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Chapter 15

Flatness revisited

In the past, we have already encountered the notion of flatness. We shall now study it in more
detail. We shall start by introducing the notion of faithful flatness and introduce the idea of
“descent.” Later, we shall consider other criteria for (normal) flatness that we have not yet
explored.

We recall (??) that a module M over a commutative ring R is flat if the functor N 7→ N ⊗RM
is an exact functor. An R-algebra is flat if it is flat as a module. For instance, we have seen that
any localization of R is a flat algebra, because localization is an exact functor.

All this has not been added yet!

§1 Faithful flatness

1.1 Faithfully flat modules

Let R be a commutative ring.

Definition 1.1 The R-module M is faithfully flat if any complex N ′ → N → N ′′ of R-modules
is exact if and only if the tensored sequence N ′ ⊗RM → N ⊗RM → N ′′ ⊗RM is exact.

Clearly, a faithfully flat module is flat.

Example 1.2 The direct sum of faithfully flat modules is faithfully flat.

Example 1.3 A (nonzero) free module is faithfully flat, because R itself is flat (tensoring with R
is the identity functor).

We shall now prove several useful criteria about faithfully flat modules.

Proposition 1.4 An R-module M is faithfully flat if and only if it is flat and if M ⊗R N = 0
implies N = 0 for any N .

Proof. Suppose M faithfully flat Then M is flat, clearly. In addition, if N is any R-module,
consider the sequence

0→ N → 0;

it is exact if and only if
0→M ⊗R N → 0

is exact. Thus N = 0 if and only if M ⊗R N = 0.
Conversely, suppose M is flat and satisfies the additional condition. We need to show that if

N ′⊗RM → N⊗RM → N ′′⊗RM is exact, so is N ′ → N → N ′′. Since M is flat, taking homology

3



CRing Project, Chapter 15

commutes with tensoring with M . In particular, if H is the homology of N ′ → N → N ′′, then
H ⊗RM is the homology of N ′ ⊗RM → N ⊗RM → N ′′ ⊗RM . It follows that H ⊗RM = 0, so
H = 0, and the initial complex is exact. N

Example 1.5 Another illustration of the above technique is the following observation: if M is
faithfully flat and N → N ′ is any morphism, then N → N ′ is an isomorphism if and only if
M ⊗ N ′ → M ⊗ N is an isomorphism. This follows because the condition that a map be an
isomorphism can be phrased as the exactness of a certain (uninteresting) complex.

Exercise 15.1 The direct sum of a flat module and a faithfully flat module is faithfully flat.

From the above result, we can get an important example of a faithfully flat algebra over a ring.

Example 1.6 Let R be a commutative ring, and {fi} a finite set of elements that generate the
unit ideal in R (or equivalently, the basic open sets D(fi) = SpecRfi form a covering of SpecR).
Then the algebra

∏
Rfi is faithfully flat over R (i.e., is so as a module). Indeed, as a product of

localizations, it is certainly flat.
So by Proposition 1.4, we are left with showing that if M is any R-module and Mfi = 0 for

all i, then M = 0. Fix m ∈ M , and consider the ideal Ann(m) of elements annihilating m. Since
m maps to zero in each localization Mfi , there is a power of fi in Ann(m) for each i. This easily
implies that Ann(m) = R, so m = 0. (We used the fact that if the {fi} generate the unit ideal, so
do
{
fNi
}

for any N ∈ Z≥0.)

A functor F between two categories is said to be faithful if the induced map on the hom-sets
Hom(x, y) → Hom(Fx, Fy) is always injective. The following result explains the use of the term
“faithful.”

Proposition 1.7 A module M is faithfully flat if and only if it is flat and the functor N → N⊗RM
is faithful.

Proof. Let M be flat. We need to check that M is faithfully flat if and only if the natural map

HomR(N,N ′)→ HomR(N ⊗RM,N ′ ⊗RM)

is injective. Suppose first M is faithfully flat and f : N → N ′ goes to zero f ⊗ 1M : N ⊗R M →
N ′ ⊗RM . We know by flatness that

Im(f)⊗RM = Im(f ⊗ 1M )

so that if f⊗1M = 0, then Im(f)⊗M = 0. Thus by faithful flatness, Im(f) = 0 by Proposition 1.4.
Conversely, let us suppose M flat and the functor N → N ⊗R M faithful. Let N 6= 0; then

1N 6= 0 as maps N → N . It follows that 1N ⊗ 1M and 0⊗ 1M = 0 are different as endomorphisms
of M ⊗R N . Thus M ⊗R N 6= 0. By Proposition 1.4, we are done again. N

Example 1.8 Note, however, that Z ⊕ Z/2 is a Z-module such that tensoring by it is a faithful
but not exact functor.

Finally, we prove one last criterion:

Proposition 1.9 M is faithfully flat if and only if M is flat and mM 6= M for all maximal ideals
m ⊂ R.
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Proof. If M is faithfully flat, then M is flat, and M ⊗R R/m = M/mM 6= 0 for all m as R/m 6= 0,
by Proposition 1.4. So we get one direction.

Alternatively, suppose M is flat and M ⊗R R/m 6= 0 for all maximal m. Since every proper
ideal is contained in a maximal ideal, it follows that M ⊗R R/I 6= 0 for all proper ideals I. We
shall use this and Proposition 1.4 to prove that M is faithfully flat

Let N now be any nonzero module. Then N contains a cyclic submodule, i.e. one isomorphic
to R/I for some proper I. The injection

R/I ↪→ N

becomes an injection
R/I ⊗RM ↪→ N ⊗RM,

and since R/I ⊗R M 6= 0, we find that N ⊗R M 6= 0. By Proposition 1.4, it follows that M is
faithfully flat N

Corollary 1.10 A nonzero finitely generated flat module over a local ring is faithfully flat.

Proof. This follows from Proposition 1.9 and Nakayama’s lemma. N

A finitely presented flat module over a local ring is in fact free, but we do not prove this (except
when the ring is noetherian, see ??).

Proof. Indeed, let R be a local ring with maximal ideal m, and M a finitely generated flat R-
module. Then by Nakayama’s lemma, M/mM 6= 0, so that M must be faithfully flat. N

Proposition 1.11 Faithfully flat modules are closed under direct sums and tensor products.

Proof. Exercise. N

1.2 Faithfully flat algebras

Let φ : R→ S be a morphism of rings, making S into an R-algebra.

Definition 1.12 S is a faithfully flat R-algebra if it is faithfully flat as an R-module.

Example 1.13 The map R → R[x] from a ring into its polynomial ring is always faithfully flat.
This is clear.

Next, we indicate the usual “sorite” for faithfully flat morphisms:

Proposition 1.14 Faithfully flat morphisms are closed under composition and base change.

That is, if R→ S, S → T are faithfully flat, so is R→ T . Similarly, if R→ S is faithfully flat and
R′ any R-algebra, then R′ → S ⊗R R′ is faithfully flat.

The reader may wish to try this proof as an exercise.

Proof. The first result follows because the composite of the two faithful and exact functors (ten-
soring ⊗RS and tensoring ⊗ST gives the composite ⊗RT ) yields a faithful and exact functor.

In the second case, let M be an R′-module. Then M ⊗R′ (R′ ⊗R S) is canonically isomorphic
to M ⊗R S. From this it is clear if the functor M 7→ M ⊗R S is faithful and exact, so is M 7→
M ⊗R′ (R′ ⊗R S). N

Flat maps are usually injective, but they need not be. For instance, if R is a product R1×R2,
then the projection map R→ R1 is flat. This never happens for faithfully flat maps. In particular,
a quotient can never be faithfully flat.
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Proposition 1.15 If S is a faithfully flat R-algebra, then the structure map R→ S is injective.

