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Chapter 2

Fields and Extensions

In this chapter, we shall discuss the theory of fields. Recall that a field is an integral domain for
which all non-zero elements are invertible; equivalently, the only two ideals of a field are (0) and
(1) since any nonzero element is a unit. Consequently fields will be the simplest cases of much of
the theory developed later.

The theory of field extensions has a different feel from standard commutative algebra since,
for instance, any morphism of fields is injective. Nonetheless, it turns out that questions involving
rings can often be reduced to questions about fields. For instance, any integral domain can be
embedded in a field (its quotient field), and any local ring (that is, a ring with a unique maximal
ideal; we have not defined this term yet) has associated to it its residue field (that is, its quotient
by the maximal ideal). A knowledge of field extensions will thus be useful.

§1 Introduction

Recall once again that:

Definition 1.1 A field is an integral domain where every non-zero element is invertible. Alter-
natively, it is a set k, endowed with binary operations of addition and multiplication, which satisfy
the usual axioms of commutativity, associativity, distributivity, 1 and 0 (and 1 6= 0!), and additive
and multiplicative inverses.

A subfield is a subset closed under these operations: equivalently, it is a subring that is itself
a field.

For a field k, we write k∗ for the subset k \ {0}. (This generalizes the usual notation ?? R∗

that refers to the group of invertible elements in a ring R.)

1.1 Examples

To get started, let us begin by providing several examples of fields. The reader should recall (??)
that if R is a ring and I ⊂ R an ideal, then R/I is a field precisely when I is maximal.

Example 1.2 One of the most familiar examples of a field is the rational numbers Q.

Example 1.3 If p is a prime number, then Z/(p) is a field, denoted Fp. Indeed, (p) is a maximal
ideal in Z. Thus, fields may be finite: Fp contains p elements.

Example 1.4 (Quotients of the polynomial ring) In a principal ideal domain, every prime
ideal is principal. Now, by Proposition 5.12, if k is a field, then the polynomial ring k[x] is a PID.
It follows that if P ∈ k[x] is an irreducible polynomial (that is, a nonconstant polynomial that
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does not admit a factorization into terms of smaller degrees), then k[x]/(P ) is a field. It contains
a copy of k in a natural way.

This is a very general way of constructing fields. For instance, the complex numbers C can be
constructed as R[x]/(x2 + 1).

Exercise 2.1 What is C[x]/(x2 + 1)?

Example 1.5 (Quotient fields) Recall from ?? that, given an integral domain A, there is an
imbedding A ↪→ K(A) into a field K(A) formally constructed as quotients a/b, a, b ∈ A (and b 6= 0)
modulo an evident equivalence relation. This is called the quotient field. The quotient field has
the following universal property: given an injection φ : A ↪→ K for a field K, there is a unique
map ψ : K(A) → K making the diagram commutative (i.e. a map of A-algebras). Indeed, it is
clear how to define such a map: we set

ψ(a/b) = φ(a)/φ(b),

where injectivity of φ assures that φ(b) 6= 0 if b 6= 0.
If the map is not injective, then such a factorization may not exist. Consider the imbedding

Z → Q into its quotient field, and consider the map Z → Fp: this last map goes from Z into a
field, but it does not factor through Q (as p is invertible in Q and zero in Fp!).

Example 1.6 (Rational function field) If k is a field, then we can consider the field k(x) of
rational functions over k. This is the quotient field of the polynomial ring k[x]; in other words,
it is the set of quotients F/G for F,G ∈ k[x] with the obvious equivalence relation.

Here is a fancier example of a field.

Example 1.7 Let X be a Riemann surface.1 Let C(X) denote the set of meromorphic functions
on X; clearly C(X) is a ring under multiplication and addition of functions. It turns out that
in fact C(X) is a field; this is because if a nonzero function f(z) is meromorphic, so is 1/f(z).
For example, let S2 be the Riemann sphere; then we know from complex analysis that the ring of
meromorphic functions C(S2) is the field of rational functions C(z).

One reason fields are so nice from the point of view of most other chapters in this book is that
the theory of k-modules (i.e. vector spaces), for k a field, is very simple. Namely:

Proposition 1.8 If k is a field, then every k-module is free.

Proof. Indeed, by linear algebra we know that a k-module (i.e. vector space) V has a basis B ⊂ V ,
which defines an isomorphism from the free vector space on B to V . N

Corollary 1.9 Every exact sequence of modules over a field splits.

Proof. This follows from ?? and Proposition 1.8, as every vector space is projective. N

This is another reason why much of the theory in future chapters will not say very much about
fields, since modules behave in such a simple manner. Note that Corollary 1.9 is a statement
about the category of k-modules (for k a field), because the notion of exactness is inherently
arrow-theoretic (i.e. makes use of purely categorical notions, and can in fact be phrased within a
so-called abelian category).

Henceforth, since the study of modules over a field is linear algebra, and since the ideal theory
of fields is not very interesting, we shall study what this chapter is really about: extensions of
fields.

1Readers not familiar with Riemann surfaces may ignore this example.
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1.2 The characteristic of a field

In the category of rings, there is an initial object Z: any ring R has a map from Z into it in precisely
one way. For fields, there is no such initial object. Nonetheless, there is a family of objects such
that every field can be mapped into in exactly one way by exactly one of them, and in no way by
the others.

Let F be a field. As Z is the initial object of the category of rings, there is a ring map f : Z→ F ,
see ?? 1.4. The image of this ring map is an integral domain (as a subring of a field) hence the
kernel of f is a prime ideal in Z, see Proposition 4.12. Hence the kernel of f is either (0) or (p)
for some prime number p, see Example 4.2.

In the first case we see that f is injective, and in this case we think of Z as a subring of F .
Moreover, since every nonzero element of F is invertible we see that it makes sense to talk about
p/q ∈ F for p, q ∈ Z with q 6= 0. Hence in this case we may and we do think of Q as a subring of
F . One can easily see that this is the smallest subfield of F in this case.

In the second case, i.e., when Ker(f) = (p) we see that Z/(p) = Fp is a subring of F . Clearly
it is the smallest subfield of F .

Arguing in this way we see that every field contains a smallest subfield which is either Q or
finite equal to Fp for some prime number p.

Definition 1.10 The characteristic of a field F is 0 if Z ⊂ F , or is a prime p if p = 0 in F . The
prime subfield of F is the smallest subfield of F which is either Q ⊂ F if the characteristic is
zero, or Fp ⊂ F if the characteristic is p > 0.

