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Chapter 17

Étale, unramified, and smooth morphisms

In this chapter, we shall introduce three classes of morphisms of rings defined by lifting properties
and study their properties. Although in the case of morphisms of finite presentation, the three types
of morphisms (unramified, smooth, and étale) can be defined directly (without lifting properties),
in practice, in algebraic geometry, the functorial criterion given by lifts matter: if one wants to
show an algebra is representable, then one can just study the corepresentable functor, which may
be more accessible.

§1 Unramified morphisms

1.1 Definition

Formal étaleness, smoothness, and unramifiedness all deal with the existence or uniqueness of
liftings under nilpotent extensions. We start with formal unramifiedness.

Definition 1.1 Let R→ S be a ring map. We say S is formally unramified over R if for every
commutative solid diagram

S //

!!B
B

B
B A/I

R //

OO

A

OO
(17.1)

where I ⊂ A is an ideal of square zero, there exists at most one dotted arrow making the diagram
commute.

We say that S is unramified over R if S is formally unramified over R and is a finitely
generated R-algebra.

In other words, an R-algebra S is formally unramified if and only if whenever A is an R-algebra
and I ⊂ A an ideal of square zero, the map of sets

HomR(S,A)→ HomR(S,A/I)

is injective. Restated again, for such A, I, there is at most one lift of a given R-homomorphism
S → A/I to S → A. This is a statement purely about the associated “functor of points.” Namely,
let S be an R-algebra, and consider the functor F : R–alg→ Sets given by F (X) = HomR(S,X).
This is the “functor of points.” Then S is formally unramified over R if F (A)→ F (A/I) is injective
for each A, I as above.

The intuition is that maps from S into T are like “tangent vectors,” and consequently the
condition geometrically means something like that tangent vectors can be lifted uniquely: that is,
the associated map is an immersion. More formally, if R → S is a morphism of algebras of finite
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type over C, which corresponds to a map SpecS → SpecR of smooth varieties (this is a condition
on R,S!), then R→ S is unramified if and only if the associated map of complex manifolds is an
immersion. (We are not proving this, just stating it for intuition.)

Note also that we can replace “I of square zero” with the weaker condition “I nilpotent.” That
is, the map R → S (if it is formally unramified) still has the same lifting property. This follows
because one can factor A → A/I into the finite sequence · · · → A/In+1 → A/In → · · · → A/I,
and each step is a square-zero extension.

We now show that the module of Kähler differentials provides a simple criterion for an extension
to be formally unramified.

Proposition 1.2 An R-algebra S is formally unramified if and only if ΩS/R = 0.

Suppose R,S are both algebras over some smaller ring k. Then there is an exact sequence

ΩR/k ⊗R S → ΩS/k → ΩS/R → 0,

and consequently, we see that formal unramifiedness corresponds to surjectivity of the map on
“cotangent spaces” ΩR/k ⊗R S → ΩS/k. This is part of the intuition that formally unramified
maps are geometrically like immersions (since surjectivity on the cotangent spaces corresponds to
injectivity on the tangent spaces).

Proof. Suppose first ΩS/R = 0. This is equivalent to the statement that any R-derivation of S
into an S-module is trivial, because ΩS/R is the recipient of the “universal” R-derivation. If given
an R-algebra T with an ideal I ⊂ T of square zero and a morphism

S → T/I, N

and two liftings f, g : S → T , then we find that f − g maps S into I. Since T/I is naturally an
S-algebra, it is easy to see (since I has square zero) that I is naturally an S-module and f − g is
an R-derivation S → I. Thus f − g ≡ 0 and f = g.

Conversely, suppose S has the property that liftings in (17.1) are unique. Consider the S-
module T = S ⊕ ΩS/R with the multiplicative structure (a, a′)(b, b′) = (ab, ab′ + a′b) that makes
it into an algebra. (This is a general construction one can do with an S-module M : S ⊕M is an
algebra where M becomes an ideal of square zero.)

Consider the ideal ΩS/R ⊂ T , which has square zero; the quotient is S. We will find two liftings
of the identity S → S. For the first, define S → T sending s → (s, 0). For the second, define
S → T sending s→ (s, ds); the derivation property of b shows that this is a morphism of algebras.

By the lifting property, the two morphisms S → T are equal. In particular, the map S → ΩS/R
sending s→ ds is trivial. This implies that ΩS/R = 0.

Here is the essential point of the above argument. Let I ⊂ T be an ideal of square zero in
the R-algebra T . Suppose given a homomorphism g : S → T/I. Then the set of lifts S → T
of g (which are R-algebra morphisms) is either empty or a torsor over DerR(S, I) (by adding a
derivation to a homomorphism). Note that I is naturally a T/I-module (because I2 = 0), and
hence an S-module by g.

This means that if the object DerR(S, I) is trivial, then injectivity of the above map must hold.
Conversely, if injectivity of the above map always holds (i.e. S is formally unramified), then we
must have DerR(S, I) = 0 for all such I ⊂ T ; since we can obtain any S-module in this manner, it
follows that there is no such thing as a nontrivial R-derivation out of S.

We next show that formal unramifiedness is a local property.

Lemma 1.3 Let R→ S be a ring map. The following are equivalent:

1. R→ S is formally unramified,
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2. R→ Sq is formally unramified for all primes q of S, and

3. Rp → Sq is formally unramified for all primes q of S with p = R ∩ q.

Proof. We have seen in Proposition 1.2 that (1) is equivalent to ΩS/R = 0. Similarly, since Kähler
differentials localize, we see that (2) and (3) are equivalent to (ΩS/R)q = 0 for all q. As a result,
the statement of this lemma is simply the fact that an S-module is zero if and only if all its
localizations at prime ideals are zero. N

We shall now give the typical list of properties (“le sorite”) of unramified morphisms.

Proposition 1.4 Any map R→ Rf for f ∈ R is unramified. More generally, a map from a ring
to any localization is formally unramified, but not necessarily unramified.

