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Chapter 8

Unique factorization and the class group

Commutative rings in general do not admit unique factorization. Nonetheless, for many rings
(“integrally closed” rings), which includes the affine coordinate rings one obtains in algebraic
geometry when one studies smooth varieties, there is an invariant called the “class group” that
measures the failure of unique factorization. This “class group” is a certain quotient of codimension
one primes (geometrically, codimension one subvarieties) modulo rational equivalence.

Many even nicer rings have the convenient property that their localizations at prime ideals
factorial, a key example being the coordinate ring of an affine nonsingular variety. For these even
nicer rings, an alternative method of defining the class group can be given: the class group corre-
sponds to the group of isomorphism classes of invertible modules. Geometrically, such invertible
modules are line bundles on the associated variety (or scheme).

§1 Unique factorization

1.1 Definition

We begin with the nicest of all possible cases, when the ring itself admits unique factorization.
Let R be a domain.

Definition 1.1 A nonzero element x ∈ R is prime if (x) is a prime ideal.

In other words, x is not a unit, and if x | ab, then either x | a or x | b.
We restate the earlier ?? slightly.

Definition 1.2 A domain R is factorial (or a unique factorization domain, or a UFD) if
every nonzero noninvertible element x ∈ R factors as a product x1 . . . xn where each xi is prime.

Recall that a principal ideal domain is a UFD (??), as is a euclidean domain (??); actually,
a euclidean domain is a PID. Previously, we imposed something seemingly slightly stronger: that
the factorization be unique. We next show that we get that for free.

Proposition 1.3 (The fundamental theorem of arithmetic) This factorization is essentially
unique, that is, up to multiplication by units.

Proof. Let x ∈ R be a nonunit. Say x = x1 . . . xn = y1 . . . ym were two different prime factoriza-
tions. Then m,n > 0.

We have that x1 | y1 . . . ym, so x1 | yi for some i. But yi is prime. So x1 and yi differ by a unit.
By removing each of these, we can get a smaller set of nonunique factorizations. Namely, we find
that

x2 . . . xn = y1 . . . ŷi . . . ym

and then we can induct on the number of factors. N
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The motivating example is of course:

Example 1.4 Z is factorial. This is the fundamental theorem of arithmetic, and follows because
Z is a euclidean domain. The same observation applies to a polynomial ring over a field by ??.

1.2 Gauss’s lemma

We now show that factorial rings are closed under the operation of forming polynomial rings.

Theorem 1.5 (Gauss’s lemma) If R is factorial, so is the polynomial ring R[X].

In general, if R is a PID, R[X] will not be a PID. For instance, Z[X] is not a PID: the prime ideal
(2, X) is not principal.

Proof. In the course of this proof, we shall identify the prime elements in R[X]. We start with a
lemma that allows us to compare factorizations in K[X] (for K the quotient field) and R[X]; the
advantage is that we already know the polynomial ring over a field to be a UFD.

Lemma 1.6 Suppose R is a unique factorization domain with quotient field K. Suppose f ∈ R[X]
is irreducible in R[X] and there is no nontrivial common divisor of the coefficients of f . Then f
is irreducible in K[X].

With this in mind, we say that a polynomial in R[X] is primitive if the coefficients have no
common divisor in R.

Proof. Indeed, suppose we had a factorization

f = gh, g, h ∈ K[X],

where g, h have degree ≥ 1. Then we can clear denominators to find a factorization

rf = g′h′

where r ∈ R − {0} and g′, h′ ∈ R[X]. By clearing denominators as little as possible, we may
assume that g′, h′ are primitive. To be precise, we divide g′, h′ by their contents. Let us define:

Definition 1.7 The content Cont(f) of a polynomial f ∈ R[X] is the greatest common divisor
of its coefficients. The content of an element f in K[X] is defined by considering r ∈ R such that
rf ∈ R[X], and taking Cont(rf)/r. This is well-defined, modulo elements of R∗, and we have
Cont(sf) = sCont f if s ∈ K.

To say that the content lies in R is to say that the polynomial is in R[X]; to say that the
content is a unit is to say that the polynomial is primitive. Note that a monic polynomial in R[X]
is primitive.