Proof. Indeed, let us tensor the map R→ S with S, over R. We get a morphism of S-modules

S → S ⊗R S,

sending s 7→ 1⊗ s. This morphism has an obvious section S ⊗R S → S sending a⊗ b 7→ ab. Since
it has a section, it is injective. But faithful flatness says that the original map R → S must be
injective itself. N

Example 1.16 The converse of Proposition 1.15 definitely fails. Consider the localization Z(2);
it is a flat Z-algebra, but not faithfully flat (for instance, tensoring with Z/3 yields zero).

Exercise 15.2 Suppose φ : R → S is a flat, injective morphism of rings such that S/φ(R) is a
flat R-module. Then show that φ is faithfully flat.

Flat morphisms need not be injective, but they are locally injective. We shall see this using:

Proposition 1.17 A flat local homomorphism of local rings is faithfully flat. In particular, it is
injective.

Proof. Let φ : R→ S be a local homomorphism of local rings with maximal ideals m, n. Then by
definition φ(m) ⊂ n. It follows that S 6= φ(m)S, so by Proposition 1.9 we win. N

The point of the above proof was, of course, the fact that the ring-homomorphism was local. If we
just had that φ(m)S ( S for every maximal ideal m ⊂ R, that would be sufficient for the argument.

Corollary 1.18 Let φ : R → S be a flat morphism. Let q ∈ SpecS, p = φ−1(q) the image in
SpecR. Then Rp → Sq is faithfully flat, hence injective.

Proof. We only need to show that the map is flat by Proposition 1.17. Let M ′ ↪→M be an injection
of Rp → Sq-modules. Note that M ′,M are then R-modules as well. Then

M ′ ⊗Rp
Sq = (M ′ ⊗R Rp)⊗Rp

Sq = M ′ ⊗R Sq.

Similarly for M . This shows that tensoring over Rp with Sq is the same as tensoring over R with
Sq. But Sq is flat over S, and S is flat over R, so by Proposition 1.14, Sq is flat over R. Thus the
result is clear. N

1.3 Descent of properties under faithfully flat base change

Let S be an R-algebra. Often, things that are true about objects over R (for instance, R-modules)
will remain true after base-change to S. For instance, if M is a finitely generated R-module, then
M ⊗R S is a finitely generated S-module. In this section, we will show that we can conclude the
reverse implication when S is faithfully flat over R.

Exercise 15.3 Let R→ S be a faithfully flat morphism of rings. If S is noetherian, so is R. The
converse is false!

Exercise 15.4 Many properties of morphisms of rings are such that if they hold after one makes
a faithfully flat base change, then they hold for the original morphism. Here is a simple example.
Suppose S is a faithfully flat R-algebra. Let R′ be any R-algebra. Suppose S′ = S⊗RR′ is finitely
generated over R′. Then S is finitely generated over R.

To see that, note that R′ is the colimit of its finitely generated R-subalgebras Rα. Thus S′ is the
colimit of the Rα⊗RS, which inject into S′; finite generation implies that one of the Rα⊗RS → S′

is an isomorphism. Now use the fact that isomorphisms “descend” under faithfully flat morphisms.
In algebraic geometry, one can show that many properties of morphisms of schemes allow for

descent under faithfully flat base-change. See [GD], volume IV-2.
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1.4 Topological consequences

There are many topological consequences of faithful flatness on the Spec’s. These are explored in
detail in volume 4-2 of [GD]. We shall only scratch the surface. The reader should bear in mind
the usual intuition that flatness means that the fibers “look similar” to one other.

Proposition 1.19 Let R → S be a faithfully flat morphism of rings. Then the map SpecS →
SpecR is surjective.

Proof. Since R→ S is injective, we may regard R as a subring of S. We shall first show that:

Lemma 1.20 If I ⊂ R is any ideal, then R ∩ IS = I.

Proof. To see this, note that the morphism

R/I → S/IS

is faithfully flat, since faithful flatness is preserved by base-change, and this is the base-change of
R→ S via R→ R/I. In particular, it is injective. Thus IS ∩R = I. N

Now to see surjectivity, we use a general criterion:

Lemma 1.21 Let φ : R → S be a morphism of rings and suppose p ∈ SpecR. Then p is in the
image of SpecS → SpecR if and only if φ−1(φ(p)S) = p.

This lemma will prove the proposition.

Proof. Suppose first that p is in the image of SpecS → SpecR. In this case, there is q ∈ SpecS
such that p is the preimage of q. In particular, q ⊃ φ(p)S, so that, if we take pre-images,

p ⊃ φ−1(φ(p)S),

while the other inclusion is obviously true.
Conversely, suppose that p ⊂ φ−1(φ(p)S). In this case, we know that

φ(R− p) ∩ φ(p)S = ∅.

Now T = φ(R− p) is a multiplicatively closed subset. There is a morphism

Rp → T−1S (15.1)

N

which sends elements of p into non-units, by (15.1) so it is a local homomorphism. The maximal
ideal of T−1S pulls back to that of Rp. By the usual commutative diagrams, it follows that p is
the preimage of something in SpecS. N

Remark The converse also holds. If φ : R → S is a flat morphism of rings such that SpecS →
SpecR is surjective, then φ is faithfully flat. Indeed, Lemma 1.21 shows then that for any prime
ideal p ⊂ R, φ(p) fails to generate S. This is sufficient to imply that S is faithfully flat by
Proposition 1.9.

Remark A “slicker” argument that faithful flatness implies surjectiveness on spectra can be given
as follows. Let R → S be faithfully flat. Let p ∈ SpecR; we want to show that p is in the image
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of SpecS. Now base change preserves faithful flatness. So we can replace R by R/p, S by S/pS,
and assume that R is a domain and p = 0. Indeed, the commutative diagram

SpecS/pS

��

// SpecR/p

��
SpecS // SpecR

shows that p is in the image of SpecS → SpecR if and only if {0} is in the image of SpecS/pS →
SpecR/p.

We can make another reduction: by localizing at p (that is, {0}), we may assume that R is
local and thus a field. So we have to show that if R is a field and S a faithfully flat R-algebra,
then SpecS → SpecR is surjective. But since S is not the zero ring (by faithful flatness!), it is
clear that S has a prime ideal and SpecS → SpecR is thus surjective.

In fact, one can show that the morphism SpecS → SpecR is actually an identification, that
is, a quotient map. This is true more generally for faithfully flat and quasi-compact morphisms of
schemes; see [GD], volume 4-2.

Theorem 1.22 Let φ : R→ S be a faithfully flat morphism of rings. Then SpecS → SpecR is a
quotient map of topological spaces.

In other words, a subset of SpecR is closed if and only if its pre-image in SpecS is closed.

Proof. We need to show that if F ⊂ SpecR is such that its pre-image in SpecS is closed, then F
itself is closed. ADD THIS PROOF N

§2 Faithfully flat descent

Fix a ring R, and let S be an R-algebra. Then there is a natural functor from R-modules to
S-modules sending N 7→ S ⊗R N . In this section, we shall be interested in going in the opposite
direction, or in characterizing the image of this functor. Namely, given an S-module, we want to
“descend” to an R-module when possible; given a morphism of S-modules, we want to know when
it comes from a morphism of R-modules by base change.

TO BE ADDED: this entire section!