It is easy to see that if E is a field containing k, then the characteristic of E is the same as the
characteristic of k.

Example 1.11 The characteristic of Z/p is p, and that of Q is 0. This is obvious from the
definitions.

§2 Field extensions

2.1 Preliminaries

In general, though, we are interested not so much in fields by themselves but in field extensions.
This is perhaps analogous to studying not rings but algebras over a fixed ring. The nice thing for
fields is that the notion of a “field over another field” just recovers the notion of a field extension,
by the next result.

Proposition 2.1 If F is a field and R is any ring, then any ring homomorphism f : F → R is
either injective or the zero map (in which case R = 0).

Proof. Indeed, ker(f) is an ideal in F . But there are only two ideals in F , namely (0) and (1). If
f is identically zero, then 1 = f(1) = 0 in R, so R = 0 too. N

Definition 2.2 If F is a field contained in a field G, then G is said to be a field extension of F .
We shall write G/F to indicate that G is an extension of F .

So if F, F ′ are fields, and F → F ′ is any ring-homomorphism, we see by Proposition 2.1 that it is
injective,2 and F ′ can be regarded as an extension of F , by a slight abuse of notation. Alternatively,
a field extension of F is just an F -algebra that happens to be a field. This is completely different
than the situation for general rings, since a ring homomorphism is not necessarily injective.

2The zero ring is not a field!
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Let k be a field. There is a category of field extensions of k. An object of this category is an
extension E/k, that is a (necessarily injective) morphism of fields

k → E,

while a morphism between extensions E/k,E′/k is a k-algebra morphism E → E′; alternatively,
it is a commutative diagram

E // E′

k

??~~~~~~~~

__????????

.

Definition 2.3 A tower of field extensions E′/E/k consists of an extension E/k and an extension
E′/E.

It is easy to see that any morphism E → E′ in the category of k-extensions gives a tower.
Let us give a few examples of field extensions.

Example 2.4 Let k be a field, and P ∈ k[x] an irreducible polynomial. We have seen that
k[x]/(P ) is a field (Example 1.6). Since it is also a k-algebra in the obvious way, it is an extension
of k.

Example 2.5 If X is a Riemann surface, then the field of meromorphic functions C(X) (see
Example 1.7) is an extension field of C, because any element of C induces a meromorphic—indeed,
holomorphic—constant function on X.

Let F/k be a field extension. Let S ⊂ F be any subset. Then there is a smallest subextension
of F (that is, a subfield of F containing k) that contains S. To see this, consider the family of
subfields of F containing S and k, and take their intersection; one easily checks that this is a field.
It is easy to see, in fact, that this is the set of elements of F that can be obtained via a finite
number of elementary algebraic operations (addition, multiplication, subtraction, and division)
involving elements of k and S.

Definition 2.6 If F/k is an extension and S ⊂ F , we write k(S) for the smallest subextension of
F containing S. We will say that S generates the extension k(S)/k.

For instance, C is generated by i over R.

Exercise 2.2 Show that C does not have a countable set of generators over Q.

Let us now classify extensions generated by one element.

Proposition 2.7 (Simple extensions of a field) If an extension F/k is generated by one el-
ement, then it is F is k-isomorphic either to the rational function field k(t)/k or to one of the
extensions k[t]/(P ) for P ∈ k[t] irreducible.

We will see that many of the most important cases of field extensions are generated by one
element, so this is actually useful.

Proof. Let α ∈ F be such that F = k(α); by assumption, such an α exists. There is a morphism
of rings

k[t]→ F

sending the indeterminate t to α. The image is a domain, so the kernel is a prime ideal. Thus, it
is either (0) or (P ) for P ∈ k[t] irreducible.
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If the kernel is (P ) for P ∈ k[t] irreducible, then the map factors through k[t]/(P ), and induces
a morphism of fields k[t]/(P ) → F . Since the image contains α, we see easily that the map is
surjective, hence an isomorphism. In this case, k[t]/(P ) ' F .

If the kernel is trivial, then we have an injection k[t] → F . One may thus define a morphism
of the quotient field k(t) into F ; given a quotient R(t)/Q(t) with R(t), Q(t) ∈ k[t], we map this
to R(α)/Q(α). The hypothesis that k[t] → F is injective implies that Q(α) 6= 0 unless Q is the
zero polynomial. The quotient field of k[t] is the rational function field k(t), so we get a morphism
k(t)→ F whose image contains α. It is thus surjective, hence an isomorphism. N

2.2 Finite extensions

If F/E is a field extension, then evidently F is also a vector space over E (the scalar action is just
multiplication in F ).

Definition 2.8 The dimension of F considered as an E-vector space is called the degree of the
extension and is denoted [F : E]. If [F : E] <∞ then F is said to be a finite extension.

Example 2.9 C is obviously a finite extension of R (of degree 2).

Let us now consider the degree in the most important special example, that given by Proposi-
tion 2.7, in the next two examples.

Example 2.10 (Degree of a simple transcendental extension) If k is any field, then the ra-
tional function field k(t) is not a finite extension. The elements {tn, n ∈ Z} are linearly independent
over k.

In fact, if k is uncountable, then k(t) is uncountably dimensional as a k-vector space. To show
this, we claim that the family of elements {1/(t− α), α ∈ k} ⊂ k(t) is linearly independent over k.
A nontrivial relation between them would lead to a contradiction: for instance, if one works over
C, then this follows because 1

t−α , when considered as a meromorphic function on C, has a pole at

α and nowhere else. Consequently any sum
∑
ci

1
t−αi for the ci ∈ k∗, and αi ∈ k distinct, would

have poles at each of the αi. In particular, it could not be zero.
(Amusingly, this leads to a quick if suboptimal proof of the Hilbert Nullstellensatz; see ??.)

Example 2.11 (Degree of a simple algebraic extension) Consider a monogenic field exten-
sion E/k of the form in Example 1.6, say E = k[t]/(P ) for P ∈ k[t] an irreducible polynomial.
Then the degree [E : k] is just the degree degP . Indeed, without loss of generality, we can assume
P monic, say

P = tn + a1t
n−1 + · · ·+ a0. (2.1)

It is then easy to see that the images of 1, t, . . . , tn−1 in k[t]/(P ) are linearly independent over k,
because any relation involving them would have degree strictly smaller than that of P , and P is
the element of smallest degree in the ideal (P ).