So we have:

Lemma 1.8 Any element of K[X] is a product of Cont(f) and something primitive in R[X].

Proof. Indeed, f/Cont(f) has content a unit. It therefore cannot have anything in the denomi-
nator. Indeed, if it had a term r/piXn where r, p ∈ R and p - r is prime, then the content would
divide r/pi. It thus could not be in R. N

Lemma 1.9 Cont(fg) = Cont(f) Cont(g) if f, g ∈ K[X].
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Proof. By dividing f, g by their contents, it suffices to show that the product of two primitive
polynomials in R[X] (i.e. those with no common divisor of all their coefficients) is itself primitive.
Indeed, suppose f, g are primitive and p ∈ R is a prime. Then f, g ∈ R/(p)[X] are nonzero. Their
product fg is also not zero because R/(p)[X] is a domain, p being prime. In particular, p is not a
common factor of the coefficients of fg. Since p was arbitrary, this completes the proof. N

So return to the main proof. We know that f = gh. We divided g, h by their contents to get
g′, h′ ∈ R[X]. We had then

rf = g′h′, r ∈ K∗.

Taking the contents, and using the fact that f, g′, h′ are primitive, we have then:

r = Cont(g′) Cont(h′) = 1 (modulo R∗).

But then f = r−1g′h′ shows that f is not irreducible in R[X], contradiction. N

Let R be a ring. Recall that an element is irreducible if it admits no nontrivial factorization.
The product of an irreducible element and a unit is irreducible. Call a ring finitely irreducible
if every element in the ring admits a factorization into finitely many irreducible elements.

Lemma 1.10 A ring R is finitely irreducible if every ascending sequence of principal ideals in R
stabilizes.

A ring such that every ascending sequence of ideals (not necessarily principal) stabilizes is said to
be noetherian; this is a highly useful finiteness condition on a ring.

Proof. Suppose R satisfies the ascending chain condition on principal ideals. Then let x ∈ R. We
would like to show it can be factored as a product of irreducibles. So suppose x is not the product
of finitely many irreducibles. In particular, it is reducible: x = x1x

′
1, where neither factor is a unit.

One of this cannot be written as a finite product of irreducibles. Say it is x1. Similarly, we can
write x1 = x2x

′′
2 where one of the factors, wlog x2, is not the product of finitely many irreducibles.

Repeating inductively gives the ascending sequence

(x) ⊂ (x1) ⊂ (x2) ⊂ . . . ,

and since each factorization is nontrivial, the inclusions are each nontrivial. This is a contradic-
tion. N

Lemma 1.11 Suppose R is a UFD. Then every ascending sequence of principal ideals in R[X]
stabilizes. In particular, R[X] is finitely irreducible.

Proof. Suppose (f1) ⊂ (f2) ⊂ · · · ∈ R[X]. Then each fi+1 | fi. In particular, the degrees of fi
are nonincreasing, and consequently stabilize. Thus for i� 0, we have deg fi+1 = deg fi. We can
thus assume that all the degrees are the same. In this case, if i � 0 and k > 0, fi/fi+k ∈ R[X]
must actually lie in R as R is a domain. In particular, throwing out the first few elements in the
sequence if necessary, it follows that our sequence looks like

f, f/r1, f/(r1r2), . . .

where the ri ∈ R. However, we can only continue this a finite amount of time before the ri’s will
have to become units since R is a UFD. (Or f = 0.) So the sequence of ideals stabilizes. N

Lemma 1.12 Every element in R[X] can be factored into a product of irreducibles.

Proof. Now evident from the preceding lemmata. N
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Suppose P is an irreducible element in R[X]. I claim that P is prime. There are two cases:

1. P ∈ R is a prime in R. Then we know that P | f if and only if the coefficients of f are
divisible by P . In particular, P | f iff P | Cont(f). It is now clear that P | fg if and only if
P divides one of Cont(f),Cont(g) (since Cont(fg) = Cont(f) Cont(g)).

2. P does not belong to R. Then P must have content a unit or it would be divisible by its
content. So P is irreducible in K[X] by the above reasoning.