2.1 The Amitsur complex

TO BE ADDED: citation needed
Suppose B is an A-algebra. Then we can construct a complex of A-modules

0→ A→ B → B ⊗A B → B ⊗A B ⊗A B → . . .

as follows. For each n, we denote by B⊗n the tensor product of B with itself n times (over A).
There are morphisms of A-algebras

di : B⊗n → B⊗n+1, 0 ≤ i ≤ n+ 1

where the map sends

b1 ⊗ · · · ⊗ bn 7→ b1 ⊗ · · · ⊗ bi−1 ⊗ 1⊗ bi ⊗ · · · ⊗ bn,

so that the 1 is placed in the ith spot. Then the coboundary ∂ : B⊗n → B⊗n+1 is defined as∑
(−1)idi. It is easy to check that this forms a complex of A-modules.
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Definition 2.1 The above complex of B-modules is called the Amitsur complex of B over A,
and we denote it AB/A. It is clearly functorial in B; a map of A-algebras B → C induces a
morphism of complexes AB/A → AC/A.

Note that the Amitsur complex behaves very nicely with respect to base-change. If A′ is an
A-algebra and B′ = B ⊗A A′ is the base extension, then AB′/A′ = AB/A ⊗A A′, which follows
easily from the fact that base-change commutes with tensor products.

In general, the Amitsur complex is not even exact. For instance, if it is exact in degree one,
then the map A→ B is necessarily injective. If, however, the morphism is faithfully flat, then we
do get exactness:

Theorem 2.2 If B is a faithfully flat A-algebra, then the Amitsur complex of B/A is exact. In
fact, if M is any A-module, then AB/A ⊗AM is exact.

Proof. We prove this first under the assumption that A → B has a section. In this case, we will
even have:

Lemma 2.3 Suppose A → B is a morphism of rings with a section B → A. Then the Amitsur
complex AB/A is homotopically trivial. (In particular, AB/A ⊗AM is acyclic for all M .)

Proof. Let s : B → A be the section; by assumption, this is a morphism of A-algebras. We
shall define a chain contraction of AB/A. To do this, we must define a collection of morphisms of
A-modules hn+1 : B⊗n+1 → B⊗n, and this we do by sending

b1 ⊗ · · · ⊗ bn+1 7→ s(bn+1) (b1 ⊗ · · · ⊗ bn) .

It is still necessary to check that the {hn+1} form a chain contraction; in other words, that
∂hn + hn+1∂ = 1B⊗n . By linearity, we need only check this on elements of the form b1 ⊗ · · · ⊗ bn.
Then we find

∂hn(b1 ⊗ bn) = s(b1)
∑

(−1)ib2 ⊗ · · · ⊗ 1⊗ · · · ⊗ bn

where the 1 is in the ith place, while

hn+1∂(b1 ⊗ · · · ⊗ bn) = b1 ⊗ · · · ⊗ bn +
∑
i>0

s(b1)(−1)i−1b2 ⊗ · · · ⊗ 1⊗ · · · ⊗ bn

where again the 1 is in the ith place. The assertion is from this clear. Note that if AB/A is
contractible, we can tensor the chain homotopy with M to see that AB/A⊗AM is chain contractible
for any M . N

With this lemma proved, we see that the Amitsur complex AB/A (or even AB/A⊗AM) is acyclic
whenever B/A admits a section. Now if we make the base-change by the morphism A → B, we
get the morphism B → B ⊗A B. That is,

B ⊗A
(
AB/A ⊗AM

)
= AB⊗AB/B ⊗B (M ⊗A B).

The latter is acyclic because B → B ⊗A B admits a section (namely, b1 ⊗ b2 7→ b1b2). So the
complex AB/A ⊗AM becomes acyclic after base-changing to B; this, however, is a faithfully flat
base-extension, so the original complex was itself exact. N

Remark A powerful use of the Amitsur complex in algebraic geometry is to show that the coho-
mology of a quasi-coherent sheaf on an affine scheme is trivial. In this case, the Cech complex (of a
suitable covering) turns out to be precisely the Amitsur complex (with the faithfully flat morphism
A→

∏
Afi for the {fi} a family generating the unit ideal). This argument generalizes to showing

that the étale cohomology of a quasi-coherent sheaf on an affine is trivial; cf. [Tam94].
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2.2 Descent for modules

Let A→ B be a faithfully flat morphism of rings. Given an A-module M , we have a natural way of
getting a B-module MB = M ⊗A B. We want to describe the image of this functor; alternatively,
given a B-module, we want to describe the image of this functor.

Given an A-module M and the associated B-module MB = M ⊗A B, there are two ways of
getting B⊗AB-modules from MB , namely the two tensor products MB⊗B (B⊗AB) according as
we pick the first map b 7→ b⊗1 from B → B⊗AB or the second b 7→ 1⊗b. We shall denote these by
MB⊗AB and B⊗AMB with the action clear. But these are naturally isomorphic because both are
obtained from M by base-extension A⇒ B ⊗A B, and the two maps are the same. Alternatively,
these two tensor products are M ⊗A B ⊗A B and B ⊗AM ⊗A B and these are clearly isomorphic
by the braiding isomorphism1 of the first two factors as B ⊗A B-modules (with the B ⊗A B part
acting on the B’s in the above tensor product!).

Definition 2.4 The category of descent data for the faithfully flat extension A→ B is defined
as follows. An object in this category consists of the following data:

1. A B-module N .

2. An isomorphism of B ⊗A B-modules φ : N ⊗A B ' B ⊗A N . This isomorphism is required
to make the following diagram2 of B ⊗A B ⊗A B-modules commutative:

B ⊗A B ⊗A N
φ23 //

φ13

((RRRRRRRRRRRRR B ⊗A N ⊗A B

φ12vvlllllllllllll

N ⊗A B ⊗A B

(15.2)

Here φij means that the permutation of the ith and jth factors of the tensor product is done
using the isomorphism φ.

A morphism between objects (N,φ), (N ′, ψ) is a morphism of B-modules f : N → N ′ that makes
the diagram

N ⊗A B

f⊗1
��

φ // B ⊗A N

1⊗f
��

N ′ ⊗A B
ψ // B ⊗A N ′

(15.3)

As we have seen, there is a functor F from A-modules to descent data. Strictly speaking, we
should check the commutativity of (15.2), but this is clear: for N = M ⊗A B, (15.2) looks like

B ⊗A B ⊗AM ⊗A B
φ23 //

φ13

**UUUUUUUUUUUUUUUU B ⊗AM ⊗A B ⊗A B

φ12ttiiiiiiiiiiiiiiii

M ⊗A B ⊗A B ⊗A B

Here all the maps are just permutations of the factors (that is, the braiding isomorphisms in the
structure of symmetric tensor category on the category of A-modules), so it clearly commutes.

The main theorem is:

1It is not the braiding isomorphism MB ⊗A B ' B ⊗A MB , which is not an isomorphism of B ⊗A B-modules.
This is the isomorphism that sends m⊗ b⊗ b′ to b⊗m⊗ b′.

2This is the cocycle condition.
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Theorem 2.5 (Descent for modules) The above functor from A-modules to descent data for
A→ B is an equivalence of categories.

We follow [Vis08] in the proof.

Proof. We start by describing the inverse functor from descent data to A-modules. Recall that if
M is an A-module, then M can be characterized as the submodule of MB consisting of m ∈ MB

such that 1⊗m and m⊗ 1 corresponded to the same thing in MB ⊗A B ' B ⊗AMB . (The case
M = A was particularly transparent: elements of A were elements x ∈ B such that x⊗ 1 = 1⊗ x
in B ⊗A B.) In other words, we had the exact sequence

0→M →MB →MB ⊗A B.

We want to imitate this for descent data. Namely, we want to construct a functor G from
descent data to A-modules. Given descent data (N,φ) where φ : N ⊗A B ' B ⊗A N is an
isomorphism of B ⊗A B-modules, we define GN to be

GN = ker(N
n 7→1⊗n−ψ(n⊗1)→ B ⊗A N).