Proof. Indeed, we know that ΩR/R = 0 and ΩRf/R = (ΩR/R)f = 0, and the map is clearly of finite
type. N

Proposition 1.5 A surjection of rings is unramified. More generally, a categorical epimorphism
of rings is formally unramified.

Proof. Obvious from the lifting property: if R → S is a categorical epimorphism, then given any
R-algebra T , there can be at most one map of R-algebras S → T (regardless of anything involving
square-zero ideals). N

In the proof of Proposition 1.5, we could have alternatively argued as follows. If R → S
is an epimorphism in the category of rings, then S ⊗R S → S is an isomorphism. This is a
general categorical fact, the dual of which for monomorphisms is perhaps simpler: if X → Y is a
monomorphism of objects in any category, then X → X ×Y X is an isomorphism. See ??. By the
alternate construction of ΩS/R (??), it follows that this must vanish.

Proposition 1.6 If R→ S and S → T are unramified (resp. formally unramified), so is R→ T .

Proof. Since morphisms of finite type are preserved under composition, we only need to prove the
result about formally unramified maps. So let R→ S, S → T be formally unramified. We need to
check that ΩT/R = 0. However, we have an exact sequence (see ??):

ΩS/R ⊗S T → ΩT/R → ΩT/S → 0,

and since ΩS/R = 0,ΩT/S = 0, we find that ΩT/R = 0. This shows that R → T is formally
unramified. N

More elegantly, we could have proved this by using the lifting property (and this is what we will
do for formal étaleness and smoothness). Then this is simply a formal argument.

Proposition 1.7 If R → S is unramified (resp. formally unramified), so is R′ → S′ = S ⊗R R′
for any R-algebra R′.

Proof. This follows from the fact that ΩS′/R′ = ΩS/R ⊗S S′ (see ??). Alternatively, it can be
checked easily using the lifting criterion. For instance, suppose given an R′-algebra T and an ideal
I ⊂ T of square zero. We want to show that a morphism of R′-algebras S′ → T/I lifts in at most
one way to a map S′ → T . But if we had two distinct liftings, then we could restrict to S to get
two liftings of S → S′ → T/I. These are easily seen to be distinct, a contradiction as R→ S was
assumed formally unramified. N
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In fact, the question of what unramified morphisms look like can be reduced to the case where
the ground ring is a field in view of the previous and the following result. Given p ∈ SpecR, we
let k(p) to be the residue field of Rp.

Proposition 1.8 Let φ : R→ S be a morphism of finite type. Then φ is unramified if and only if
for every p ∈ SpecR, we have k(p)→ S ⊗R k(p) unramified.

The classification of unramified extensions of a field is very simple, so this will be useful.

Proof. One direction is clear by Proposition 1.7. For the other, suppose k(p)→ S⊗R k(p) unrami-
fied for all p ⊂ R. We then know that ΩS/R⊗R k(p) = ΩS⊗Rk(p)/k(p) = 0 for all p. By localization,
it follows that

pΩSq/Rp
= ΩSq/Rp

= ΩSq/R (17.2)

for any q ∈ SpecS lying over p.
Let q ∈ SpecS. We will now show that (ΩS/R)q = 0. Given this, we will find that ΩS/R = 0,

which will prove the assertion of the corollary. Indeed, let p ∈ SpecR be the image of q, so that
there is a local homomorphism Rp → Sq. By (17.2), we find that

qΩSq/R = ΩSq/R.

and since ΩSq/R is a finite Sq-module (??), Nakayama’s lemma now implies that ΩSq/R = 0,
proving what we wanted. N

The following is simply a combination of the various results proved:

Corollary 1.9 Let A→ B be a formally unramified ring map.

1. For S ⊂ A a multiplicative subset, S−1A→ S−1B is formally unramified.

2. For S ⊂ B a multiplicative subset, A→ S−1B is formally unramified.

1.2 Unramified extensions of a field

Motivated by Proposition 1.8, we classify unramified morphisms out of a field; we are going to see
that these are just finite products of separable extensions. Let us first consider the case when the
field is algebraically closed.

Proposition 1.10 Suppose k is algebraically closed. If A is an unramified k-algebra, then A is a
product of copies of k.

Proof. Let us show first that A is necessarily finite-dimensional. If not,
So let us now assume that A is finite-dimensional over k, hence artinian. Then A is a direct

product of artinian local k-algebras. Each of these is unramified over k. So we need to study what
local, artinian, unramified extensions of k look like; we shall show that any such is isomorphic to
k with:

Lemma 1.11 A finite-dimensional, local k-algebra which is unramified over k (for k algebraically
closed) is isomorphic to k.

Proof. First, if m ⊂ A is the maximal ideal, then m is nilpotent, and A/m ' k by the Hilbert
Nullstellensatz. Thus the ideal M = m ⊗ A + A ⊗ m ⊂ A ⊗k A is nilpotent and (A ⊗k A)/M =
k ⊗k k = k. In particular, M is maximal and A ⊗k A is also local. (We could see this as follows:
A is associated to a one-point variety, so the fibered product SpecA ×k SpecA is also associated
to a one-point variety. It really does matter that we are working over an algebraically closed field
here!)
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By assumption, ΩA/k = 0. So if I = ker(A ⊗k A → A), then I = I2. But from ??, we find
that if we had I 6= 0, then SpecA ⊗k A would be disconnected. This is clearly false (a local ring
has no nontrivial idempotents), so I = 0 and A ⊗k A ' A. Since A is finite-dimensional over k,
necessarily A ' k. N

Now let us drop the assumption of algebraic closedness to get:

Theorem 1.12 An unramified k-algebra for k any field is isomorphic to a product
∏
ki of finite

separable extensions ki of k.

Proof. Let k be a field, and k its algebraic closure. Let A be an unramified k-algebra. Then A⊗k k
is an unramified k-algebra by Proposition 1.7, so is a finite product of copies of k. It is thus natural
that we need to study tensor products of fields to understand this problem.