Conversely, the set S =
{

1, t, . . . , tn−1
}

(or more properly their images) spans k[t]/(P ) as a
vector space. Indeed, we have by (2.1) that tn lies in the span of S. Similarly, the relation tP (t) = 0
shows that the image of tn+1 lies in the span of {1, t, . . . , tn}—by what was just shown, thus in
the span of S. Working upward inductively, we find that the image of tM for M ≥ n lies in the
span of S.

This confirms the observation that [C : R] = 2, for instance. More generally, if k is a field, and
α ∈ k is not a square, then the irreducible polynomial x2 − α ∈ k[x] allows one to construct an
extension k[x]/(x2−α) of degree two. We shall write this as k(

√
α). Such extensions will be called

quadratic, for obvious reasons.
The basic fact about the degree is that it is multiplicative in towers.
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Proposition 2.12 (Multiplicativity) Suppose given a tower F/E/k. Then

[F : k] = [F : E][E : k].

Proof. Let α1, . . . , αn ∈ F be an E-basis for F . Let β1, . . . , βm ∈ E be a k-basis for E. Then the
claim is that the set of products {αiβj , 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a k-basis for F . Indeed, let us
check first that they span F over k.

By assumption, the {αi} span F over E. So if f ∈ F , there are ai ∈ E with

f =
∑

aiαi,

and, for each i, we can write ai =
∑
bijβj for some bij ∈ k. Putting these together, we find

f =
∑
i,j

bijαiβj ,

proving that the {αiβj} span F over k.
Suppose now that there existed a nontrivial relation∑

i,j

cijαiβj = 0

for the cij ∈ k. In that case, we would have

∑
i

αi

∑
j

cijβj

 = 0,

and the inner terms lie in E as the βj do. Now E-linear independence of the {αi} shows that the
inner sums are all zero. Then k-linear independence of the {βj} shows that the cij all vanish. N

We sidetrack to a slightly tangential definition:

Definition 2.13 A field extensions K of Q is said to be a number field if it is a finite extension
of Q.

Number fields are the basic objects in algebraic number theory. We shall see later that, for the
analog of the integers Z in a number field, something kind of like unique factorization still holds
(though strict unique factorization generally does not!).

2.3 Algebraic extensions

Consider a field extension F/E.

Definition 2.14 An element α ∈ F is said to be algebraic over E if α is the root of some
polynomial with coefficients in E. If all elements of F are algebraic then F is said to be an
algebraic extension.

By Proposition 2.7, the subextension E(α) is isomorphic either to the rational function field
E(t) or to a quotient ring E[t]/(P ) for P ∈ E[t] an irreducible polynomial. In the latter case, α is
algebraic over E (in fact, it satisfies the polynomial P !); in the former case, it is not.

Example 2.15 C is algebraic over R.
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Example 2.16 Let X be a compact Riemann surface, and f ∈ C(X)−C any nonconstant mero-
morphic function on X (see Example 1.7). Then it is known that C(X) is algebraic over the
subextension C(f) generated by f . We shall not prove this.

We now show that there is a deep connection between finiteness and being algebraic.

Proposition 2.17 A finite extension is algebraic. In fact, an extension E/k is algebraic if and
only if every subextension k(α)/k generated by some α ∈ E is finite.

In general, it is very false that an algebraic extension is finite.

Proof. Let E/k be finite, say of degree n. Choose α ∈ E. Then the elements {1, α, . . . , αn}
are linearly dependent over E, or we would necessarily have [E : k] > n. A relation of linear
dependence now gives the desired polynomial that α must satisfy.

For the last assertion, note that a monogenic extension k(α)/k is finite if and only α is algebraic
over k, by Example 2.10 and Example 2.11. So if E/k is algebraic, then each k(α)/k, α ∈ E, is a
finite extension, and conversely. N

We can extract a corollary of the last proof (really of Example 2.10 and Example 2.11): a
monogenic extension is finite if and only if it is algebraic. We shall use this observation in the next
result.

Corollary 2.18 Let k be a field, and let α1, α2, . . . , αn be elements of some extension field such
that each αi is finite over k. Then the extension k(α1, . . . , αn)/k is finite. That is, a finitely
generated algebraic extension is finite.

Proof. Indeed, each k(α1, . . . , αi+1)/k(α1, . . . , αi) is monogenic and algebraic, hence finite. N

The set of complex numbers that are algebraic over Q are simply called the algebraic num-
bers. For instance,

√
2 is algebraic, i is algebraic, but π is not. It is a basic fact that the algebraic

numbers form a field, although it is not obvious how to prove this from the definition that a number
is algebraic precisely when it satisfies a nonzero polynomial equation with rational coefficients (e.g.
by polynomial equations).

Corollary 2.19 Let E/k be a field extension. Then the elements of E algebraic over k form a
field.

Proof. Let α, β ∈ E be algebraic over k. Then k(α, β)/k is a finite extension by Corollary 2.18.
It follows that k(α + β) ⊂ k(α, β) is a finite extension, which implies that α + β is algebraic by
Proposition 2.17. N

Many nice properties of field extensions, like those of rings, will have the property that they
will be preserved by towers and composita.

Proposition 2.20 (Towers) Let E/k and F/E be algebraic. Then F/k is algebraic.

Proof. Choose α ∈ F . Then α is algebraic over E. The key observation is that α is algebraic over
a finitely generated subextension of k. That is, there is a finite set S ⊂ E such that α is algebraic
over k(S): this is clear because being algebraic means that a certain polynomial in E[x] that α
satisfies exists, and as S we can take the coefficients of this polynomial.

It follows that α is algebraic over k(S). In particular, k(S, α)/k(S) is finite. Since S is a finite
set, and k(S)/k is algebraic, Corollary 2.18 shows that k(S)/k is finite. Together we find that
k(S, α)/k is finite, so α is algebraic over k. N

The method of proof in the previous argument—that being algebraic over E was a property that
descended to a finitely generated subextension of E—is an idea that recurs throughout algebra,
and will be put to use more generality in ??.
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2.4 Minimal polynomials

Let E/k be a field extension, and let α ∈ E be algebraic over k. Then α satisfies a (nontrivial)
polynomial equation in k[x]. Consider the set of polynomials P (x) ∈ k[x] such that P (α) = 0; by
hypothesis, this set does not just contain the zero polynomial. It is easy to see that this set is an
ideal. Indeed, it is the kernel of the map

k[x]→ E, x 7→ α.