It is clear that this is an A-module, and that it is functorial in the descent data. We have also
shown that GF (M) is naturally isomorphic to M for any A-module M .

We need to show the analog for FG(N,φ); in other words, we need to show that any descent
data arises via the F -construction. Even before that, we need to describe a natural transformation
from FG(N,φ) to the identity. Fix a descent data (N,φ). Then G(N,φ) gives an A-submodule
M ⊂ N . We get a morphism

f : MB = M ⊗A B → N

by the universal property. This sends m ⊗ b 7→ bm. The claim is that this is a map of descent
data. In other words, we have to show that (15.3) commutes. The diagram looks like

MB ⊗A B

f⊗1
��

// B ⊗AMB

1⊗f
��

N ⊗A B
φ // B ⊗A N

.

In other words, if m⊗ b ∈MB and b′ ∈ B, we have to show that φ(bm⊗ b′) = (1⊗f)(b⊗m⊗ b′) =
b⊗ b′m.

However,

φ(bm⊗ b′) = (b⊗ b′)φ(m⊗ 1) = (b⊗ b′)(1⊗m) = b⊗ b′m

in view of the definition of M = GN as the set of elements such that φ(m⊗ 1) = 1⊗m, and the
fact that φ is an isomorphism of B ⊗A B-modules. The equality we wanted to prove is thus clear.

So we have the two natural transformations between FG,GF and the respective identity func-
tors. We have already shown that one of them is an isomorphism. Now we need to show that if
(N,φ) is descent data as above, and M = G(N,φ), the map F (M) → (N,φ) is an isomorphism.
In other words, we have to show that the map

M ⊗A B → N

is an isomorphism.
Here we shall draw a commutative diagram. Namely, we shall essentially use the Amitsur

complex for the faithfully flat map B → B ⊗A B. We shall obtain a commutative an exact

11
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diagram:

0 // M ⊗A B

��

// N ⊗A B

φ

��

// N ⊗A B ⊗A B

φ−1
13

��
0 // N // B ⊗A N // B ⊗A B ⊗A N

.

Here the map
N ⊗A B → N ⊗A B ⊗A B

sends n⊗ b 7→ n⊗ 1⊗ b− φ(1⊗ n)⊗ b. Consequently the first row is exact, B being flat over A.
The bottom map

B ⊗A N → B ⊗A N ⊗A N
sends b ⊗ n 7→ b ⊗ 1 ⊗ n − 1 ⊗ b ⊗ n. It follows by the Amitsur complex that the bottom row is
exact too. We need to check that the diagram commutes. Since the two vertical maps on the right
are isomorphisms, it will follow that M ⊗A B → N is an isomorphism, and we shall be done.

Fix n⊗ b ∈ N ⊗AB. We need to figure out where it goes in B⊗AB⊗AN under the two maps.
Going right gives n⊗1⊗b−φ12(1⊗n⊗b). Going down then gives φ−113 (n⊗1⊗b)−φ−113 φ12(1⊗n⊗b) =
φ−113 (n⊗ 1⊗ b)− φ−123 (1⊗ n⊗ b), where we have used the cocycle condition. So this is one of the
maps N ⊗A B → B ⊗A B ⊗A N .

Now we consider the other way n⊗ b can map to B ⊗A B ⊗A N .
Going down gives φ(n ⊗ b), and then going right gives the difference of two maps N ⊗A B →

B ⊗A B ⊗A N , which are the same as above. N

2.3 Example: Galois descent

TO BE ADDED: this section

§3 The Tor functor

3.1 Introduction

Fix M . The functor N 7→ N ⊗RM is a right-exact functor on the category of R-modules. We can
thus consider its left-derived functors as in ??. Recall:

Definition 3.1 The derived functors of the tensor product functor N 7→ N ⊗RM are denoted by
ToriR(N,M), i ≥ 0. We shall sometimes denote omit the subscript R.

So in particular, Tor0R(M,N) = M ⊗ N . A priori, Tor is only a functor of the first variable,
but in fact, it is not hard to see that Tor is a covariant functor of two variables M,N . In fact,
ToriR(M,N) ' ToriR(N,M) for any two R-modules M,N . For proofs, we refer to ??. ADD:
THEY ARE NOT IN THAT CHAPTER YET.

Let us recall the basic properties of Tor that follow from general facts about derived functors.
Given an exact sequence

0→ N ′ → N → N ′′ → 0

we have a long exact sequence

Tori(N ′,M)→ Tori(N,M)→ Tori(N ′′,M)→ Tori−1(N ′,M)→ . . .

Since Tor is symmetric, we can similarly get a long exact sequence if we are given a short exact
sequence of M ’s.

Recall, moreover, that Tor can be computed explicitly (in theory). If we have modules M,N ,
and a projective resolution P∗ → N , then ToriR(M,N) is the ith homology of the complex M⊗P∗.
We can use this to compute Tor in the case of abelian groups.

12
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Example 3.2 We compute Tor∗Z(A,B) whenever A,B are abelian groups and B is finitely gen-
erated. This immediately reduces to the case of B either Z or Z/dZ for some d by the structure
theorem. When B = Z, there is nothing to compute (derived functors are not very interesting on
projective objects!). Let us compute Tor∗Z(A,Z/dZ) for an abelian group A.

Actually, let us be more general and consider the case where the ring is replaced by Z/m for
some m such that d | m. Then we will compute Tor∗Z/m(A,Z/d) for any Z/m-module A. The case
m = 0 will handle the ring Z. Consider the projective resolution

· · ·
m/d // Z/mZ d // Z/mZ

m/d // Z/mZ d // Z/mZ // Z/dZ // 0.

We apply A⊗Z/mZ ·. Since tensoring (over Z/m!) with Z/mZ does nothing, we obtain the complex

· · ·
m/d // A

d // A
m/d // A

d // A // 0.

The groups TorZ/mZ
n (A,Z/dZ) are simply the homology groups (ker/im) of the complex, which are

simply

Tor
Z/mZ
0 (A,Z/dZ) ∼= A/dA

TorZ/mZ
n (A,Z/dZ) ∼= dA/(m/d)A n odd, n ≥ 1

TorZ/mZ
n (A,Z/dZ) ∼= m/dA/dA n even, n ≥ 2,

where kA = {a ∈ A | ka = 0} denotes the set of elements of A killed by k.

The symmetry of the tensor product also provides with a simple proof that Tor commutes with
filtered colimits.

Proposition 3.3 Let M be an R-module, {Ni} a filtered system of R-modules. Then the natural
morphism

lim−→
i

ToriR(M,Ni)→ ToriR(M, lim−→
i

Ni)

is an isomorphism.

Proof. We can see this explicitly. Let us compute the Tor functors by choosing a projective
resolution P∗ → M of M (note that which factor we use is irrelevant, by symmetry!). Then the
left side is the colimit lim−→H(P∗⊗Ni), while the right side is H(P∗⊗ lim−→Ni). But tensor products
commute with filtered (or arbitrary) colimits, since the tensor product admits a right adjoint.
Moreover, we know that homology commutes with filtered colimits. Thus the natural map is an
isomorphism. N

3.2 Tor and flatness

Tor provides a simple way of detecting flatness. Indeed, one of the basic applications of this is
that for a flat module M , the tor-functors vanish for i ≥ 1 (whatever be N). Indeed, recall that
Tor(M,N) is computed by taking a projective resolution of N ,

· · · → P2 → P1 → P0 →M → 0

tensoring with M , and taking the homology. But tensoring with M is exact if we have flatness, so
the higher Tor modules vanish.

The converse is also true. In fact, something even stronger holds:

13
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Proposition 3.4 M is flat iff Tor1(M,R/I) = 0 for all finitely generated ideals I ⊂ R.