Lemma 1.13 Let E/k be a finite extension, and L/k any extension. If E/k is separable, then
L⊗k E is isomorphic (as a L-algebra) to a product of copies of separable extensions of L.

Proof. By the primitive element theorem, we have E = k(α) for some α ∈ E satisfying a separable
irreducible polynomial P ∈ k[X]. Thus

E = k[X]/(P ),

so
E ⊗k L = L[X]/(P ).

But P splits into several irreducible factors {Pi} in L[X], no two of which are the same by sepa-
rability. Thus by the Chinese remainder theorem,

E ⊗k L = L(X)/(
∏

Pi) =
∏

L[X]/(Pi),

and each L[X]/(Pi) is a finite separable extension of L. N

As a result of this, we can easily deduce that any k-algebra of the form A =
∏
ki for the ki

separable over k is unramified. Indeed, we have

ΩA/k ⊗k k = ΩA⊗kk/k
,

so it suffices to prove that A ⊗k k is unramified over k. However, from Lemma 1.13, A ⊗k k is
isomorphic as a k-algebra to a product of copies of k. Thus A⊗k k is obviously unramified over k.

On the other hand, suppose A/k is unramified. We shall show it is of the form given as
in the theorem. Then A ⊗k k is unramified over k, so it follows by Proposition 1.10 that A
is finite-dimensional over k. In particular, A is artinian, and thus decomposes as a product of
finite-dimensional unramified k-algebras.

We are thus reduced to showing that a local, finite-dimensional k-algebra that is unramified is
a separable extension of k. Let A be one such. Then A can have no nilpotents because then A⊗k k
would have nilpotents, and could not be isomorphic to a product of copies of k. Thus the unique
maximal ideal of A is zero, and A is a field. We need only show that A is separable over k. This
is accomplished by:

Lemma 1.14 Let E/k be a finite inseparable extension. Then E⊗k k contains nonzero nilpotents.

Proof. There exists an α ∈ E which is inseparable over k, i.e. whose minimal polynomial has
multiple roots. Let E′ = k(α). We will show that E′ ⊗k k has nonzero nilpotents; since the map
E′ ⊗k k → E ⊗k k is an injection, we will be done. Let P be the minimal polynomial of α, so that
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E′ = k[X]/(P ). Let P =
∏
P eii be the factorization of P in k for the Pi ∈ k[X] irreducible (i.e.

linear). By assumption, one of the ei is greater than one. It follows that

E′ ⊗k k = k[X]/(P ) =
∏

k[X]/(P eii ) N

has nilpotents corresponding to the ei’s that are greater than one. N

1.3 Conormal modules and universal thickenings

It turns out that one can define the first infinitesimal neighbourhood not just for a closed immersion
of schemes, but already for any formally unramified morphism. This is based on the following
algebraic fact.

Lemma 1.15 Let R → S be a formally unramified ring map. There exists a surjection of R-
algebras S′ → S whose kernel is an ideal of square zero with the following universal property:
Given any commutative diagram

S a
// A/I

R
b //

OO

A

OO

where I ⊂ A is an ideal of square zero, there is a unique R-algebra map a′ : S′ → A such that
S′ → A→ A/I is equal to S′ → S → A.

Proof. Choose a set of generators zi ∈ S, i ∈ I for S as an R-algebra. Let P = R[{xi i ∈ I] denote
the polynomial ring on generators xi, i ∈ I. Consider the R-algebra map P → S which maps xi
to zi. Let J = Ker(P → S). Consider the map

d : J/J2 −→ ΩP/R ⊗P S

see ??. This is surjective since ΩS/R = 0 by assumption, see ??. Note that ΩP/R is free on dxi,
and hence the module ΩP/R ⊗P S is free over S. Thus we may choose a splitting of the surjection
above and write

J/J2 = K ⊕ ΩP/R ⊗P S
Let J2 ⊂ J ′ ⊂ J be the ideal of P such that J ′/J2 is the second summand in the decomposition
above. Set S′ = P/J ′. We obtain a short exact sequence

0→ J/J ′ → S′ → S → 0

and we see that J/J ′ ∼= K is a square zero ideal in S′. Hence

S
1
// S

R //

OO

S′

OO

is a diagram as above. In fact we claim that this is an initial object in the category of diagrams.
Namely, let (I ⊂ A, a, b) be an arbitrary diagram. We may choose an R-algebra map β : P → A
such that

S
1
// S a

// A/I

R //

b

33

OO

P

OO

β // A

OO
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is commutative. Now it may not be the case that β(J ′) = 0, in other words it may not be true that
β factors through S′ = P/J ′. But what is clear is that β(J ′) ⊂ I and since β(J) ⊂ I and I2 = 0
we have β(J2) = 0. Thus the “obstruction” to finding a morphism from (J/J ′ ⊂ S′, 1, R→ S′) to
(I ⊂ A, a, b) is the corresponding S-linear map β : J ′/J2 → I. The choice in picking β lies in the
choice of β(xi). A different choice of β, say β′, is gotten by taking β′(xi) = β(xi) + δi with δi ∈ I.
In this case, for g ∈ J ′, we obtain

β′(g) = β(g) +
∑

i
δi
∂g

∂xi
.

Since the map d|J′/J2 : J ′/J2 → ΩP/R ⊗P S given by g 7→ ∂g
∂xi

dxi is an isomorphism by construc-
tion, we see that there is a unique choice of δi ∈ I such that β′(g) = 0 for all g ∈ J ′. (Namely, δi
is −β(g) where g ∈ J ′/J2 is the unique element with ∂g

∂xj
= 1 if i = j and 0 else.) The uniqueness

of the solution implies the uniqueness required in the lemma. N

In the situation of Lemma 1.15 the R-algebra map S′ → S is unique up to unique isomorphism.

Definition 1.16 Let R→ S be a formally unramified ring map.

1. The universal first order thickening of S over R is the surjection of R-algebras S′ → S of
Lemma 1.15.

2. The conormal module of R→ S is the kernel I of the universal first order thickening S′ → S,
seen as a S-module.

We often denote the conormal module CS/R in this situation.