Since k[x] is a PID, there is a generator m(x) ∈ k[x] of this ideal. If we assume m monic, without
loss of generality, then m is uniquely determined.

Definition 2.21 m(x) as above is called the minimal polynomial of α over k.

The minimal polynomial has the following characterization: it is the monic polynomial, of
smallest degree, that annihilates α. (Any nonconstant multiple of m(x) will have larger degree,
and only multiples of m(x) can annihilate α.) This explains the name minimal.

Clearly the minimal polynomial is irreducible. This is equivalent to the assertion that the ideal
in k[x] consisting of polynomials annihilating α is prime. But this follows from the fact that the
map k[x]→ E, x 7→ α is a map into a domain (even a field), so the kernel is a prime ideal.

Proposition 2.22 The degree of the minimal polynomial is [k(α) : k].

Proof. This is just a restatement of the argument in ??: the observation is that if m(x) is the
minimal polynomial of α, then the map

k[x]/(m(x))→ k(α), x 7→ α

is an isomorphism as in the aforementioned proof, and we have counted the degree of such an
extension (see Example 2.11). N

So the observation of the above proof is that if α ∈ E is algebraic, then k(α) ⊂ E is isomorphic
to k[x]/(m(x)).

2.5 Algebraic closure

Now we want to define a “universal” algebraic extension of a field. Actually, we should be careful:
the algebraic closure is not a universal object. That is, the algebraic closure is not unique up to
unique isomorphism: it is only unique up to isomorphism. But still, it will be very handy, if not
functorial.

Definition 2.23 Let F be a field. An algebraic closure of F is a field F containing F such
that:

AC 1 F is algebraic over F .

AC 2 F is algebraically closed (that is, every non-constant polynomial in F [X] has a root in
F ).

The “fundamental theorem of algebra” states that C is algebraically closed. While the easiest
proof of this result uses Liouville’s theorem in complex analysis, we shall give a mostly algebraic
proof below (??).

We now prove the basic existence result.

Theorem 2.24 Every field has an algebraic closure.

10
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The proof will mostly be a red herring to the rest of the chapter. However, we will want to
know that it is possible to embed a field inside an algebraically closed field, and we will often
assume it done.

Proof. Let K be a field and Σ be the set of all monic irreducibles in K[x]. Let A = K[{xf : f ∈ Σ}]
be the polynomial ring generated by indeterminates xf , one for each f ∈ Σ. Then let a be the
ideal of A generated by polynomials of the form f(xf ) for each f ∈ Σ.

Claim 1. a is a proper ideal.
Proof of claim 1. Suppose a = (1), so there exist finitely many polynomials fi ∈ Σ and gi ∈ A

such that 1 = f1(xf1)g1 + · · · + fk(xfk)gk. Each gi uses some finite collection of indeterminates
Vi{xfi1 , . . . , xfiki }. This notation is ridiculous, so we simplify it.

We can take the union of all the Vi, together with the indeterminates xf1 , . . . , xfk to get a
larger but still finite set of indeterminates V = {xf1 , . . . , xfn} for some n ≥ k (ordered so that the
original xf1 , . . . , xfk agree the first k elements of V ). Now we can regard each gi as a polynomial
in this new set of indeterminates V . Then, we can write 1 = f1(xf1)g1 + · · ·+ fn(xfn)gn where for
each i > k, we let gi = 0 (so that we’ve adjoined a few zeroes to the right hand side of the equality).
Finally, we define xi = xfi , so that we have 1 = f1(x1)g1(x1, . . . , xn) + · · ·+ fn(xn)gn(x1, . . . , xn).

Suppose n is the minimal integer such that there exists an expression of this form, so that

b = (f1(x1), . . . , fn−1(xn−1))

is a proper ideal of B = K[x1, . . . , xn−1], but

(f1(x1), . . . , fn(xn))

is the unit ideal in B[xn]. Let B̂ = B/b (observe that this ring is nonzero). We have a composition
of maps

B[xn]→ B̂[xn]→ B̂[xn]/(f̂n(xn))

where the first map is reduction of coefficients modulo b, and the second map is the quotient by the

principal ideal generated by the image f̂n(xn) of fn(xn) in B̂[xn]. We know B̂ is a nonzero ring,

so since fn is monic, the top coefficient of f̂n(xn) is still 1 ∈ B̂. In particular, the top coefficient
cannot be nilpotent. Furthermore, since fn was irreducible, it is not a constant polynomial, so by

the characterization of units in polynomial rings, f̂n(xn) is not a unit, so it does not generate the

unit ideal. Thus the quotient B̂[xn]/(f̂n(xn)) should not be the zero ring.
On the other hand, observe that each fi(xi) is in the kernel of this composition, so in fact the

entire ideal (f1(x1), . . . , fn(xn)) is contained in the kernel. But this ideal is the unit ideal, so all of
B[xn] is in the kernel of this composition. In particular, 1 ∈ B[xn] is in the kernel, and since ring

maps preserve identity, this forces 1 = 0 in B̂[xn]/(f̂n(xn)), which makes this the the zero ring.
This contradicts our previous observation, and proves the claim that a is a proper ideal.

Now, given claim 1, there exists a maximal ideal m of A containing a. Let K1 = A/m. This is
an extension field of K via the inclusion given by

K → A→ A/m

(this map is automatically injective as it is a map between fields). Furthermore every f ∈ Σ has
a root in K1. Specifically, the coset xf + m in A/m = K1 is a root of f since

f(xf + m) = f(xf ) + m = 0.

Inductively, given Kn for some n ≥ 1, repeat the construction with Kn in place of K to get an
extension field Kn+1 of Kn in which every irreducible f ∈ Kn[x] has a root. Let L =

⋃∞
n=1Kn.

11
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Claim 2. Every f ∈ L[x] splits completely into linear factors in L.
Proof of claim 2. We induct on the degree of f . In the base case, when f itself is linear, there

is nothing to prove. Inductively, suppose every polynomial in L[x] of degree less than n splits
completely into linear factors, and suppose

f = a0 + a1x+ · · ·+ anx
n ∈ L[x]

has degree n. Then each ai ∈ Kni for some ni, so let n = maxni and regard f as a polynomial
in Kn[x]. If f is reducible in Kn[x], then we have a factorization f = gh with the degree of g, h
strictly less than n. Therefore, inductively, they both split into linear factors in L[x], so f must
also. On the other hand, if f is irreducible, then by our construction, it has a root a ∈ Kn+1, so
we have f = (x− a)g for some g ∈ Kn+1[x] of degree n− 1. Again inductively, we can split g into
linear factors in L, so clearly we can do the same with f also. This completes the proof of claim 2.