Say we have an expression
P | fg, f, g ∈ R[X].

Since P is irreducible, hence prime, in the UFD (even PID) K[X], we have that P divides
one of f, g in K[X]. Say we can write

f = qP, q ∈ K[X].

Then taking the content shows that Cont(q) = Cont(f) ∈ R, so q ∈ R[X]. It follows that
P | f in R[X].

We have shown that every element in R[X] factors into a product of prime elements. From
this, it is clear that R[X] is a UFD. N

Corollary 1.13 The polynomial ring k[X1, . . . , Xn] for k a field is factorial.

Proof. Induction on n. N

1.3 Factoriality and height one primes

We now want to give a fancier criterion for a ring to be a UFD, in terms of the lattice structure
on SpecR. This will require a notion from dimension theory (to be developed more fully later).

Definition 1.14 Let R be a domain. A prime ideal p ⊂ R is said to be of height one if p is
minimal among ideals containing x for some nonzero x ∈ R.

So a prime of height one is not the zero prime, but it is as close to zero as possible, in some sense.
When we later talk about dimension theory, we will talk about primes of any height. In a sense,
p is “almost” generated by one element.

Theorem 1.15 Let R be a noetherian domain. The following are equivalent:

1. R is factorial.

2. Every height one prime is principal.

Proof. Let’s first show 1) implies 2). Assume R is factorial and p is height one, minimal containing
(x) for some x 6= 0 ∈ R. Then x is a nonunit, and it is nonzero, so it has a prime factorization

x = x1 . . . xn, each xi prime.

Some xi ∈ p because p is prime. In particular,

p ⊃ (xi) ⊃ (x).

But (xi) is prime itself, and it contains (x). The minimality of p says that p = (xi).
Conversely, suppose every height one prime is principal. Let x ∈ R be nonzero and a nonunit.

We want to factor x as a product of primes. Consider the ideal (x) ( R. As a result, (x) is
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contained in a prime ideal. Since R is noetherian, there is a minimal prime ideal p containing (x).
Then p, being a height one prime, is principal—say p = (x1). It follows that x1 | x and x1 is prime.
Say

x = x1x
′
1.

If x′1 is a nonunit, repeat this process to get x′1 = x2x
′
2 with x2 a prime element. Keep going;

inductively we have

xk = xk+1x
′
k+1.

If this process stops, with one of the x′k a unit, we get a prime factorization of x. Suppose the
process continues forever. Then we would have

(x) ( (x′1) ( (x′2) ( (x′3) ( . . . ,

which is impossible by noetherianness. N

We have seen that unique factorization can be formulated in terms of prime ideals.

1.4 Factoriality and normality

We next state a generalization of the “rational root theorem” as in high school algebra.

Proposition 1.16 A factorial domain is integrally closed.

Proof. TO BE ADDED: proof – may be in the queue already N

§2 Weil divisors

2.1 Definition

We start by discussing Weil divisors.

Definition 2.1 A Weil divisor for R is a formal linear combination
∑
ni[pi] where the pi range

over height one primes of R. So the group of Weil divisors is the free abelian group on the height
one primes of R. We denote this group by Weil(R).

The geometric picture behind Weil divisors is that a Weil divisor is like a hypersurface: a
subvariety of codimension one.

2.2 Valuations

2.3 Nagata’s lemma

We finish with a fun application of the exact sequence of Weil divisors to a purely algebraic
statement about factoriality.

Lemma 2.2 Let A be a normal noetherian domain.

Theorem 2.3 Let A be a noetherian domain, x ∈ A − {0}. Suppose (x) is prime and Ax is
factorial. Then A is factorial.
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Proof. We first show that A is normal (hence regular in codimension one). Indeed, Ax is normal.
So if t ∈ K(A) is integral over A, it lies in Ax. So we need to check that if a/xn ∈ Ax is integral
over A and x - x, then n = 0. Suppose we had an equation

(a/xn)N + b1(a/xn)N−1 + · · ·+ bN = 0.

Multiplying both sides by xnN gives that

aN ∈ xR,

so x | a by primality.
Now we use the exact sequence

(x)→ Cl(A)→ Cl(Ax)→ 0.