Proof. We have just seen one direction. Conversely, suppose Tori(M,R/I) = 0 for all finitely
generated ideals I and i > 0. Then the result holds, first of all, for all ideals I, because of
Proposition 3.3 and the fact that R/I is always the colimit of R/J as J ranges over finitely
generated ideals J ⊂ I.

We now show that Tori(M,N) = 0 whenever N is finitely generated. To do this, we induct on
the number of generators of N . When N has one generator, it is cyclic and we are done. Suppose
we have proved the result whenever for modules that have n − 1 generators or less, and suppose
N has n generators. Then we can consider an exact sequence of the form

0→ N ′ ↪→ N � N ′′ → 0

where N ′ has n − 1 generators and N ′′ is cyclic. Then the long exact sequence shows that
Tori(M,N) = 0 for all i ≥ 1.

Thus we see that Tori(M,N) = 0 whenever N is finitely generated. Since any module is a
filtered colimit of finitely generated ones, we are done by Proposition 3.3. N

Note that there is an exact sequence 0→ I → R→ R/I → 0 and so

Tor1(M,R) = 0→ Tor1(M,R/I)→ I ⊗M →M

is exact, and by this:

Corollary 3.5 If the map
I ⊗M →M

is injective for all ideals I, then M is flat.

§4 Flatness over noetherian rings

We shall be able to obtain simpler criterion for flatness when the ring in question is noetherian
local. For instance, we have already seen:

Theorem 4.1 If M is a finitely generated module over a noetherian local ring R (with residue
field k), then M is free if and only if Tor1(k,M) = 0.

In particular, flatness is the same thing as the vanishing of one Tor module, and it equates to
freeness. Now, we want to generalize this result to the case where M is not necessarily finitely
generated over R, but finitely generated over an R-algebra that is also noetherian local. In partic-
ular, we shall get useful criteria for when an extension of noetherian local rings (which in general
is not finite, or even finitely generated) is flat.

We shall prove two main criteria. The local criterion is a direct generalization of the above
result (the vanishing of one Tor group). The infinitesimal criterion reduces checking flatness of M
to checking flatness of M ⊗R R/mt over R/mt; in particular, it reduces to the case where the base
ring is artinian. Armed with these, we will be able to prove a rather difficult theorem that states
that we can always find lots of flat extensions of noetherian local rings.

4.1 Flatness over a noetherian local ring

We shall place ourselves in the following situation. R,S are noetherian local rings with maximal
ideals m ⊂ R, n ⊂ S, and S is an R-algebra (and the morphism R → S is local, so mS ⊂ n). We
will want to know when a S-module is flat over R. In particular, we want a criterion for when S
is flat over R.

14
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Theorem 4.2 The finitely generated S-module M is flat over R iff

Tor1R(k,M) = 0.

In this case, M is even free.

It is actually striking how little the condition that M is a finitely generated S-module enters,
or how irrelevant it seems in the statement. The argument will, however, use the fact that M is
separated with respect to the m-adic topology, which relies on Krull’s intersection theorem (note
that since mS ⊂ n, the m-adic topology on M is separated).

Proof. Necessity is immediate. What we have to prove is sufficiency.
First, we claim that if N is an R-module of finite length, then

Tor1R(N,M) = 0. (15.4)

This is because N has by dévissage (??) a finite filtration Ni whose quotients are of the form R/p
for p prime and (by finite length hypothesis) p = m. So we have a filtration on M whose successive
quotients are isomorphic to k. We can then climb up the filtration to argue that Tor1(Ni,M) = 0
for each i.

Indeed, the claim (15.4) is true N0 = 0 ⊂ N trivially. We climb up the filtration piece by piece
inductively; if Tor1R(Ni,M) = 0, then the exact sequence

0→ Ni → Ni+1 → k → 0

yields an exact sequence
Tor1R(Ni,M)→ Tor1R(Ni+1,M)→ 0

from the long exact sequence of Tor and the hypothesis on M . The claim is proved.
Now we want to prove that M is flat. The idea is to show that I ⊗R M → M is injective for

any ideal I ⊂ R. We will use some diagram chasing and the Krull intersection theorem on the
kernel K of this map, to interpolate between it and various quotients by powers of m. First we
write some exact sequences.

We have an exact sequence

0→ mt ∩ I → I → I/I ∩mt → 0

which we tensor with M :

mt ∩ I ⊗M → I ⊗M → I/I ∩mt ⊗M → 0.

The sequence
0→ I/I ∩mt → R/mt → R/(I + mt)→ 0

is also exact, and tensoring with M yields an exact sequence:

0→ I/I ∩mt ⊗M →M/mtM →M/(mt + I)M → 0

because Tor1R(M,R/(I + mt)) = 0 by (15.4), as R/(I + mt) is of finite length.
Let us draw the following commutative diagram:

0

��
mt ∩ I ⊗M // I ⊗M // I/I ∩mt ⊗M

��
M/mtM

(15.5)

N

15
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Here the column and the row are exact. As a result, if an element in I ⊗M goes to zero in M
(a fortiori in M/mtM) it must come from mt ∩ I ⊗M for all t. Thus, by the Artin-Rees lemma,
it belongs to mt(I ⊗M) for all t, and the Krull intersection theorem (applied to S, since mS ⊂ n)
implies it is zero.

4.2 The infinitesimal criterion for flatness

Theorem 4.3 Let R be a noetherian local ring, S a noetherian local R-algebra. Let M be a finitely
generated module over S. Then M is flat over R iff M/mtM is flat over R/mt for all t > 0.

Proof. One direction is easy, because flatness is preserved under base-change R→ R/mt. For the
other direction, suppose M/mtM is flat over R/mt for all t. Then, we need to show that if I ⊂ R
is any ideal, then the map I ⊗RM →M is injective. We shall argue that the kernel is zero using
the Krull intersection theorem.

Fix t ∈ N. As before, the short exact sequence of R/mt-modules 0 → I/(mt ∩ I) ∩ R/mt →
R/(mt ∩ I)→ 0 gives an exact sequence (because M/mtM is R/mt-flat)

0→ I/I ∩mt ⊗M →M/mtM →M/(mt + I)M → 0

which we can fit into a diagram, as in (15.5)

0

��
mt ∩ I ⊗M // I ⊗M // I/I ∩mt ⊗M

��
M/mtM

.

The horizontal sequence was always exact, as before. The vertical sequence can be argued to
be exact by tensoring the exact sequence

0→ I/I ∩mt → R/mt → R/(I + mt)→ 0

of R/mt-modules with M/mtM , and using flatness of M/mtM over R/mt (and ??). Thus we get
flatness of M as before. N

Incidentally, if we combine the local and infinitesimal criteria for flatness, we get a little more.

4.3 Generalizations of the local and infinitesimal criteria

In the previous subsections, we obtained results that gave criteria for when, given a local homo-
morphism of noetherian local rings (R,m) → (S, n), a finitely generated S-module was R-flat.
These criteria generally were related to the Tor groups of the module with respect to R/m. We
are now interested in generalizing the above results to the setting where m is replaced by an ideal
that maps into the Jacobson radical of S. In other words,

φ : R→ S

will be a homomorphism of noetherian rings, and J ⊂ R will be an ideal such that φ(J) is contained
in every maximal ideal of S.

Ideally, we are aiming for results of the following type:

16



CRing Project, Chapter 15

Theorem 4.4 (Generalized local criterion for flatness) Let φ : R → S be a morphism of
noetherian rings, J ⊂ R an ideal with φ(J) contained in the Jacobson radical of S. Let M be a
finitely generated S-module. Then M is R-flat if and only if M/JM is R/J-flat and TorR1 (R/J,M) =
0.