Let K̄ be the set of algebraic elements in L. Clearly K̄ is an algebraic extension of K. If
f ∈ K̄[x], then we have a factorization of f in L[x] into linear factors

f = b(x− a1)(x− a2) · · · (x− an). N

for b ∈ K̄ and, a priori, ai ∈ L. But each ai is a root of f , which means it is algebraic over K̄,
which is an algebraic extension of K; so by transitivity of ”being algebraic,” each ai is algebraic
over K. So in fact we conclude that ai ∈ K̄ already, since K̄ consisted of all elements algebraic
over K. Therefore, since K̄ is an algebraic extension of K such that every f ∈ K̄[x] splits into
linear factors in K̄, K̄ is the algebraic closure of K.

TO BE ADDED: two algebraic closures are isomorphic
Let K be an algebraically closed field. Then the ring K[x] has a very simple ideal structure.

Since every polynomial P ∈ K[x] has a root, it follows that there is always a decomposition (by
dividing repeatedly)

P = c(x− α1) . . . (x− αn),

where c is the constant term and the {αi} ⊂ k are the roots of P . In particular:

Proposition 2.25 For K algebraically closed, the only irreducible polynomials in K[x] are the
linear polynomials c(x− α), c, α ∈ K (and c 6= 0).

In particular, two polynomials in K[x] are relatively prime (i.e., generate the unit ideal) if
and only if they have no common roots. This follows because the maximal ideals of K[x] are of
the form (x−α), α ∈ K. So if F,G ∈ K[x] have no common root, then (F,G) cannot be contained
in any (x− α) (as then they would have a common root at α).

If k is not algebraically closed, then this still gives information about when two polynomials in
k[x] generate the unit ideal.

Definition 2.26 If k is any field, we say that two polynomials in k[x] are relatively prime if
they generate the unit ideal in k[x].

Proposition 2.27 Two polynomials in k[x] are relatively prime precisely when they have no com-
mon roots in an algebraic closure k of k.

Proof. The claim is that any two polynomials P,Q generate (1) in k[x] if and only if they generate
(1) in k[x]. This is a piece of linear algebra: a system of linear equations with coefficients in k has
a solution if and only if it has a solution in any extension of k. Consequently, we can reduce to the
case of an algebraically closed field, in which case the result is clear from what we have already
proved. N

12



CRing Project, Chapter 2

§3 Separability and normality

3.1 Separable extensions

Throughout, F ⊂ K is a finite field extension. We fix once and for all an algebraic closure F for
F and an embedding of F in M .

Definition 3.1 For an element α ∈ K with minimal polynomial q ∈ F [x], we say q and α are
separable if q has distinct roots (in some algebraic closure F !), and we say K is separable if this
holds for all α ∈ K.

By Proposition 2.27, separability of a polynomial P ∈ F [x] is equivalent to (P, P ′) = 1 in F [x].
Indeed, this follows from the fact that P has no multiple roots if and only if P, P ′ have no common
roots.

Lemma 3.2 q(x) ∈ F [x] is separable if and only if gcd(q, q′) = 1, where q′ is the formal derivative
of q.

3.2 Purely inseparable extensions

Definition 3.3 For an element α ∈ K with minimal polynomial q, we say α is purely insepa-
rable if q has only one root. We say K is splitting if each q splits in K.

Definition 3.4 IfK = F (α) for some α with minimal polynomial q(x) ∈ F [x], then by Lemma 4.3,

q(x) = r(xp
d

), where p = charF (or 1 if charF = 0) and r is separable; in this case we also denote
degs(K/F ) = deg(r),degi(K/F ) = pd.

§4 Galois theory

4.1 Definitions

Throughout, F ⊂ K is a finite field extension. We fix once and for all an algebraic closure M
for both and an embedding of F in M . When necessary, we write K = F (α1, . . . , αn), and
K0 = F,Ki = F (α1, . . . , αi), qi the minimal polynomial of αi over Fi−1, Qi that over F .

Definition 4.1 Aut(K/F ) denotes the group of automorphisms of K which fix F (pointwise!).
Emb(K/F ) denotes the set of embeddings of K into M respecting the chosen embedding of F .

Definition 4.2 By deg(K/F ) we mean the dimension of K as an F -vector space. We denote Ks/F
the set of elements of K whose minimal polynomials over F have distinct roots; by Corollary 4.13
this is a subfield, and deg(Ks/F ) = degs(K/F ) and deg(K/Ks) = degi(K/F ) by definition.

4.2 Theorems

Lemma 4.3 If charF = 0 then Ks = K. If charF = p > 0, then for any irreducible q(x) ∈ K[x],

there is some d ≥ 0 and polynomial r(x) ∈ K[x] such that q(x) = r(xp
d

), and r is separable and
irreducible.

Proof. By formal differentiation, q′(x) has positive degree unless each exponent is a multiple of p;
in characteristic zero this never occurs. If this is not the case, since q is irreducible, it can have no
factor in common with q′ and therefore has distinct roots by Lemma 3.2.

If p > 0, let d be the largest integer such that each exponent of q is a multiple of pd, and define
r by the above equation. Then by construction, r has at least one exponent which is not a multiple
of p, and therefore has distinct roots. N

13
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Corollary 4.4 In the statement of Lemma 4.3, q and r have the same number of roots.

Proof. α is a root of q if and only if αp
d

is a root of r; i.e. the roots of q are the roots of xp
d − β,

where β is a root of r. But if α is one such root, then (x − α)p
d

= xp
d − αpd = xp

d − β since

charK = p, and therefore α is the only root of xp
d − β. N

Lemma 4.5 The correspondence which to each g ∈ Emb(K/F ) assigns the n-tuple (g(α1), . . . , g(αn))
of elements of M is a bijection from Emb(K/F ) to the set of tuples of βi ∈ M , such that βi is a
root of qi over K(β1, . . . , βi−1).

Proof. First take K = F (α) = F [x]/(q), in which case the maps g : K → M over F are identified
with the elements β ∈M such that q(β) = 0 (where g(α) = β).