The end is zero, and the image of the first map is zero. So Cl(A) = 0. Thus A is a UFD. N

§3 Locally factorial domains

3.1 Definition

Definition 3.1 A noetherian domain R is said to be locally factorial if Rp is factorial for each
p prime.

Example 3.2 The coordinate ring C[x1, . . . , xn/I of an algebraic variety is locally factorial if the
variety is smooth. We may talk about this later.

Example 3.3 (Nonexample) Let R be C[A,B,C,D]/(AD − BC). The spectrum of R has
maximal ideals consisting of 2-by-2 matrices of determinant zero. This variety is very singular at
the origin. It is not even locally factorial at the origin.

The failure of unique factorization comes from the fact that

AD = BC

in this ring R. This is a prototypical example of a ring without unique factorization. The reason
has to do with the fact that the variety has a singularity at the origin.

3.2 The Picard group

Definition 3.4 Let R be a commutative ring. An R-module I is invertible if there exists J such
that

I ⊗R J ' R.

Invertibility is with respect to the tensor product.

Remark In topology, one is often interested in classifying vector bundles on spaces. In algebraic
geometry, a module M over a ring R gives (as in ??) a sheaf of abelian groups over the topological
space SpecR; this is supposed to be an analogy with the theory of vector bundles. (It is not so
implausible since the Serre-Swan theorem (??) gives an equivalence of categories between the vector
bundles over a compact space X and the projective modules over the ring C(X) of continuous
functions.) In this analogy, the invertible modules are the line bundles. The definition has a
counterpart in the topological setting: for instance, a vector bundle E → X over a space X is a
line bundle (that is, of rank one) if and only if there is a vector bundle E ′ → X such that E ⊗ E ′
is the trivial bundle X × R.

8
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There are many equivalent characterizations.

Proposition 3.5 Let R be a ring, I an R-module. TFAE:

1. I is invertible.

2. I is finitely generated and Ip ' Rp for all primes p ⊂ R.

3. I is finitely generated and there exist a1, . . . , an ∈ R which generate (1) in R such that

I[a−1i ] ' R[a−1i ].

Proof. First, we show that if I is invertible, then I is finitely generated. Suppose I ⊗R J ' R.
This means that 1 ∈ R corresponds to an element∑

ik ⊗ jk ∈ I ⊗R J.

Thus, there exists a finitely generated submodule I0 ⊂ I such that the map I0 ⊗ J → I ⊗ J is
surjective. Tensor this with I, so we get a surjection

I0 ' I0 ⊗ J ⊗ I → I ⊗ J ⊗ I ' I

which leads to a surjection I0 � I. This implies that I is finitely generated
Step 1: 1 implies 2. We now show 1 implies 2. Note that if I is invertible, then I ⊗R R′ is

an invertible R′ module for any R-algebra R′; to get an inverse of I ⊗R R′, tensor the inverse of I
with R′. In particular, Ip is an invertible Rp-module for each p. As a result,

Ip/pIp

is invertible over the field Rp/pRp. This means that Ip/pIp is a one-dimensional vector space over
the residue field. (The invertible modules over a vector space are the one-dimensional spaces.)
Choose an element x ∈ Ip which generates Ip/pIp. Since Ip is finitely generated, Nakayama’s
lemma shows that x generates Ip.

We get a surjection α : Rp � Ip carrying 1→ x. We claim that this map is injective. This will
imply that Ip is free of rank 1. So, let J be an inverse of I among R-modules, so that I ⊗R J = R;
the same argument as above provides a surjection β : Rp → Jp. Then β′ = β ⊗ 1Ip : Ip → Rp is
also a surjection. Composing, we get a surjective map

Rp
α
� Ip

β′

� Rp

whose composite must be multiplication by a unit, since the ring is local. Thus the composite is
injective and α is injective. It follows that α is an isomorphism, so that Ip is free of rank one.