Lemma 1.17 Let I ⊂ R be an ideal of a ring. The universal first order thickening of R/I over R
is the surjection R/I2 → R/I. The conormal module of R/I over R is C(R/I)/R = I/I2.

Proof. Omitted. N

Lemma 1.18 Let A → B be a formally unramified ring map. Let ϕ : B′ → B be the universal
first order thickening of B over A.

1. Let S ⊂ A be a multiplicative subset. Then S−1B′ → S−1B is the universal first order
thickening of S−1B over S−1A. In particular S−1CB/A = CS−1B/S−1A.

2. Let S ⊂ B be a multiplicative subset. Then S′ = ϕ−1(S) is a multiplicative subset in B′

and (S′)−1B′ → S−1B is the universal first order thickening of S−1B over A. In particular
S−1CB/A = CS−1B/A.

Note that the lemma makes sense by Corollary 1.9.

Proof. With notation and assumptions as in (1). Let (S−1B)′ → S−1B be the universal first order
thickening of S−1B over S−1A. Note that S−1B′ → S−1B is a surjection of S−1A-algebras whose
kernel has square zero. Hence by definition we obtain a map (S−1B)′ → S−1B′ compatible with
the maps towards S−1B. Consider any commutative diagram

B // S−1B // D/I

A //

OO

S−1A //

OO

D

OO

9
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where I ⊂ D is an ideal of square zero. Since B′ is the universal first order thickening of B over
A we obtain an A-algebra map B′ → D. But it is clear that the image of S in D is mapped to
invertible elements of D, and hence we obtain a compatible map S−1B′ → D. Applying this to
D = (S−1B)′ we see that we get a map S−1B′ → (S−1B)′. We omit the verification that this map
is inverse to the map described above.

With notation and assumptions as in (2). Let (S−1B)′ → S−1B be the universal first order
thickening of S−1B over A. Note that (S′)−1B′ → S−1B is a surjection of A-algebras whose
kernel has square zero. Hence by definition we obtain a map (S−1B)′ → (S′)−1B′ compatible with
the maps towards S−1B. Consider any commutative diagram

B // S−1B // D/I

A //

OO

A //

OO

D

OO

where I ⊂ D is an ideal of square zero. Since B′ is the universal first order thickening of B over
A we obtain an A-algebra map B′ → D. But it is clear that the image of S′ in D is mapped to
invertible elements of D, and hence we obtain a compatible map (S′)−1B′ → D. Applying this to
D = (S−1B)′ we see that we get a map (S′)−1B′ → (S−1B)′. We omit the verification that this
map is inverse to the map described above. N

Lemma 1.19 Let R → A → B be ring maps. Assume A → B formally unramified. Let B′ → B
be the universal first order thickening of B over A. Then B′ is formally unramified over A, and
the canonical map ΩA/R ⊗A B → ΩB′/R ⊗B′ B is an isomorphism.

Proof. We are going to use the construction of B′ from the proof of Lemma 1.15 allthough in
principle it should be possible to deduce these results formally from the definition. Namely, we
choose a presentation B = P/J , where P = A[xi] is a polynomial ring over A. Next, we choose
elements fi ∈ J such that dfi = dxi ⊗ 1 in ΩP/A ⊗P B. Having made these choices we have
B′ = P/J ′ with J ′ = (fi) + J2, see proof of Lemma 1.15.

Consider the canonical exact sequence

J ′/(J ′)2 → ΩP/A ⊗P B′ → ΩB′/A → 0

see ??. By construction the classes of the fi ∈ J ′ map to elements of the module ΩP/A ⊗P B′
which generate it modulo J ′/J2 by construction. Since J ′/J2 is a nilpotent ideal, we see that these
elements generate the module alltogether (by Nakayama’s ??). This proves that ΩB′/A = 0 and
hence that B′ is formally unramified over A, see ??.

Since P is a polynomial ring over A we have ΩP/R = ΩA/R ⊗A P ⊕
⊕
Pdxi. We are going to use

this decomposition. Consider the following exact sequence

J ′/(J ′)2 → ΩP/R ⊗P B′ → ΩB′/R → 0

see ??. We may tensor this with B and obtain the exact sequence

J ′/(J ′)2 ⊗B′ B → ΩP/R ⊗P B → ΩB′/R ⊗B′ B → 0

If we remember that J ′ = (fi) + J2 then we see that the first arrow annihilates the submodule
J2/(J ′)2. In terms of the direct sum decomposition ΩP/R⊗P B = ΩA/R⊗AB⊕

⊕
Bdxi given we

see that the submodule (fi)/(J
′)2 ⊗B′ B maps isomorphically onto the summand

⊕
Bdxi. Hence

what is left of this exact sequence is an isomorphism ΩA/R ⊗A B → ΩB′/R ⊗B′ B as desired. N
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§2 Smooth morphisms

2.1 Definition

The idea of a smooth morphism in algebraic geometry is one that is surjective on the tangent
space, at least if one is working with smooth varieties over an algebraically closed field. So this
means that one should be able to lift tangent vectors, which are given by maps from the ring into
k[ε]/ε2.

This makes the following definition seem more plausible:

Definition 2.1 Let S be an R-algebra. Then S is formally smooth over R (or the map R→ S
is formally smooth) if given any R-algebra A and ideal I ⊂ A of square zero, the map

HomR(S,A)→ HomR(S,A/I)

is a surjection. We shall say that S is smooth (over R) if it is formally smooth and of finite
presentation.

So this means that in any diagram

S //

  A
A

A
A A/I

R //

OO

A,

OO

with I an ideal of square zero in A, there exists a dotted arrow making the diagram commute.
As with formal unramifiedness, this is a purely functorial statement: if F is the corepresentable
functor associated to S, then we want F (A)→ F (A/I) to be a surjection for each I ⊂ A of square
zero and each R-algebra A. Also, again we can replace “I of square zero” with “I nilpotent.”