Now, considering the tower K = Kn/Kn−1/ . . . /K0 = F , each extension of which is primitive,
and a given embedding g, we define recursively g1 ∈ Emb(K1/F ) by restriction and subsequent
gi by identifying Ki−1 with its image and restricting g to Ki. By the above paragraph each gi
corresponds to the image βi = gi(αi), each of which is a root of qi. Conversely, given such a set of
roots of the qi, we define g recursively by this formula. N

Corollary 4.6 |Emb(K/F )| =
∏n
i=1 degs(qi).

Proof. This follows immediately by induction from Lemma 4.5 by Corollary 4.4. N

Lemma 4.7 For any f ∈ Emb(K/F ), the map Aut(K/F ) → Emb(K/F ) given by σ 7→ f ◦ σ is
injective.

Proof. This is immediate from the injectivity of f . N

Corollary 4.8 Aut(K/F ) is finite.

Proof. By Lemma 4.7, Aut(K/F ) injects into Emb(K/F ), which by Corollary 4.6 is finite. N

Proposition 4.9 The inequality

|Aut(K/F )| ≤ |Emb(K/F )|

is an equality if and only if the qi all split in K.

Proof. The inequality follows from Lemma 4.7 and from Corollary 4.8. Since both sets are finite,
equality holds if and only if the injection of Lemma 4.7 is surjective (for fixed f ∈ Emb(K/F )).

If surjectivity holds, let β1, . . . , βn be arbitrary roots of q1, . . . , qn in the sense of Lemma 4.5,
and extract an embedding g : K → M with g(αi) = βi. Since the correspondence f 7→ f ◦ σ
(σ ∈ Aut(K/F )) is a bijection, there is some σ such that g = f ◦σ, and therefore f and g have the
same image. Therefore the image of K in M is canonical, and contains β1, . . . , βn for any choice
thereof.

If the qi all split, let g ∈ Emb(K/F ) be arbitrary, so the g(αi) are roots of qi in M as in
Lemma 4.5. But the qi have all their roots in K, hence in the image f(K), so f and g again have
the same image, and f−1◦g ∈ Aut(K/F ). Thus g = f ◦(f−1◦g) shows that the map of Lemma 4.7
is surjective. N

Corollary 4.10 Define

D(K/F ) =

n∏
i=1

degs(Ki/Ki−1).

14



CRing Project, Chapter 2

Then the chain of equalities and inequalities

|Aut(K/F )| ≤ |Emb(K/F )| = D(K/F ) ≤ deg(K/F )

holds; the first inequality is an equality if and only if each qi splits in K, and the second if and
only if each qi is separable.

Proof. The statements concerning the first inequality are just Proposition 4.9; the interior equality
is just Corollary 4.6; the latter inequality is obvious from the multiplicativity of the degrees of field
extensions; and the deduction for equality follows from the definition of degs. N

Corollary 4.11 The qi respectively split and are separable in K if and only if the Qi do and are.

Proof. The ordering of the αi is irrelevant, so we may take each i = 1 in turn. Then Q1 = q1 and
if either of the equalities in Corollary 4.10 holds then so does the corresponding statement here.
Conversely, clearly each qi divides Qi, so splitting or separability for the latter implies that for the
former. N

Corollary 4.12 Let α ∈ K have minimal polynomial q; if the Qi are respectively split, separable,
and purely inseparable over F then q is as well.

Proof. We may take α as the first element of an alternative generating set for K/F . The numerical
statement of Corollary 4.10 does not depend on the particular generating set, hence the conditions
given hold of the set containing α if and only if they hold of the canonical set α1, . . . , αn.

For purely inseparable, if the Qi all have only one root then |Emb(K/F )| = 1 by Corollary 4.10,
and taking α as the first element of a generating set as above shows that q must have only one
root as well for this to hold. N

Corollary 4.13 Ks is a field and deg(Ks/F ) = D(K/F ).

Proof. Assume charF = p > 0, for otherwiseKs = K. Using Lemma 4.3, write eachQi = Ri(x
pdi ),

and let βi = αp
di

i . Then the βi have Ri as minimal polynomials and the αi satisfy si = xp
di − βi

over K ′ = F (β1, . . . , βn). Therefore the αi have minimal polynomials over K ′ dividing the si and
hence those polynomials have but one distinct root.

By Corollary 4.12, the elements of K ′ are separable, and those of K ′ purely inseparable over
K ′. In particular, since these minimal polynomials divide those over F , none of these elements is
separable, so K ′ = Ks.

The numerical statement follows by computation:

deg(K/K ′) =

n∏
i=1

pdi =

n∏
i=1

deg(Ki/Ki−1)

degs(Ki/Ki−1)
=

deg(K/F )

D(K/F )
. N

Theorem 4.14 The following inequality holds:

|Aut(K/F )| ≤ |Emb(K/F )| = degs(K/F ) ≤ deg(K/F ).

Equality holds on the left if and only if K/F is splitting; it holds on the right if and only if K/F
is separable.

Proof. The numerical statement combines Corollary 4.10 and Corollary 4.13. The deductions
combine Corollary 4.11 and Corollary 4.12. N
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4.3 Definitions

Throughout, we will denote as before K/F a finite field extension, and G = Aut(K/F ), H a
subgroup of G. L/F is a subextension of K/F .

Definition 4.15 When K/F is separable and splitting, we say it is Galois and write G =
Gal(K/F ), the Galois group of K over F .

Definition 4.16 The fixed field of H is the field KH of elements fixed by the action of H on K.
Conversely, GL is the fixing subgroup of L, the subgroup of G whose elements fix L.

4.4 Theorems

Lemma 4.17 A polynomial q(x) ∈ K[x] which splits in K lies in KH [x] if and only if its roots
are permuted by the action of H. In this case, the sets of roots of the irreducible factors of q over
KH are the orbits of the action of H on the roots of q (counting multiplicity).

Proof. Since H acts by automorphisms, we have σq(x) = q(σx) as a functional equation on K, so
σ permutes the roots of q. Conversely, since the coefficients of σ are the elementary symmetric
polynomials in its roots, H permuting the roots implies that it fixes the coefficients.

Clearly q is the product of the polynomials qi whose roots are the orbits of the action of H
on the roots of q, counting multiplicities, so it suffices to show that these polynomials are defined
over KH and are irreducible. Since H acts on the roots of the qi by construction, the former is
satisfied. If some qi factored over KH , its factors would admit an action of H on their roots by
the previous paragraph. The roots of qi are distinct by construction, so its factors do not share
roots; hence the action on the roots of qi would not be transitive, a contradiction. N

Corollary 4.18 Let q(x) ∈ K[x]; if it is irreducible, then H acts transitively on its roots; con-
versely, if q is separable and H acts transitively on its roots, then q(x) ∈ KH [x] is irreducible.