Step 2: 2 implies 3. Now we show 2 implies 3. Suppose I is finitely generated with generators
{x1, . . . , xn} ⊂ I and Ip ' Rp for all p. Then for each p, we can choose an element x of Ip generating
Ip as Rp-module. By multiplying by the denominator, we can assume that x ∈ I. By assumption,
we can then find ai, si ∈ R with

sixi = aix ∈ R

for some si /∈ p as x generates Ip. This means that x generates I after inverting the si. It follows
that I[1/a] = R[1/a] where a =

∏
si /∈ p. In particular, we find that there is an open covering

{SpecR[1/ap]} of SpecR (where ap /∈ p) on which I is isomorphic to R. To say that these cover
SpecR is to say that the ap generate 1.

9



CRing Project, Chapter 8

Finally, let’s do the implication 3 implies 1. Assume that we have the situation of I[1/ai] '
R[1/ai]. We want to show that I is invertible. We start by showing that I is finitely presented.
This means that there is an exact sequence

Rm → Rn → I → 0,

i.e. I is the cokernel of a map between free modules of finite rank. To see this, first, we’ve assumed
that I is finitely generated. So there is a surjection

Rn � I

with a kernel K � Rn. We must show that K is finitely generated. Localization is an exact
functor, so K[1/ai] is the kernel of R[1/ai]

n → I[1/ai]. However, we have an exact sequence

K[1/ai]� R[1/ai]
n � R[1/ai]

by the assumed isomorphism I[1/ai] ' R[1/ai]. But since a free module is projective, this sequence
splits and we find that K[1/ai] is finitely generated. If it’s finitely generated, it’s generated by
finitely many elements in K. As a result, we find that there is a map

RN → K

such that the localization to SpecR[1/ai] is surjective. This implies by the homework that RN → K
is surjective.1 Thus K is finitely generated.

In any case, we have shown that the module I is finitely presented. Define J = HomR(I,R)
as the candidate for its dual. This construction is compatible with localization. We can choose a
finite presentation Rm → Rn → I → 0, which leads to a sequence

0→ J → Hom(Rn, R)→ Hom(Rm, R).

It follows that the formation of J commutes with localization. In particular, this argument shows
that

J [1/a] = HomR[1/a](I[1/a], R[1/a]).

One can check this by using the description of J . By construction, there is a canonical map
I ⊗ J → R. I claim that this map is invertible.

For the proof, we use the fact that one can check for an isomorphism locally. It suffices to show
that

I[1/a]⊗ J [1/a]→ R[1/a]

is an isomorphism for some collection of a’s that generate the unit ideal. However, we have
a1, . . . , an that generate the unit ideal such that I[1/ai] is free of rank 1, hence so is J [1/ai]. It
thus follows that I[1/ai]⊗ J [1/ai] is an isomorphism. N

Definition 3.6 Let R be a commutative ring. We define the Picard group Pic(R) to be the
set of isomorphism classes of invertible R-modules. This is an abelian group; the addition law is
defined so that the sum of the classes represented by M,N is M ⊗R N . The identity element is
given by R.

The Picard group is thus analogous (cf. ??) to the set of isomorphism classes of line bundles on
a topological space (which is also an abelian group). While the latter can often be easily computed
(for a nice space X, the line bundles are classified by elements of H2(X,Z)), the interpretation in
the algebraic setting is more difficult.

1To check that a map is surjective, just check at the localizations at any maximal ideal.
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3.3 Cartier divisors

Assume furthermore that R is a domain. We now introduce:

Definition 3.7 A Cartier divisor for R is a submodule M ⊂ K(R) such that M is invertible.

In other words, a Cartier divisor is an invertible fractional ideal. Alternatively, it is an invertible R-
module M with a nonzero map M → K(R). Once this map is nonzero, it is automatically
injective, since injectivity can be checked at the localizations, and any module-homomorphism
from a domain into its quotient field is either zero or injective (because it is multiplication by some
element).

We now make this into a group.

Definition 3.8 Given (M,a : M ↪→ K(R)) and (N, b : N ↪→ K(R)), we define the sum to be

(M ⊗N, a⊗ b : M ⊗N ↪→ K(R)).

The map a⊗ b is nonzero, so by what was said above, it is an injection. Thus the Cartier divisors
from an abelian group Cart(R).