Example 2.2 The basic example of a formally smoothR-algebra is the polynomial ringR[x1, . . . , xn].
For to give a map R[x1, . . . , xn] → A/I is to give n elements of A/I; each of these elements can
clearly be lifted to A. This is analogous to the statement that a free module is projective.

More generally, if P is a projective R-module (not necessarily of finite type), then the symmetric
algebra SymP is a formally smooth R-algebra. This follows by the same reasoning.

We can state the usual list of properties of formally smooth morphisms:

Proposition 2.3 Smooth (resp. formally smooth) morphisms are preserved under base extension
and composition. If R is a ring, then any localization is formally smooth over R.

Proof. As usual, only the statements about formal smoothness are interesting. The statements
about base extension and composition will be mostly left to the reader: they are an exercise in
diagram-chasing. (Note that we cannot argue as we did for formally unramified morphisms, where
we had a simple criterion in terms of the module of Kähler differentials and various properties of
them.) For example, let R → S, S → T be formally smooth. Given a diagram (with I ⊂ A an
ideal of square zero)

T //

��1
1

1
1

1
1

1
1 A/I

S

OO

!!C
C

C
C

R //

OO

A,

OO

11
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we start by finding a dotted arrow S → A by using formal smoothness of R → S. Then we find
a dotted arrow T → A making the top quadrilateral commute. This proves that the composite is
formally smooth. N

2.2 Quotients of formally smooth rings

Now, ultimately, we want to show that this somewhat abstract definition of smoothness will give
us something nice and geometric. In particular, in this case we want to show that B is flat, and
the fibers are smooth varieties (in the old sense). To do this, we will need to do a bit of work, but
we can argue in a fairly elementary manner. On the one hand, we will first need to give a criterion
for when a quotient of a formally smooth ring is formally smooth.

Theorem 2.4 Let A be a ring, B an A-algebra. Suppose B is formally smooth over A, and let
I ⊂ B be an ideal. Then C = B/I is a formally smooth A-algebra if and only if the canonical map

I/I2 → ΩB/A ⊗B C

has a section. In other words, C is formally smooth precisely when the conormal sequence

I/I2 → ΩB/A ⊗B C → ΩC/A → 0

is split exact.

This result is stated in more generality for topological rings, and uses some functors on ring
extensions, in [GD], 0-IV, 22.6.1.

Proof. Suppose first C is formally smooth over A. Then we have a map B/I2 → C given by the
quotient. The claim is that there is a section of this map. There is a diagram of A-algebras

B/I B/I2oo

C

=

OO ;;x
x

x
x

x

and the lifting s : C → B/I2 exists by formal smoothness. This is a section of the natural
projection B/I2 → C = B/I.

In particular, the combination of the natural inclusion I/I2 → B/I2 and the section s gives an
isomorphism of rings (even A-algebras) B/I2 ' C ⊕ I/I2. Here I/I2 squares to zero.

We are interested in showing that I/I2 → ΩB/A ⊗B C is a split injection of C-modules. To
see this, we will show that any map out of the former extends to a map out of the latter. Now
suppose given a map of C-modules

φ : I/I2 →M

into a C-module M . Then we get an A-derivation

δ : B/I2 →M

by using the splitting B/I2 = C ⊕ I/I2. (Namely, we just extend the map by zero on C.) Since
I/I2 is imbedded in B/I2 by the canonical injection, this derivation restricts on I/I2 to φ. In
other words there is a commutative diagram

I/I2

φ

��

// B/I2

δ{{wwwwwwww

M

.

12



CRing Project, Chapter 17

It follows thus that we may define, by pulling back, an A-derivation B →M that restricts on I to

the map I → I/I2
φ→ M . By the universal property of the differentials, this is the same thing as

a homomorphism ΩB/A → M , or equivalently ΩB/A ⊗B C → M since M is a C-module. Pulling
back this derivation to I/I2 corresponds to pulling back via I/I2 → ΩB/A ⊗B C.

It follows that the map

HomC(ΩB/A ⊗B C,M)→ HomC(I/I2,M)

is a surjection. This proves one half of the result.
Now for the other. Suppose that there is a section of the conormal map. This translates, as

above, to saying that any map I/I2 → M (of C-modules) for a C-module M can be extended to
an A-derivation B →M . We must deduce from this formal smoothness.

Let E be any A-algebra, and J ⊂ E an ideal of square zero. We suppose given an A-
homomorphism C → E/J and would like to lift it to C → E; in other words, we must find a
lift in the diagram

C

}}{
{

{
{

��
E // E/J

.

Let us pull this map back by the surjection B � C; we get a diagram

B

φ

���
�

�
�

�
�

�
�

��
C

}}{
{

{
{

��
E // E/J

.

In this diagram, we know that a lifting φ : B → E does exist because B is formally smooth over
A. So we can find a dotted arrow from B → E in the diagram. The problem is that it might not
send I = ker(B → C) into zero. If we can show that there exists a lifting that does factor through
C (i.e. sends I to zero), then we are done.

In any event, we have a morphism of A-modules I → E given by restricting φ : B → E. This
lands in J , so we get a map I → J . Note that J is an E/J-module, hence a C-module, because
J has square zero. Moreover I2 gets sent to zero because J2 = 0, and we have a morphism of
C-modules I/I2 → J . Now by hypothesis, there is an A-derivation δ : B → J such that δ|I = φ.
Since J has square zero, it follows that

φ− δ : B → E N

is an A-homomorphism of algebras, and it kills I. Consequently this factors through C and gives
the desired lifting C → E.

Corollary 2.5 If A→ B is formally smooth, then ΩB/A is a projective B-module.

The intuition is that projective modules correspond to vector bundles over the Spec (unlike general
modules, the rank is locally constant, which should happen in a vector bundle). But a smooth
algebra is like a manifold, and for a manifold the cotangent bundle is very much a vector bundle,
whose dimension is locally constant.