Proof. Immediate from Lemma 4.17. N

Lemma 4.19 If K/F is Galois, so is K/L, and Gal(K/L) = GL..

Proof. K/F Galois means that the minimal polynomial over F of every element of K is separable
and splits in K; the minimal polynomials over L = KH divide those over F , and therefore this is
true of K/L as well; hence K/L is likewise a Galois extension. Gal(K/L) = Aut(K/L) consists of
those automorphisms σ of K which fix L; since F ⊂ L we have a fortiori that σ fixes F , hence
Gal(K/L) ⊂ G and consists of the subgroup which fixes L; i.e. GL. N

Corollary 4.20 If K/F and L/F are Galois, then the action of G on elements of L defines a
surjection of G onto Gal(L/F ). Thus GL is normal in G and Gal(L/F ) ∼= G/GL. Conversely, if
N ⊂ G is normal, then KN/F is Galois.

Proof. L/F is splitting, so by Lemma 4.17 the elements of G act as endomorphisms (hence auto-
morphisms) of L/F , and the kernel of this action is GL. By Lemma 4.19, we have GL = Gal(K/L),
so |GL| = |Gal(K/L)| = [K : L] = [K : F ]/[L : F ], or rearranging and using that K/F is Galois,
we get |G|/|GL| = [L : F ] = |Gal(L/F )|. Thus the map G→ Gal(L/F ) is surjective and thus the
induced map G/GL → Gal(L/F ) is an isomorphism.

Conversely, let N be normal and take α ∈ KN . For any conjugate β of α, we have β = g(α)
for some g ∈ G; let n ∈ N . Then n(β) = (ng)(α) = g(g−1ng)(α) = g(α) = β, since g−1ng ∈ N by
normality of N . Thus β ∈ KN , so KN is splitting, i.e., Galois. N
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Proposition 4.21 If K/F is Galois and H = GL, then KH = L.

Proof. By Lemma 4.19, K/L and K/KH are both Galois. By definition, Gal(K/L) = GL = H;
since H fixes KH we certainly have H < Gal(K/KH), but since L ⊂ KH we have a fortiori that
Gal(K/KH) < Gal(K/L) = H, so Gal(K/KH) = H as well. It follows from Theorem 4.14 that
deg(K/L) = |H| = deg(K/KH), so that KH = L. N

Lemma 4.22 If K is a finite field, then K∗ is cyclic.

Proof. K is then a finite extension of Fp for p = charK, hence has order pn, n = deg(K/Fp).
Thus αp

n

= α for all α ∈ K, since |K∗| = pn − 1. It follows that every element of K is a root of
qn(x) = xp

n − x. For any d < n, the elements of order at most pd − 1 satisfy qd(x), which has pd

roots. It follows that there are at least pn(p − 1) > 0 elements of order exactly pn − 1, so K∗ is
cyclic. N

Corollary 4.23 If K is a finite field, then Gal(K/F ) is cyclic, generated by the Frobenius auto-
morphism.

Proof. First take F = Fp. Then the map fi(α) = αp
i

is an endomorphism, injective since K is
a field, and surjective since it is finite, hence an automorphism. Since every α satisfies αp

n

= α,
fn = 1, but by Lemma 4.22, fn−1 is nontrivial (applied to the generator). Since n = deg(K/F ),
f = f1 generates Gal(K/F ).

If F is now arbitrary, by Proposition 4.21 we have Gal(K/F ) = Gal(K/Fp)F , and every sub-
group of a cyclic group is cyclic. N

Corollary 4.24 If K is finite, K/F is primitive.

Proof. No element of G fixes the generator α of K∗, so it cannot lie in any proper subfield.
Therefore F (α) = K. N

Proposition 4.25 If F is infinite and K/F has only finitely many subextensions, then it is prim-
itive.

Proof. We proceed by induction on the number of generators of K/F .
If K = F (α) we are done. If not, K = F (α1, . . . , αn) = F (α1, . . . , αn−1)(αn) = F (β, αn)

by induction, so we may assume n = 2. There are infinitely many subfields F (α1 + tα2), with
t ∈ F , hence two of them are equal, say for t1 and t2. Thus, α1 + t2α2 ∈ F (α1 + t1α2). Then
(t2−t1)α2 ∈ F (α1+t1α2), hence α2 lies in this field, hence α1 does. Therefore K = F (α1+t1α2).N

Corollary 4.26 If K/F is separable, it is primitive, and the generator may be taken to be a linear
combination of any finite set of generators of K/F .

Proof. We may embed K/F in a Galois extension M/F by adjoining all the conjugates of its
generators. Subextensions of K/F are as well subextensions of K ′/F and by Proposition 4.21 the
map H 7→ (K ′)H is a surjection from the subgroups of G to the subextensions of K ′/F , which are
hence finite in number. By Corollary 4.24 we may assume F is infinite. The result now follows
from Proposition 4.25. N

Corollary 4.27 If K/F is Galois and H ⊂ G, then if L = KH , we have H = GL.

Proof. Let α be a primitive element for K/L. The polynomial
∏
h∈H(x − h(α)) is fixed by H,

and therefore has coefficients in L, so α has |H| conjugate roots over L. But since α is primitive,
we have K = L(α), so the minimal polynomial of α has degree deg(K/L), which is the same as
the number of its roots. Thus |H| = deg(K/L). Since H ⊂ GL and |GL| = deg(K/L), we have
equality. N
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Theorem 4.28 The correspondences H 7→ KH , L 7→ GL define inclusion-reversing inverse maps
between the set of subgroups of G and the set of subextensions of K/F , such that normal subgroups
and Galois subfields correspond.

Proof. This combines Proposition 4.21, Corollary 4.27, and Corollary 4.20. N

§5 Transcendental Extensions

There is a distinguished type of transcendental extension: those that are “purely transcendental.”

Definition 5.1 A field extension E′/E is purely transcendental if it is obtained by adjoining a
set B of algebraically independent elements. A set of elements is algebraically independent over
E if there is no nonzero polynomialP with coefficients in E such that P (b1, b2, · · · bn) = 0 for any
finite subset of elements b1, . . . , bn ∈ B.

Example 5.2 The field Q(π) is purely transcendental; in particular, Q(π) ∼= Q(x) with the iso-
morphism fixing Q.