Note that this is a generalization of Theorem 4.2. In that case, R/J was a field and the
R/J-flatness of M/JM was automatic. One key step in the proof of Theorem 4.2 was to go from
the hypothesis that Tor1(M,k) = 0 to Tor1(M,N) = 0 whenever N was an R-module of finite
length. We now want to do the same in this generalized case; the analogy would be that, under
the hypotheses of Theorem 4.4, we would like to conclude that TorR1 (M,N) = 0 whenever N is
a finitely generated R-module annihilated by I. This is not quite as obvious because we cannot
generally find a filtration on N whose successive quotients are R/J (unlike in the case where J
was maximal). Therefore we shall need two lemmas.

Remark One situation where the strong form of the local criterion, Theorem 4.4, is used is in
Grothendieck’s proof (cf. EGA IV-11, [GD]) that the locus of points where a coherent sheaf is
flat is open (in commutative algebra language, if A is noetherian and M finitely generated over a
finitely generated A-algebra B, then the set of primes q ∈ SpecB such that Mq is A-flat is open
in SpecB).

Lemma 4.5 (Serre) Suppose R is a ring, S an R-algebra, and M an S-module. Then the fol-
lowing are equivalent:

1. M ⊗R S is S-flat and TorR1 (M,S) = 0.

2. TorR1 (M,N) = 0 whenever N is any S-module.

We follow [SGA03].

Proof. Let P be an S-module (considered as fixed), and Q any (variable) R-module. Recall that
there is a homology spectral sequence

TorSp (TorRq (Q,S), P ) =⇒ TorRp+q(Q,P ).

Recall that this is the Grothendieck spectral sequence of the composite functors

Q 7→ Q⊗R S, Q′ 7→ Q′ ⊗S P

because
(Q⊗R S)⊗S P ' Q⊗R P.

TO BE ADDED: This, and generalities on spectral sequences, need to be added! From this
spectral sequence, it will be relatively easy to deduce the result.

1. Suppose M⊗RS is S-flat and TorR1 (M,S) = 0. We want to show that 2 holds, so let N be any
S-module. Consider the E2 page of the above spectral sequence TorSp (TorRq (M,S), N) =⇒
TorRp+q(M,N). In the terms such that p+q = 1, we have the two terms TorS0 (TorR1 (M,S), N),TorS1 (TorR0 (M,S), N).

But by hypotheses these are both zero. It follows that TorR1 (M,N) = 0.

2. Suppose TorR1 (M,N) = 0 for each S-module N . Since this is a homology spectral sequence,
this implies that the E10

2 term vanishes (since nothing will be able to hit this term). In
particular TorS1 (M ⊗R S,N) = 0 for each S-module N . It follows that M ⊗R S is S-flat.
Hence the higher terms TorSp (M⊗RS,N) = 0 as well, so the botton row of the E2 page (except
(0, 0)) is thus entirely zero. It follows that the E2

01 term vanishes if E01
∞ is trivial. This gives

that TorR1 (M,S)⊗S N = 0 for every S-module N , which clearly implies TorR1 (M,S) = 0. N
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As a result, we shall be able to deduce the result alluded to in the motivation following the
statement of Theorem 4.4.

Lemma 4.6 Let R be a noetherian ring, J ⊂ R an ideal, M an R-module. Then TFAE:

1. TorR1 (M,R/J) = 0 and M/JM is R/J-flat.

2. TorR1 (M,N) = 0 for any finitely generated R-module N annihilated by a power of J .

Proof. This is immediate from Lemma 4.5, once one notes that any N as in the statement admits
a finite filtration whose successive quotients are annihilated by J . N

Proof (Proof of Theorem 4.4). Only one direction is nontrivial, so supposeM is a finitely generated
S-module, with M/JM flat over R/J and TorR1 (M,R/J) = 0. We know by the lemma that
TorR1 (M,N) = 0 whenever N is finitely generated and annihilated by a power of J .

So as to avoid repeating the same argument over and over, we encapsulate it in the following
lemma.

Lemma 4.7 Let the hypotheses be as in Theorem 4.4 Suppose for every ideal I ⊂ R, and every
t ∈ N, the map

I/I ∩ J t ⊗M →M/J tM

is an injection. Then M is R-flat.

Proof. Indeed, then as before, the kernel of I ⊗R M → M lives inside the image of (I ∩ J t) ⊗
M → I ⊗R M for every t; by the Artin-Rees lemma, and the Krull intersection theorem (since⋂
J t(I ⊗RM) = {0}), it follows that this kernel is zero. N

It is now easy to finish the proof. Indeed, we can verify the hypotheses of the lemma by noting
that

I/I ∩ J t ⊗M → I ⊗M

is obtained by tensoring with M the sequence

0→ I/I ∩ J t → R/(I ∩ J t)→ R/(I + J t)→ 0.

Since TorR1 (M,R/(I + J t)) = 0, we find that the map as in the lemma is an injection, and so we
are done. N

The reader can similarly formulate a version of the infinitesimal criterion in this more general
case using Lemma 4.7 and the argument in Theorem 4.3. (In fact, the spectral sequence argument
of this section is not necessary.) We shall not state it here, as it will appear as a component of
Theorem 4.8. We leave the details of the proof to the reader.

4.4 The final statement of the flatness criterion

We shall now bundle the various criteria for flatness into one big result, following [SGA03]:

Theorem 4.8 Let A,B be noetherian rings, φ : A→ B a morphism making B into an A-algebra.
Let I be an ideal of A such that φ(I) is contained in the Jacobson radical of B. Let M be a finitely
generated B-module. Then the following are equivalent:

1. M is A-flat.

2. (Local criterion) M/IM is A/I-flat and TorA1 (M,A/I) = 0.

18
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3. (Infinitesimal criterion) M/InM is A/In-flat for each n.

4. (Associated graded criterion) M/IM is A/I-flat and M/IM ⊗A/I In/In+1 → InM/In+1M
is an isomorphism for each n.

The last criterion can be phrased as saying that the I-adic associated graded of M is determined
by M/IM .

Proof. We have already proved that the first three are equivalent. It is easy to see that flatness of
M implies that

M/IM ⊗A/I In/In+1 → InM/In+1M (15.6)

is an isomorphism for each n. Indeed, this easily comes out to be the quotient of M ⊗A In by the
image of M ⊗A In+1, which is InM/In+1M since the map M ⊗A In → InM is an isomorphism.
Now we need to show that this last condition implies flatness. To do this, we may (in view of
the infinitesimal criterion) assume that I is nilpotent, by base-changing to A/In. We are then
reduced to showing that TorA1 (M,A/I) = 0 (by the local criterion). Then we are, finally, reduced
to showing:

Lemma 4.9 Let A be a ring, I ⊂ A be a nilpotent ideal, and M any A-module. If (15.6) is an
isomorphism for each n, then TorA1 (M,A/I) = 0.

Proof. This is equivalent to the assertion, by a diagram chase, that

I ⊗AM →M

is an injection. We shall show more generally that In⊗AM →M is an injection for each n. When
n� 0, this is immediate, I being nilpotent. So we can use descending induction on n.

Suppose In+1 ⊗AM → In+1M is an isomorphism. Consider the diagram

In+1 ⊗AM //

��

In ⊗AM //

��

In/In+1 ⊗AM → 0

��
0 // In+1M // InM // InM/In+1M // 0. N

By hypothesis, the outer two vertical arrows are isomorphisms. Thus the middle vertical arrow is
an isomorphism as well. This completes the induction hypothesis. N

Here is an example of the above techniques:

Proposition 4.10 Let (A,m), (B, n), (C, n′) be noetherian local rings. Suppose given a commuta-
tive diagram of local homomorphisms

B // C

A

??~~~~~~~

__@@@@@@@

Suppose B,C are flat A-algebras, and B/mB → C/mC is a flat morphism. Then B → C is flat.