13
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Proof. Indeed, we can write B as a quotient of a polynomial ring D over A; this is formally smooth.
Suppose B = D/I. Then we know that there is a split exact sequence

0→ I/I2 → ΩD/A ⊗D B → ΩB/A → 0.

But the middle term is free as D/A is a polynomial ring; hence the last term is projective. N

In particular, we can rewrite the criterion for formal smoothness of C = B/I, if B is formally
smooth over A:

1. ΩC/A is a projective C-module.

2. I/I2 → ΩB/A ⊗B C is a monomorphism.

Indeed, these two are equivalent to the splitting of the conormal sequence (since the middle term
is always projective by Corollary 2.5).

In particular, we can check that smoothness is local :

Corollary 2.6 Let A be a ring, B a finitely presented A-algebra. Then B is smooth over A if
and only if for each q ∈ SpecB with p ∈ SpecA the inverse image, the map Ap → Bq is formally
smooth.

Proof. Indeed, we see that B = D/I for a polynomial ring D = A[x1, . . . , xn] in finitely many
variables, and I ⊂ D a finitely generated ideal. We have just seen that we just need to check that
the conormal map I/I2 → ΩD/A⊗DB is injective, and that ΩB/A is a projective B-module, if and
only if the analogs hold over the localizations. This follows by the criterion for formal smoothness
just given above.

But both can be checked locally. Namely, the conormal map is an injection if and only if, for
all q ∈ SpecB corresponding to Q ∈ SpecD, the map (I/I2)q → ΩDQ/Ap

⊗DQ
Bq is an injection.

Moreover, we know that for a finitely presented module over a ring, like ΩB/A, projectivity is
equivalent to projectivity (or freeness) of all the stalks (??). So we can check projectivity on the
localizations too. N

In fact, the method of proof of Corollary 2.6 yields the following observation: formal smoothness
“descends” under faithfully flat base change. That is:

Corollary 2.7 If B is an A-algebra, and A′ a faithfully flat algebra, then B is formally smooth
over A if and only if B ⊗A A′ is formally smooth over A′.

We shall not give a complete proof, except in the case when B is finitely presented over A (so that
the question is of smoothness).

Proof. One direction is just the “sorite” (see ??). We want to show that formal smoothness
“descends.” The claim is that the two conditions for formal smoothness above (that ΩB/A be
projective and the conormal map be a monomorphism) descend under faithfully flat base-change.
Namely, the fact about the conormal maps is clear (by faithful flatness).

Now let B′ = B ⊗A A′. So we need to argue that if ΩB′/A′ = ΩB/A ⊗B B′ is projective as
a B′-module, then so is ΩB/A. Here we use the famous result of Raynaud-Gruson (see [RG71]),
which states that projectivity descends under faithfully flat extensions, to complete the proof.

If B is finitely presented over A, then ΩB/A is finitely presented as a B-module. We can
run most of the same proof as before, but we want to avoid using the Raynaud-Gruson theorem:
we must give a separate argument that ΩB/A is projective if ΩB′/A′ is. However, for a finitely
presented module, projectivity is equivalent to flatness, by ??. Moreover, since ΩB′/A′ is B′-flat,
faithful flatness enables us to conclude that ΩB/A is B-flat, and hence projective. N

14
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2.3 The Jacobian criterion

Now we want a characterization of when a morphism is smooth. Let us motivate this with an
analogy from standard differential topology. Consider real-valued functions f1, . . . , fp ∈ C∞(Rn).
Now, if f1, f2, . . . , fp are such that their gradients ∇fi form a matrix of rank p, then we can define
a manifold near zero which is the common zero set of all the fi. We are going to give a relative
version of this in the algebraic setting.

Recall that a map of rings A→ B is essentially of finite presentation if B is the localization of
a finitely presented A-algebra.

Proposition 2.8 Let (A,m) → (B, n) be a local homomorphism of local rings such that B is
essentially of finite presentation. Suppose B = (A[X1, . . . , Xn])q/I for some finitely generated
ideal I ⊂ A[X1, . . . , Xn]q, where q is a prime ideal in the polynomial ring.

Then I/I2 is generated as a B-module by polynomials f1, . . . , fk ∈ I ⊂ A[X1, . . . , Xn] whose
Jacobian matrix has maximal rank in C/q = B/n if and only if B is formally smooth over A. In
this case, I/I2 is even freely generated by the fi.

The Jacobian matrix ∂fi
∂Xj

is a matrix of elements of A[X1, . . . , Xn], and we can take the

associated images in B/n.

Example 2.9 Suppose A is an algebraically closed field k. Then I corresponds to some ideal in
the polynomial ring k[X1, . . . , Xn], which cuts out a variety X. Suppose q is a maximal ideal in
the polynomial ring.

Then B is the local ring of the algebraic variety X at q. Then Proposition 2.8 states that q is
a “smooth point” of the variety (i.e., the Jacobian matrix has maximal rank) if and only if B is
formally smooth over k. We will expand on this later.

Proof. Indeed, we know that polynomial rings are formally smooth. In particularD = A[X1, . . . , Xn]q
is formally smooth over A, because localization preserves formal smoothness. Note also that ΩD/A
is a free D-module, because this is true for a polynomial ring and Kähler differentials commute
with localization.

So Theorem 2.4 implies that
I/I2 → ΩD/A ⊗D B

is a split injection precisely when B is formally smooth over A. Suppose that this holds. Now I/I2

is then a summand of the free module ΩD/A⊗D B, so it is projective, hence free as B is local. Let
K = B/n. It follows that the map

I/I2 ⊗D K → ΩD/A ⊗D K = Kn

is an injection. This map sends a polynomial to its gradient (reduced modulo q, or n). Hence the
assertion is clear: choose polynomials f1, . . . , fk ∈ I that generate (I/I2)q, and their gradients in
B/n must be linearly independent.