Similar to the degree of an algebraic extension, there is a way of keeping track of the number of al-
gebraically independent generators that are required to generate a purely transcendental extension.

Definition 5.3 Let E′/E be a purely transcendental extension generated by some set of alge-
braically independent elements B. Then the transcendence degree trdeg(E′/E) = #(B) and B is
called a transcendence basis for E′/E (we will see later that trdeg(E′/E) is independent of choice
of basis).

In general, let F/E be a field extension, we can always construct an intermediate extension F/E′/E
such that F/E′ is algebraic and E′/E is purely transcendental. Then if B is a transcendence
basis for E′, it is also called a transcendence basis for F . Similarly, trdeg(F/E) is defined to be
trdeg(E′/E).

Theorem 5.4 Let F/E be a field extension, a transcendence basis exists.

Proof. Let A be an algebraically independent subset of F . Now pick a subset G ⊂ F that generates
F/E, we can find a transcendence basis B such that A ⊂ B ⊂ G. Define a collection of algebraically
independent sets B whose members are subsets of G that contain A. The set can be partially
ordered inclusion and contains at least one element, A. The union of elements of B is algebraically
independent since any algebraic dependence relation would have occurred in one of the elements of
B since the polynomial is only allowed to be over finitely many variables. The union also satisfies
A ⊂

⋃
B ⊂ G so by Zorn’s lemma, there is a maximal element B ∈ B. Now we claim F is algebraic

over E(B). This is because if it wasn’t then there would be a transcendental element f ∈ G (since
E(G) = F )such that B ∪ {f} wold be algebraically independent contradicting the maximality of
B. Thus B is our transcendence basis. N

Now we prove that the transcendence degree of a field extension is independent of choice of basis.

Theorem 5.5 Let F/E be a field extension. Any two transcendence bases for F/E have the same
cardinality. This shows that the trdeg(E/F ) is well defined.

Proof. Let B and B′ be two transcendence bases. Without loss of generality, we can assume
that #(B′) ≤ #(B). Now we divide the proof into two cases: the first case is that B is an
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infinite set. Then for each α ∈ B′, there is a finite set Bα such that α is algebraic over E(Bα)
since any algebraic dependence relation only uses finitely many indeterminates. Then we define
B∗ =

⋃
α∈B′ Bα. By construction, B∗ ⊂ B, but we claim that in fact the two sets are equal. To see

this, suppose that they are not equal, say there is an element β ∈ B \B∗. We know β is algebraic
over E(B′) which is algebraic over E(B∗). Therefor β is algebraic over E(B∗), a contradiction.
So #(B) ≤

∑
α∈B′ #(Bα). Now if B′ is finite, then so is B so we can assume B′ is infinite; this

means

#(B) ≤
∑
α∈B′

#(Bα) = #(
∐

Bα) ≤ #(B′ × Z) = #(B′) (2.2)

with the inequality #(
∐
Bα) ≤ #(B′×Z) given by the correspondence bαi 7→ (α, i) ∈ B′×Z with

Bα = {bα1
, bα2

· · · bαnα } Therefore in the infinite case, #(B) = #(B′).

Now we need to look at the case where B is finite. In this case, B′ is also finite, so suppose
B = {α1, · · ·αn} and B′ = {β1, · · ·βm} with m ≤ n. We perform induction on m: if m = 0 then
F/E is algebraic so B = so n = 0, otherwise there is an irreducible polynomial f ∈ E[x, y1, · · · yn]
such that f(β1, α1, · · ·αn) = 0. Since β1 is not algebraic over E, f must involve some yi so without
loss of generality, assume f uses y1. Let B∗ = {β1, α2, · · ·αn}. We claim that B∗ is a basis for
F/E. To prove this claim, we see that we have a tower of algebraic extensions F/E(B∗, α1)/E(B∗)
since α1 is algebraic over E(B∗). Now we claim that B∗ (counting multiplicity of elements)
is algebraically independent over E because if it weren’t, then there would be an irreducible
g ∈ E[x, y2, · · · yn] such that g(β1, α2, · · ·αn) = 0 which must involve x making β1 algebraic over
E(α2, · · ·αn) which would make α1 algebraic over E(α2, · · ·αn) which is impossible. So this means
that {α2, · · ·αn} and {β2, · · ·βm} are bases for F over E(β1) which means by induction, m = n.N

Example 5.6 Consider the field extension Q(e, π) formed by adjoining the numbers e and π.
This field extension has transcendence degree at least 1 since both e and π are transcendental
over the rationals. However, this field extension might have transcendence degree 2 if e and π are
algebraically independent. Whether or not this is true is unknown and the problem of determining
trdeg(Q(e, π)) is an open problem.

Example 5.7 let E be a field and F = E(t)/E. Then {t} is a transcendence basis since F =
E(t). However, {t2} is also a transcendence basis since E(t)/E(t2) is algebraic. This illustrates
that while we can always decompose an extension F/E into an algebraic extension F/E′ and a
purely transcendental extension E′/E, this decomposition is not unique and depends on choice of
transcendence basis.

Exercise 2.3 If we have a tower of fields G/F/E, then trdeg(G/E) = trdeg(F/E)+ trdeg(G/F ).

Example 5.8 Let X be a compact Riemann surface. Then the function field C(X) (see Exam-
ple 1.7) has transcendence degree one over C. In fact, any finitely generated extension of C of
transcendence degree one arises from a Riemann surface. There is even an equivalence of categories
between the category of compact Riemann surfaces and (non-constant) holomorphic maps and the
opposite category of finitely generated extensions of C and morphisms of C-algebras. See [For91].

There is an algebraic version of the above statement as well. Given an (irreducible) algebraic
curve in projective space over an algebraically closed field k (e.g. the complex numbers), one can
consider its “field of rational functions:” basically, functions that look like quotients of polynomials,
where the denominator does not identically vanish on the curve. There is a similar anti-equivalence
of categories between smooth projective curves and non-constant morphisms of curves and finitely
generated extensions of k of transcendence degree one. See [Har77].
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5.1 Linearly Disjoint Field Extensions

Let k be a field, K and L field extensions of k. Suppose also that K and L are embedded in some
larger field Ω.

Definition 5.9 The compositum of K and L written KL is k(K ∪ L) = L(K) = K(L).

Definition 5.10 K and L are said to be linearly disjoint over k if the following map is injective:

θ : K ⊗k L→ KL (2.3)

defined by x⊗ y 7→ xy.
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lications Mathématiques de l’IHÉS.
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