Geometrically, this means that flatness can be checked fiberwise if both objects are flat over the
base. This will be a useful technical fact.
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Proof. We will use the associated graded criterion for flatness with the ideal I = mB ⊂ B. (Note
that we are not using the criterion with the maximal ideal here!) Namely, we shall show that

In/In+1 ⊗B/I C/IC → InC/In+1C (15.7)

is an isomorphism. By Theorem 4.8, this will do it. Now we have:

In/In+1 ⊗B/I C/IC ' mnB/mn+1B ⊗B/mB C/mC
' (mn/mn+1)⊗A B/mB ⊗B C/mC
' (mn/mn+1)⊗A B ⊗B C/mC
' (mn/mn+1)⊗A C/mC
' mnC/mn+1C ' InC/In+1C.

In this chain of equalities, we have used the fact that B,C were flat over A, so their associated
gradeds with respect to m ⊂ A behave nicely. It follows that (15.7) is an isomorphism, completing
the proof. N

4.5 Flatness over regular local rings

Here we shall prove a result that implies geometrically, for instance, that a finite morphism between
smooth varieties is always flat.

Theorem 4.11 (“Miracle” flatness theorem) Let (A,m) be a regular local (noetherian) ring.
Let (B, n) be a Cohen-Macaulay, local A-algebra such that

dimB = dimA+ dimB/mB.

Then B is flat over A.

Recall that inequality ≤ always holds in the above for any morphism of noetherian local rings (??),
and equality always holds with flatness supposed. We get a partial converse.

Proof. We shall work by induction on dimA. Let x ∈ m be a non-zero divisor, so the first element
in a regular sequence of parameters. We are going to show that (A/(x), B/(x)) satisfies the same
hypotheses. Indeed, note that

dimB/(x) ≤ dimA/(x) + dimB/mB

by the usual inequality. Since dimA/(x) = dimA − 1, we find that quotienting by x drops the
dimension of B by at least one: that is, dimB/(x) ≤ dimB − 1. By the principal ideal theorem,
we have equality,

dimB/(x) = dimB − 1.

The claim is that x is a non-zero divisor in B, and consequently we can argue by induction.
Indeed, but B is Cohen-Macaulay. Thus, any zero-divisor in B lies in a minimal prime (since all
associated primes of B are minimal); thus quotienting by a zero-divisor would not bring down the
degree. So x is a nonzerodivisor in B.

In other words, we have found x ∈ A which is both A-regular and B-regular (i.e. nonzerodivisors
on both), and such that the hypotheses of the theorem apply to the pair (A/(x), B/(x)). It follows
that B/(x) is flat over A/(x) by the inductive hypothesis. The next lemma will complete the
proof. N
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Lemma 4.12 Suppose (A,m) is a noetherian local ring, (B, n) a noetherian local A-algebra, and
M a finite B-module. Suppose x ∈ A is a regular element of A which is also regular on M . Suppose
moreover M/xM is A/(x)-flat. Then M is flat over A.

Proof. This follows from the associated graded criterion for flatness (see the omnibus result Theo-
rem 4.8). Indeed, if we use the notation of that result, we take I = (x). We are given that M/xM
is A/(x)-flat. So we need to show that

M/xM ⊗A/(x) (xn)/(xn+1)→ xnM/xn+1M

is an isomorphism for each n. This, however, is implied because (xn)/(xn+1) is isomorphic to
A/(x) by regularity, and multiplication

M
xn→ xnM, xM

xn→ xn+1M

are isomorphisms by M -regularity. N

4.6 Example: construction of flat extensions

As an illustration of several of the techniques in this chapter and previous ones, we shall show,
following [GD] (volume III, chapter 0) that, given a local ring and an extension of its residue
field, one may find a flat extension of this local ring with the bigger field as its residue field. One
application of this is in showing (in the context of Zariski’s Main Theorem) that the fibers of a
birational projective morphism of noetherian schemes (where the target is normal) are geometrically
connected. We shall later give another application in the theory of étale morphisms.

Theorem 4.13 Let (R,m) be a noetherian local ring with residue field k. Suppose K is an exten-
sion of k. Then there is a noetherian local R-algebra (S, n) with residue field K such that S is flat
over R and n = mS.

Proof. Let us start by motivating the theorem when K is generated over k by one element. This
case can be handled directly, but the general case will require a somewhat tricky passage to the
limit. There are two cases.

1. First, suppose K = k(t) for t ∈ K transcendental over k. In this case, we will take S to be
a suitable localization of R[t]. Namely, we consider the prime3 ideal mR[t] ⊂ R[t], and let
S = (R[t])mR[t]. Then S is clearly noetherian and local, and moreover mS is the maximal
ideal of S. The residue field of S is S/mS, which is easily seen to be the quotient field of
R[t]/mR[t] = k[t], and is thus isomorphic to K. Moreover, as a localization of a polynomial
ring, S is flat over R. Thus we have handled the case of a purely transcendental extension
generated by one element.

2. Let us now suppose K = k(a) for a ∈ K algebraic over k. Then a satisfies a monic irreducible
polynomial p(T ) with coefficients in k. We lift p to a monic polynomial p(T ) ∈ R[T ]. The
claim is that then, S = R[T ]/(p(T )) will suffice.

Indeed, S is clearly flat over R (in fact, it is free of rank deg p). As it is finite over R, S is
noetherian. Moreover, S/mS = k[T ]/(p(T )) ' K. It follows that mS ⊂ S is a maximal ideal
and that the residue field is K. Since any maximal ideal of S contains mS by Nakayama,4

we see that S is local as well. Thus we have showed that S satisfies all the conditions we
want.

3It is prime because the quotient is the domain k[t].
4TO BE ADDED: citation needed
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So we have proved the theorem when K is generated by one element over k. In general, we
can iterate this procedure finitely many times, so that the assertion is clear when K is a finitely
generated extension of k. Extending to infinitely generated extensions is trickier.

Let us first argue that we can write K/k as a “transfinite limit” of monogenic extensions.
Consider the set of well-ordered collections C′ of subfields between k and K (containing k) such
that if L ∈ C′ has an immediate predecessor L′, then L/L′ is generated by one element. First, such
collections C′ clearly exist; we can take the one consisting only of k. The set of such collections is
clearly a partially ordered set such that every chain has an upper bound. By Zorn’s lemma, there
is a maximal such collection of subfields, which we now call C.

The claim is that C has a maximal field, which is K. Indeed, if it had no maximal element, we
could adjoin the union

⋃
F∈C F to C and make C bigger, contradicting maximality. If this maximal

field of C were not K, then we could add another element to this maximal subfield and get a bigger
collection than C, contradiction.

So thus we have a set of fields Kα (with α, the index, ranging over a well-ordered set) between k
and K, such that if α has a successor α′, then K ′α is generated by one element over Kα. Moreover
K is the largest of the Kα, and k is the smallest.

We are now going to define a collection of rings Rα by transfinite induction on α. We start
the induction with R0 = R (where 0 is the smallest allowed α). The inductive hypothesis that we
will want to maintain is that Rα is a noetherian local ring with maximal ideal mα, flat over R and
satisfying mRα = mα; we require, moreover, that the residue field of Rα be Kα. Thus if we can
do this at each step, we will be able to work up to K and get the ring S that we want. We are,
moreover, going to construct the Rα such that whenever β < α, Rα is a Rβ-algebra.