By assumption, there is a homomorphism

Cart(R)→ Pic(R)

mapping (M,M ↪→ K(R))→M .

Proposition 3.9 The map Cart(R) → Pic(R) is surjective. In other words, any invertible R-
module can be embedded in K(R).

Proof. Let M be an invertible R-module. Indeed, we know that M(0) = M⊗RK(R) is an invertible
K(R)-module, so a one-dimensional vector space over K(R). In particular, M(0) ' K(R). There
is a nonzero homomorphic map

M →M(0) ' K(R),

which is automatically injective by the discussion above. N

What is the kernel of Cart(R)→ Pic(R)? This is the set of Cartier divisors which are isomorphic
to R itself. In other words, it is the set of (R,R ↪→ K(R)). This data is the same thing as the
data of a nonzero element of K(R). So the kernel of

Cart(R)→ Pic(R)

has kernel isomorphic to K(R)∗. We have a short exact sequence

K(R)∗ → Cart(R)→ Pic(R)→ 0.

3.4 Weil divisors and Cartier divisors

Now, we want to assume Cart(R) if R is “good.” The “goodness” in question is to assume that
R is locally factorial, i.e. that Rp is factorial for each p. This is true, for instance, if R is the
coordinate ring of a smooth algebraic variety.

Proposition 3.10 If R is locally factorial and noetherian, then the group Cart(R) is a free abelian
group. The generators are in bijection with the height one primes of R.

11



CRing Project, Chapter 8

Now assume that R is a locally factorial, noetherian domain. We shall produce an isomorphism

Weil(R) ' Cart(R)

that sends [pi] to that height one prime pi together with the imbedding pi ↪→ R→ K(R).
We first check that this is well-defined. Since Weil(R) is free, all we have to do is check that

each pi is a legitimate Cartier divisor. In other words, we need to show that:

Proposition 3.11 If p ⊂ R is a height one prime and R locally factorial, then p is invertible.

Proof. In the last lecture, we gave a criterion for invertibility: namely, being locally trivial. We
have to show that for any prime q, we have that pq is isomorphic to Rq. If p 6⊂ q, then pq is the
entire ring Rq, so this is obvious. Conversely, suppose p ⊂ q. Then pq is a height one prime of Rq:
it is minimal over some element in Rq.

Thus pq is principal, in particular free of rank one, since Rq is factorial. We saw last time that
being factorial is equivalent to the principalness of height one primes. N

We need to define the inverse map

Cart(R)→Weil(R).

In order to do this, start with a Cartier divisor (M,M ↪→ K(R)). We then have to describe which
coefficient to assign a height one prime. To do this, we use a local criterion.

Let’s first digress a bit. Consider a locally factorial domain R and a prime p of height one.
Then Rp is factorial. In particular, its maximal ideal pRp is height one, so principal. It is the
principal ideal generated by some t ∈ Rp. Now we show:

Proposition 3.12 Every nonzero ideal in Rp is of the form (tn) for some unique n ≥ 0.

Proof. Let I0 ⊂ Rp be nonzero. If I0 = Rp, then we’re done—it’s generated by t0. Otherwise,
I0 ( Rp, so contained in pRp = (t). So let I1 = {x ∈ Rp : tx ∈ I0}. Thus

I1 = t−1I0.

I claim now that I1 6= I0, i.e. that there exists x ∈ Rp such that x /∈ I0 but tx ∈ I0. The proof
comes from the theory of associated primes. Look at Rp/I0; it has at least one associated prime
as it is nonzero.

Since it is a torsion module, this associated prime must be pRp since the only primes in Rp are
(0) and (t), which we have not yet shown. So there exists an element in the quotient R/I0
whose annihilator is precisely (t). Lifting this gives an element in R which when multiplied by (t)
is in I0 but which is not in I0. So I0 ( I1.

Proceed as before now. Define I2 = {x ∈ Rp : tx ∈ I1}. This process must halt since we have
assumed noetherianness. We must have Im = Im+1 for some m, which would imply that some
Im = Rp by the above argument. It then follows that I0 = (tm) since each Ii is just tIi+1. N

We thus have a good structure theory for ideals in R localized at a height one prime. Let us
make a more general claim.