Conversely, suppose that I/I2 has such generators. Then the map

I/I2 ⊗K → Kn, f 7→ df

is a split injection. However, if a map of finitely generated modules over a local ring, with the
target free, is such that tensoring with the residue field makes it an injection, then it is a split
injection. (We shall prove this below.) Thus I/I2 → ΩD/A ⊗D B is a split injection. In view of
the criterion for formal smoothness, we find that B is formally smooth. N

Here is the promised lemma necessary to complete the proof:

15
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Lemma 2.10 If (A,m) is a local ring with residue field k, M a finitely generated A-module, N a
finitely generated projective A-module, then a map φ : M → N is a split injection if and only if
M ⊗A k → N ⊗A k is an injection.

Proof. One direction is clear, so it suffices to show that M → N is a split injection if the map on
fibers is an injection.

Let L be a “free approximation” to M , that is, a free module L together with a map L → M
which is an isomorphism modulo k. By Nakayama’s lemma, L → M is surjective. Then the map
L → M → N is such that the L ⊗ k → N ⊗ k is injective, so L → N is a split injection (by an
elementary criterion). It follows that we can find a splitting N → L, which when composed with
L→M is a splitting of M → N . N

2.4 The fiberwise criterion for smoothness

We shall now prove that a smooth morphism is flat. In fact, we will get a general “fiberwise”
criterion for smoothness (i.e., a morphism is smooth if and only if it is flat and the fibers are
smooth), which will enable us to reduce smoothness questions, in some cases, to the situation
where the base is a field.

We shall need some lemmas on regular sequences. The first will give a useful criterion for
checking M -regularity of an element by checking on the fiber. For our purposes, it will also give a
criterion for when quotienting by a regular element preserves flatness over a smaller ring.

Lemma 2.11 Let (A,m) → (B, n) be a local homomorphism of local noetherian rings. Let M be
a finitely generated B-module, which is flat over A.

Let f ∈ B. Then the following are equivalent:

1. M/fM is flat over A and f : M →M is injective.

2. f : M ⊗A k →M ⊗A k is injective where k = A/m.

For instance, let us consider the case M = B. The lemma states that if multiplication by f is
regular on B ⊗A k, then the hypersurface cut out by f (i.e., corresponding to the ring B/fB) is
flat over A.

Proof. All Tor functors here will be over A. If M/fM is A-flat and f : M →M is injective, then
the sequence

0→M
f→M →M/fM → 0

leads to a long exact sequence

Tor1(k,M/fM)→M ⊗A k
f→M ⊗A k → (M/fM)⊗A k → 0.

But since M/fM is flat, the first term is zero, and it follows that M ⊗ k f→M ⊗ k is injective.
The other direction is more subtle. Suppose multiplication by f is a monomorphism on M⊗Ak.

Now write the exact sequence

0→ P →M
f→M → Q→ 0

where P,Q are the kernel and cokernel. We want to show that P = 0 and Q is flat over A.
We can also consider the image I = fM ⊂M , to split this into two exact sequences

0→ P →M → I → 0

and
0→ I →M → Q→ 0.

16
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Here the map M ⊗A k → I ⊗A k → M ⊗A k is given by multiplication by f , so it is injective by
hypothesis. This implies that M ⊗A k → I ⊗A k is injective. So M ⊗ k → I ⊗ k is actually an
isomorphism because it is obviously surjective, and we have just seen it is injective. Moreover,
I ⊗A k → M ⊗A k is isomorphic to the homothety f : M ⊗A k → M ⊗A k, and consequently is
injective. To summarize:

1. M ⊗A k → I ⊗A k is an isomorphism.

2. I ⊗A k →M ⊗A k is an injection.

Let us tensor these two exact sequences with k. We get

0→ Tor1(k, I)→ P ⊗A k →M ⊗A k → I ⊗A k → 0

because M is flat. We also get

0→ Tor1(k,Q)→ I ⊗A k →M ⊗A k → Q⊗A k → 0.

We’ll start by using the second sequence. Now I ⊗A k → M ⊗A k was just said to be injective,
so that Tor1(k,Q) = 0. By the local criterion for flatness, it follows that Q is a flat A-module as
well. But Q = M/fM , so this gives one part of what we wanted.

Now, we want to show finally that P = 0. Now, I is flat; indeed, it is the kernel of a surjection
of flat maps M → Q, so the long exact sequence shows that it is flat. So we have a short exact
sequence

0→ P ⊗A k →M ⊗A k → I ⊗A k → 0,

which shows now that P ⊗A k = 0 (as M ⊗A k → I ⊗A k was just shown to be an isomorphism
earlier). By Nakayama P = 0. This implies that f is M -regular. N

Corollary 2.12 Let (A,m) → (B, n) be a morphism of noetherian local rings. Suppose M is a
finitely generated B-module, which is flat over A.

Let f1, . . . , fk ∈ n. Suppose that f1, . . . , fk is a regular sequence on M⊗Ak. Then it is a regular
sequence on M and, in fact, M/(f1, . . . , fk)M is flat over A.

Proof. This is now clear by induction. N

Theorem 2.13 Let (A,m) → (B, n) be a morphism of local rings such that B is the localization
of a finitely presented A-algebra at a prime ideal, B = (A[X1, . . . , Xn])q/I. Then if A → B is
formally smooth, B is a flat A-algebra.

The strategy is that B is going to be written as the quotient of a localization of a polynomial
ring by a sequence {fi} whose gradients are independent (modulo the maximal ideal), i.e. modulo
B/n. If we were working modulo a field, then we could use arguments about regular local rings to
argue that the {fi} formed a regular sequence. We will use Corollary 2.12 to bootstrap from this
case to the general situation.

Proof. Let us first assume that A is noetherian.
Let C = (A[X1, . . . , Xn])q. Then C is a local ring, smooth over A, and we have morphisms of

local rings
(A,m)→ (C, q)� (B, n).

Moroever, C is a flat A-module, and we are going to apply the fiberwise criterion for regularity to
C and a suitable sequence.

