and the ideal (X1, X2, . . . ). This ideal is a
submodule of the finitely generated R-module R, but it is not finitely generated.

Exercise 1.29 Show that a quotient of a finitely generated module is finitely generated.

Exercise 1.30 Consider a split exact sequence 0 → M ′ → M → M ′′ → 0. In this case, show
that if M is finitely generated, so is M ′.

6.3 Finitely presented modules

Over messy rings, the notion of a finitely presented module is often a good substitute for that of a
finitely generated one. In fact, we are going to see (??), that there is a general method of reducing
questions about finitely presented modules over arbitrary rings to finitely generated modules over
finitely generated Z-algebras.

Throughout, fix a ring R.

Definition 6.12 An R-module M is finitely presented if there is an exact sequence

Rm → Rn →M → 0.

The point of this definition is that M is the quotient of a free module Rn by the “relations”
given by the images of the vectors in Rm. Since Rm is finitely generated, M can be represented
via finitely many generators and finitely many relations.

The reader should compare this with the definition of a finitely generated module; there we
only require an exact sequence

Rn →M → 0.

As usual, we establish the usual properties of finitely presented modules.
We start by showing that if a finitely presented module M is generated by finitely many ele-

ments, the “module of relations” among these generators is finitely generated itself. The condition
of finite presentation only states that there is one such set of generators such that the module of
generators is finitely generated.

Proposition 6.13 Suppose M is finitely presented. Then if Rm � M is a surjection, the kernel
is finitely generated.
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Proof. Let K be the kernel of Rm �M . Consider an exact sequence

F ′ → F →M → 0

where F ′, F are finitely generated and free, which we can do as M is finitely presented. Draw a
commutative and exact diagram

F ′ // F //

���
�
� M //

��

0

0 // K // Rm // M // 0

The dotted arrow F → Rm exists as F is projective. There is induced a map F ′ → K. We get a
commutative and exact diagram

F ′ //

f

��

F //

g

��

M //

��

0

0 // K // Rm // M // 0

,

to which we can apply the snake lemma. There is an exact sequence

0→ Coker(f)→ Coker(g)→ 0,

which gives an isomorphism Coker(f) ' Coker(g). However, Coker(g) is finitely generated, as a
quotient of Rm. Thus Coker(f) is too. Since we have an exact sequence

0→ Im(f)→ K → Coker(f)→ 0,

and Im(f) is finitely generated (as the image of a finitely generated object, F ′), we find by Propo-
sition 6.10 that Coker(f) is finitely generated. N

Proposition 6.14 Given an exact sequence

0→M ′ →M →M ′′ → 0,

if M ′,M ′′ are finitely presented, so is M .

In general, it is not true that if M is finitely presented, then M ′ and M ′′ are. For instance, it
is possible that a submodule of the free, finitely generated module R (i.e. an ideal), might fail to
be finitely generated. We shall see in Chapter 5 that this does not happen over a noetherian ring.

Proof. Indeed, suppose we have exact sequences

F ′1 → F ′0 →M ′ → 0

and
F ′′1 → F ′′0 →M ′′ → 0

where the F ’s are finitely generated and free. We need to get a similar sequence for M . Let us
stack these into a diagram

F ′1

��

F ′′1

��
F ′0

��

F ′′0

��
0 // M ′ // M // M ′′ // 0
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However, now, using general facts about projective modules (??), we can splice these presentations
into a resolution

F ′1 ⊕ F ′′1 → F ′0 ⊕ F ′′0 →M → 0,

which proves the assertion. N

Corollary 6.15 The (finite) direct sum of finitely presented modules is finitely presented.

Proof. Immediate from Proposition 6.14 N

6.4 Modules of finite length

A much stronger condition on modules that of finite generation is that of finite length. Here,
basically any operation one does will eventually terminate.

Let R be a commutative ring, M an R-module.

Definition 6.16 M is simple if M 6= 0 and M has no nontrivial submodules.

Exercise 1.31 A torsion-free abelian group is never a simple Z-module.

Proposition 6.17 M is simple if and only if it is isomorphic to R/m for m ⊂ R a maximal ideal.

Proof. Let M be simple. Then M must contain a cyclic submodule Rx generated by some x ∈
M − {0}. So it must contain a submodule isomorphic to R/I for some ideal I, and simplicity
implies that M ' R/I for some I. If I is not maximal, say properly contained in J , then we will
get a nontrivial submodule J/I of R/I ' M . Conversely, it is easy to see that R/m is simple for
m maximal. N

Exercise 1.32 (Schur’s lemma) Let f : M → N be a module-homomorphism, where M,N are
both simple. Then either f = 0 or f is an isomorphism.

Definition 6.18 M is of finite length if there is a finite filtration 0 ⊂ M0 ⊂ · · · ⊂ Mn = M
where each M i/M i−1 is simple.