Proposition 3.13 Every nonzero finitely generated Rp-submodule of the fraction field K(R) is of
the form (tn) for some n ∈ Z.

Proof. Say that M ⊂ K(R) is such a submodule. Let I = {x ∈ Rp, xM ⊂ Rp}. Then I 6= 0 as M
is finitely generated M is generated over Rp by a finite number of fractions ai/bi, bi ∈ R. Then
the product b =

∏
bi brings M into Rp.

We know that I = (tm) for some m. In particular, tmM is an ideal in R. In particular,

tmM = tpR N

for some p, in particular M = tp−mR.

12
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Now let’s go back to the main discussion. R is a noetherian locally factorial domain; we want
to construct a map

Cart(R)→Weil(R).

Given (M,M ↪→ K(R)) with M invertible, we want to define a formal sum
∑
ni[pi]. For every

height one prime p, let us look at the local ring Rp with maximal ideal generated by some tp ∈ Rp.
Now Mp ⊂ K(R) is a finitely generated Rp-submodule, so generated by some t

np
p . So we map

(M,M ↪→ K(R)) to ∑
p

np[p].

First, we have to check that this is well-defined. In particular, we have to show:

Proposition 3.14 For almost all height one p, we have Mp = Rp. In other words, the integers
np are almost all zero.

Proof. We can always assume that M is actually an ideal. Indeed, choose a ∈ R with aM = I ⊂ R.
As Cartier divisors, we have M = I − (a). If we prove the result for I and (a), then we will have
proved it for M (note that the np’s are additive invariants2). So because of this additivity, it is
sufficient to prove the proposition for actual (i.e. nonfractional) ideals.

Assume thus that M ⊂ R. All of these np associated to M are at least zero because M is
actually an ideal. What we want is that np ≤ 0 for almost all p. In other words, we must show
that

Mp ⊃ Rp almost all p.

To do this, just choose any x ∈M − 0. There are finitely many minimal primes containing (x) (by
primary decomposition applied to R/(x)). Every other height one prime q does not contain (x).3

This states that Mq ⊃ x/x = 1, so Mq ⊃ Rq.
The key claim we’ve used in this proof is the following. If q is a height one prime in a domain

R containing some nonzero element (x), then q is minimal among primes containing (x). In other
words, we can test the height one condition at any nonzero element in that prime. Alternatively:

Lemma 3.15 There are no nontrivial containments among height one primes.

Anyway, we have constructed maps between Cart(R) and Weil(R). The map Cart(R) →
Weil(R) takes M →

∑
np[p]. The other map Weil(R) → Cart(R) takes [p] → p ⊂ K(R). The

composition Weil(R) →Weil(R) is the identity. Why is that? Start with a prime p; that goes to
the Cartier divisor p. Then we need to finitely generatedre the multiplicities at other height one
primes. But if p is height one and q is a height one prime, then if p 6= q the lack of nontrivial
containment relations implies that the multiplicity of p at q is zero. We have shown that

Weil(R)→ Cart(R)→Weil(R)

is the identity.
Now we have to show that Cart(R) → Weil(R) is injective. Say we have a Cartier divisor

(M,M ↪→ K(R)) that maps to zero in Weil(R), i.e. all its multiplicities np are zero at height one
primes. We show that M = R.

First, assume M ⊂ R. It is sufficient to show that at any maximal ideal m ⊂ R, we have

Mm = Rm.

What can we say? Well, Mm is principal as M is invertible, being a Cartier divisor. Let it be
generated by x ∈ Rm; suppose x is a nonunit (or we’re already done). But Rm is factorial, so

2To see this, localize at p—then if M is generated by ta, N generated by tb, then M ⊗N is generated by ta+b.
3Again, we’re using something about height one primes not proved yet.

13
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x = x1 . . . xn for each xi prime. If n > 0, then however M has nonzero multiplicity at the prime
ideal (xi) ⊂ Rm. This is a contradiction.

The general case of M not really a subset of R can be handled similarly: then the generating
element x might lie in the fraction field. So x, if it is not a unit in R, is a product of some primes
in the numerator and some primes in the denominator. The nonzero primes that occur lead to
nonzero multiplicities.