Let us assume that Rβ has been defined for all β < α and satisfies the conditions. Then we
want to define Rα in an appropriate way. If we can do this, then we will have proved the result.
There are two cases:

1. α has an immediate predecessor αpre. In this case, we can define Rα from Rαpre as above
(because Kα/Kαpre is monogenic).

2. α has no immediate predecessor. Then we define Rα = lim−→β<α
Rβ . The following lemma will

show that Rα satisfies the appropriate hypotheses.

This completes the proof, modulo Lemma 4.14. N

We shall need the following lemma to see that we preserve noetherianness when we pass to the
limit.

Lemma 4.14 Suppose given an inductive system {(Aα,mα)} of noetherian rings and flat local
homomorphisms, starting with A0. Suppose moreover that mαAβ = mβ whenever α < β.

Then A = lim−→Aα is a noetherian local ring, flat over each Aα. Moreover, if m ⊂ A is the
maximal ideal, then mαA = m. The residue field of A is lim−→Aα/mα.

Proof. First, it is clear that A is a local ring (?? TO BE ADDED: reference!) with maximal
ideal equal to mαA for any α in the indexing set, and that A has the appropriate residue field.
Since filtered colimits preserve flatness, flatness of A is also clear. We need to show that A is
noetherian; this is the crux of the lemma.

To prove that A is noetherian, we are going to show that its m-adic completion Â is noetherian.
Fortunately, we have a convenient criterion for this. If m̂ = mÂ, then Â is complete with respect
to the m̂-adic topology. So if we show that Â/m̂ is noetherian and m̂/m̂2 is a finitely generated
Â-module, we will have shown that Â is noetherian by ??.

But Â/m̂ is a field, so obviously noetherian. Also, m̂/m̂2 = m/m2, and by flatness of A, this is

A⊗Aα mα/m
2
α
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for any α. Since Aα is noetherian, we see that this is finitely generated. The criterion ?? now
shows that the completion Â is noetherian.

Finally, we need to deduce that A is itself noetherian. To do this, we shall show that Â is
faithfully flat over A. Since noetherianness “descends” under faithfully flat extensions (TO BE
ADDED: citation needed), this will be enough. It suffices to show that Â is flat over each Aα.
For this, we use the infinitesimal criterion; we have that

Â⊗Aα Aα/mtα = Â/m̂t = A/mt = A/Amtα,

which is flat over Aα/m
t
α since A is flat over Aα.

It follows that Â is flat over each Aα. If we want to see that A→ Â is flat, we let I ⊂ A be a
finitely generated ideal; we shall prove that I ⊗A Â→ Â is injective (which will establish flatness).
We know that there is an ideal Iα ⊂ Aα for some Aα such that

I = IαA = Iα ⊗Aα A.

Then
I ⊗A Â = Iα ⊗Aα Â N

which injects into Â as Aα → Â is flat.

4.7 Generic flatness

Suppose given a module M over a noetherian domain R. Then M ⊗RK(R) is a finitely generated
free module over the field K(R). Since K(R) is the inductive limit lim−→Rf as f ranges over
(R− {0})/R∗ and K(R)⊗RM ' lim−→f∈(R−{0})/R∗Mf , it follows by the general theory of ?? that

there exists f ∈ R− {0} such that Mf is free over Rf .
Here SpecRf = D(f) ⊂ SpecR should be thought of as a “big” subset of SpecR (in fact, as

one can check, it is dense and open). So the moral of this argument is that M is “generically free.”
If we had the language of schemes, we could make this more precise. But the idea is that localizing
at M corresponds to restricting the sheaf associated to M to D(f) ⊂ SpecR; on this dense open
subset, we get a free sheaf. (The reader not comfortable with such “finitely presented” arguments
will find another one below, that also works more generally.)

Now we want to generalize this to the case where M is finitely generated not over R, but over
a finitely generated R-algebra. In particular, M could itself be a finitely generated R-algebra!

Theorem 4.15 (Generic freeness) Let S be a finitely generated algebra over the noetherian
domain R, and let M be a finitely generated S-module. Then there is f ∈ R − {0} such that Mf

is a free (in particular, flat) R-module.

Proof. We shall first reduce the result to one about rings instead of modules. By Hilbert’s basis
theorem, we know that S is noetherian. By dévissage (??), there is a finite filtration of M by
S-submodules,

0 = M0 ⊂M1 ⊂ · · · ⊂Mk = M

such that the quotients Mi+1/Mi are isomorphic to quotients S/pi for the pi ∈ SpecS.
Since localization is an exact functor, it will suffice to show that there exists an f such that

(S/pi)f is a free R-module for each f . Indeed, it is clear that if a module admits a finite filtration
all of whose successive quotients are free, then the module itself is free. We may thus even reduce
to the case where M = S/p.

So we are reduced to showing that if we have a finitely generated domain T over R, then there
exists f ∈ R − {0} such that Tf is a free R-module. If R → T is not injective, then the result
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is obvious (localize at something nonzero in the kernel), so we need only handle the case where
R→ T is a monomorphism.

By the Noether normalization theorem, there are d elements of T ⊗R K(R), which we denote
by t1, . . . , td, which are algebraically independent over K(R) and such that T ⊗RK(R) is integral
over K(R)[t1, . . . , td]. (Here d is the transcendence degree of K(T )/K(R).) If we localize at some
highly divisible element, we can assume that t1, . . . , td all lie in T itself. Let us assume that the
result for domains is true whenever the transcendence degree is < d, so that we can induct.

Then we know that R[t1, . . . , td] ⊂ T is a polynomial ring. Moreover, each of the finitely many
generators of T/R satisfies a monic polynomial equation over K(R)[t1, . . . , td] (by the integrality
part of Noether normalization). If we localize R at a highly divisible element, we may assume that
the coefficients of these polynomials belong to R[t1, . . . , td]. We have thus reduced to the following
case. T is a finitely generated domain over R, integral over the polynomial ring R[t1, . . . , td]. In
particular, it is a finitely generated module over the polynomial ring R[t1, . . . , td]. Thus we have
some r and an exact sequence

0→ R[t1, . . . , td]
r → T → Q→ 0,

where Q is a torsion R[t1, . . . , td]
r-module. Since the polynomial ring is free, we are reduced to

showing that by localizing at a suitable element of R, we can make Q free.
But now we can do an inductive argument. Q has a finite filtration by T -modules whose

quotients are isomorphic to T/p for nonzero primes p with p 6= 0 as T is torsion; these are still
domains finitely generated over R, but such that the associated transcendence degree is less than
d. We have already assumed the statement proven for domains where the transcendence degree is
< d. Thus we can find a suitable localization that makes all these free, and thus Q free; it follows
that with this localization, T becomes free too. N
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[CF86] J. W. S. Cassels and A. Fröhlich, editors. Algebraic number theory, London, 1986. Aca-
demic Press Inc. [Harcourt Brace Jovanovich Publishers]. Reprint of the 1967 original.

[Cla11] Pete L. Clark. Factorization in euclidean domains. 2011. Available at http://math.

uga.edu/~pete/factorization2010.pdf.

[dJea10] Aise Johan de Jong et al. Stacks Project. Open source project, available at http:

//www.math.columbia.edu/algebraic_geometry/stacks-git/, 2010.

[Eis95] David Eisenbud. Commutative algebra, volume 150 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 1995. With a view toward algebraic geometry.

[For91] Otto Forster. Lectures on Riemann surfaces, volume 81 of Graduate Texts in Mathe-
matics. Springer-Verlag, New York, 1991. Translated from the 1977 German original by
Bruce Gilligan, Reprint of the 1981 English translation.

[GD] Alexander Grothendieck and Jean Dieudonné. Élements de géometrie algébrique. Pub-
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[Mathematical Documents (Paris)], 3. Société Mathématique de France, Paris, 2003.
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