Exercise 1.33 Modules of finite length are closed under extensions (that is, if 0 → M ′ → M →
M ′′ → 0 is an exact sequence, then if M ′,M ′′ are of finite length, so is M).

In the next result (which will not be used in this chapter), we shall use the notions of a
noetherian and an artinian module. These notions will be developed at length in ??, and we
refer the reader there for more explanation. A module is noetherian if every ascending chain
M1 ⊂M2 ⊂ . . . of submodules stabilizes, and it is artinian if every descending chain stabilizes.

Proposition 6.19 M is finite length iff M is both noetherian and artinian.

Proof. Any simple module is obviously both noetherian and artinian: there are two submodules. So
if M is finite length, then the finite filtration with simple quotients implies that M is noetherian and
artinian, since these two properties are stable under extensions (Proposition 1.5 and Proposition 4.3
of Chapter 5).

Suppose M 6= 0 is noetherian and artinian. Let M1 ⊂ M be a minimal nonzero submodule,
which exists as M is artinian. This is necessarily simple. Then we have a filtration

0 = M0 ⊂M1.
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If M1 = M , then the filtration goes up to M , and we have that M is of finite length. If not, find
a submodule M2 that contains M1 and is minimal among submodules containing M1; then the
quotient M2/M1 is simple. We have the filtration

0 = M0 ⊂M1 ⊂M2,

which we can keep continuing until at some point we reach M . Note that since M is noetherian,
we cannot continue this strictly ascending chain forever. N

Exercise 1.34 In particular, any submodule or quotient module of a finite length module is of
finite length. Note that the analog is not true for finitely generated modules unless the ring in
question is noetherian.

Our next goal is to show that the length of a filtration of a module with simple quotients is
well-defined. For this, we need:

Lemma 6.20 Let 0 = M0 ⊂M1 ⊂ · · · ⊂Mn = M be a filtration of M with simple quotients. Let
N ⊂M . Then the filtration 0 = M0 ∩N ⊂M1 ∩N ⊂ · · · ⊂ N has simple or zero quotients.

Proof. Indeed, for each i, (N ∩Mi)/(N ∩Mi−1) is a submodule of Mi/Mi−1, so is either zero or
simple. N

Theorem 6.21 (Jordan-Hölder) Let M be a module of finite length. In this case, any two
filtrations on M with simple quotients have the same length.

Definition 6.22 This number is called the length of M and is denoted `(M).

Proof (Proof of Theorem 6.21). Let us introduce a temporary definition: l(M) is the length of the
minimal filtration on M . We will show that any filtration of M (with simple quotients) is of length
l(M). This is the proposition in another form.

The proof of this claim is by induction on l(M). Suppose we have a filtration

0 = M0 ⊂M1 ⊂ · · · ⊂Mn = M

with simple quotients. We would like to show that n = l(M). By definition of l(M), there is
another filtration

0 = N0 ⊂ · · · ⊂ Nl(M) = M.

If l(M) = 0, 1, then M is zero or simple, which will necessarily imply that n = 0, 1 respectively.
So we can assume l(M) ≥ 2. We can also assume that the result is known for strictly smaller
submodules of M .

There are two cases:

1. Mn−1 = Nl(M)−1. Then Mn−1 = Nl(M)−1 has l at most l(M) − 1. Thus by the inductive
hypothesis any two filtrations on Mn−1 have the same length, so n− 1 = l(M)− 1, implying
what we want.

2. We have Mn−1 ∩Nl(M)−1 (Mn−1, Nl(M)−1. Call this intersection K.

Now we have two filtrations of these modules Mn−1, Nl(M)−1 whose quotients are simple.
We can replace them such that the next term before them is K. To do this, consider the
filtrations

0 = M0 ∩K ⊂M1 ⊂ K ⊂ . . .Mn−1 ∩K = K ⊂Mn−1

and
0 = N0 ∩K ⊂M1 ⊂ K ⊂ . . . Nl(M)−1 ∩K = K ⊂ Nl(M)−1.
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These filtrations have simple or zero quotients by Lemma 6.20, and since Mn−1/K =
Mn−1/Mn−1 ∩Nl(M)−1 = M/Mn−1 is simple, and similarly for Nl(M)−1/K. We can throw
out redundancies to eliminate the zero terms. So we get two new filtrations of Mn−1 and
Nl(M)−1 whose second-to-last term is K.

By the inductive hypothesis any two filtrations on either of these proper submodulesMn−1, Nl(M)−1
have the same length. Thus the lengths of the two new filtrations are n − 1 and l(M) − 1,
respectively. So we find that n − 1 = l(K) + 1 and l(M) − 1 = l(K) + 1 by the inductive
hypothesis. This implies what we want. N

Exercise 1.35 Prove that the successive quotients Mi/Mi−1 are also determined (up to permu-
tation).
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