3.5 Recap and a loose end

Last time, it was claimed that if R is a locally factorial domain, and p ⊂ R is of height one, then
every prime ideal of Rp is either maximal or zero. This follows from general dimension theory.
This is equivalent to the following general claim about height one primes:

There are no nontrivial inclusions among height one primes for R a locally factorial
domain.

Proof. Suppose q ( p is an inclusion of height one primes.

Replace R by Rp. Then R is local with some maximal ideal m, which is principal with some
generator x. Then we have an inclusion

0 ⊂ q ⊂ m.

This inclusion is proper. However, q is principal since it is height one in the factorial ring Rp.
This cannot be since every element is a power of x times a unit. (Alright, this wasn’t live TEXed
well.) N

Last time, we were talking about Weil(R) and Cart(R) for R a locally factorial noetherian
domain.

1. Weil(R) is free on the height one primes.

2. Cart(R) is the group of invertible submodules of K(R).

We produced an isomorphism

Weil(R) ' Cart(R).

Remark Geometrically, what is this? Suppose R = C[X1, . . . , Xn]/I for some ideal I. Then the
maximal ideals, or closed points in SpecR, are certain points in Cn; they form an irreducible variety
if R is a domain. The locally factorial condition is satisfied, for instance, if the variety is smooth. In
this case, the Weil divisors correspond to sums of irreducible varieties of codimension one—which
correspond to the primes of height one. The Weil divisors are free on the set of irreducible varieties
of codimension one.

The Cartier divisors can be thought of as “linear combinations” of subvarieties which are locally
defined by one equation. It is natural to assume that the condition of being defined by one equation
corresponds to being codimension one. This is true by the condition of R locally factorial.

In general, we can always construct a map

Cart(R)→Weil(R),

but it is not necessarily an isomorphism.

14
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3.6 Further remarks on Weil(R) and Cart(R)

Recall that the Cartier group fits in an exact sequence:

K(R)∗ → Cart(R)→ Pic(R)→ 0,

because every element of Cart(R) determines its isomorphism class, and every element of K(R)∗

determines a free module of rank one. Contrary to what was stated last time, it is not true
that exactness holds on the right. In fact, the kernel is the group R∗ of units of R. So the exact
sequence runs

0→ R∗ → K(R)∗ → Cart(R)→ Pic(R)→ 0.

This is true for any domain R. For R locally factorial and noetherian, we know that Cart(R) '
Weil(R), though.

We can think of this as a generalization of unique factorization.

Proposition 3.16 R is factorial if and only if R is locally factorial and Pic(R) = 0.

Proof. Assume R is locally factorial and Pic(R) = 0. Then every prime ideal of height one
(an element of Weil(R), hence of Cart(R)) is principal, which implies that R is factorial. And
conversely. N

In general, we can think of the exact sequence above as a form of unique factorization for a
locally factorial domain: any invertible fractional ideal is a product of height one prime ideals.

Let us now give an example. TO BE ADDED: ?
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Reinie Erné, Oxford Science Publications.

[LR08] T. Y. Lam and Manuel L. Reyes. A prime ideal principle in commutative algebra. J.
Algebra, 319(7):3006–3027, 2008.

[Mar02] David Marker. Model theory, volume 217 of Graduate Texts in Mathematics. Springer-
Verlag, New York, 2002. An introduction.

[Mat80] Hideyuki Matsumura. Commutative algebra, volume 56 of Mathematics Lecture Note
Series. Benjamin/Cummings Publishing Co., Inc., Reading, Mass., second edition, 1980.

[McC76] John McCabe. A note on Zariski’s lemma. The American Mathematical Monthly,
83(7):560–561, 1976.

[Mil80] James S. Milne. Étale cohomology, volume 33 of Princeton Mathematical Series. Prince-
ton University Press, Princeton, N.J., 1980.

[ML98] Saunders Mac Lane. Categories for the working mathematician, volume 5 of Graduate
Texts in Mathematics. Springer-Verlag, New York, second edition, 1998.
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de “platification” d’un module. Invent. Math., 13:1–89, 1971.
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