Now we know that I/I2 is a B-module generated by polynomials f1, . . . , fm ∈ A[X1, . . . , Xn]
whose Jacobian matrix has maximal rank in B/n (by the Jacobian criterion, Proposition 2.8). The
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claim is that the fi are linearly independent in q/q2. This will be the first key step in the proof.
In other words, if {ui} is a family of elements of C, not all non-units, we do not have∑

uifi ∈ q2.

For if we did, then we could take derivatives and find∑
ui∂jfi ∈ q

for each j. This contradicts the gradients of the fi being linearly independent in B/n = C/q.
Now we want to show that the {fi} form a regular sequence in C. To do this, we shall reduce

to the case where A is a field. Indeed, let us make the base-change A → k = A/m, B → B =
B ⊗A k,C → C = C ⊗A k where k = A/m is the residue field. Then B,C are formally smooth
local rings over a field k. We also know that C is a regular local ring, since it is a localization of a
polynomial ring over a field.

Let us denote the maximal ideal of C by q; this is just the image of q.
Now the {fi} have images in C that are linearly independent in q/q2 = q/q2. It follows that

the {fi} form a regular sequence in C, by general facts about regular local rings (see, e.g. ??);
indeed, each of the successive quotients C/(f1, . . . , fi) will then be regular. It follows from the
fiberwise criterion (C being flat) that the {fi} form a regular sequence in C itself, and that the
quotient C/(fi) = B is A-flat. N

The proof in fact showed a bit more: we expressed B as the quotient of a localized polynomial
ring by a regular sequence. In other words:

Corollary 2.14 (Smooth maps are local complete intersections) Let (A,m) → (B, n) be
an essentially of finite presentation, formally smooth map. Then there exists a localization of a
polynomial ring, C, such that B can be expressed as C/(f1, . . . , fn) for the {fi} forming a regular
sequence in the maximal ideal of C.

We also get the promised result:

Theorem 2.15 Let A→ B be a smooth morphism of rings. Then B is flat over A.

Proof. Indeed, we immediately reduce to Theorem 2.13 by checking locally at each prime (which
gives formally smooth maps). N

In fact, we can get a general criterion now:

Theorem 2.16 Let (A,m)→ (B, n) be a (local) morphism of local noetherian rings such that B is
the localization of a finitely presented A-algebra at a prime ideal, B = (A[X1, . . . , Xn])q/I. Then
B is formally smooth over A if B is A-flat and B/mB is formally smooth over A/m.

Proof. One direction is immediate from what we have already shown. Now we need to show that
if B is A-flat, and B/mB is formally smooth over A/m, then B is itself formally smooth over A.
This will be comparatively easy, with all the machinery developed. This will be comparatively
easy, with all the machinery developed.

As before, write the sequence

(A,m)→ (C, q)� (B, n),

where C is a localization of a polynomial ring at a prime ideal, and in particular is formally smooth
over A. We know that B = C/I, where I ⊂ q.

18
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To check that B is formally smooth over A, we need to show (C being formally smooth) that
the conormal sequence

I/I2 → ΩC/A ⊗C B → ΩC/B → 0. (17.3)

is split exact.
Let A,C,B be the base changes of A,B,C to k = A/m; let I be the kernel of C � B. Note

that I = I/mI by flatness of B. Then we know that the sequence

I/I
2 → ΩC/k/IΩC/k → ΩC/B → 0 (17.4)

is split exact, because C is a formally smooth k-algebra (in view of Theorem 2.4).
But (17.4) is the reduction of (17.3). Since the middle term of (17.3) is finitely generated and

projective over B, we can check splitting modulo the maximal ideal (see Lemma 2.10). N

In particular, we get the global version of the fiberwise criterion:

Theorem 2.17 Let A → B be a finitely presented morphism of rings. Then B is a smooth A-
algebra if and only if B is a flat A-algebra and, for each p ∈ SpecA, the morphism k(p)→ B⊗Ak(p)
is smooth.

Here k(p) denotes the residue field of Ap, as usual.

Proof. One direction is clear. For the other, we recall that smoothness is local : A→ B is smooth
if and only if, for each q ∈ SpecB with image p ∈ SpecA, we have Ap → Bq formally smooth (see
Corollary 2.6). But, by Theorem 2.16, this is the case if and only if, for each such pair (p, q), the
morphism k(p) → Bq ⊗Ap

k(p) is formally smooth. Now if k(p) → B ⊗A k(p) is smooth for each
p, then this condition is clearly satisfied. N

2.5 Formal smoothness and regularity

We now want to explore the connection between formal smoothness and regularity. In general, the
intuition is that a variety over an algebraically closed field is smooth if and only if the local rings
at closed points (and thus at all points by ??) are regular local rings. Over a non-algebraically
closed field, only one direction is still true: we want the local rings to be geometrically regular. So
far we will just prove one direction, though.

Theorem 2.18 Let (A,m) be a noetherian local ring containing a copy of its residue field A/m = k.
Then if A is formally smooth over k, A is regular.

Proof. We are going to compare the quotients A/mm to the quotients of R = k[x1, . . . , xn] where
n is the embedding dimension of A. Let n ⊂ k[x1, . . . , xn] be the ideal (x1, . . . , xn). We are going
to give surjections

A/mm � R/nm

for each m ≥ 2.
Let t1, . . . , tn ∈ m be a k-basis for m/m2. Consider the map A� R/n2 that goes A� A/m2 '

k ⊕ m/m2 ' R/n2, where ti is sent to xi. This is well-defined, and gives a surjection A � R/n2.
Using the infinitesimal lifting property, we can lift this map to k-algebra maps

A→ R/nm

for each k, which necessarily factor through A/mm (as they send m into n). They are surjective
by Nakayama’s lemma. It follows that

dimkA/m
m ≥ dimkR/n

m,

and since Rn is a regular local ring, the last term grows asymptotically like mn. It follows that
dimR ≥ n, and since dimR is always at most the embedding dimension, we are done. N
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2.6 A counterexample

It is in fact true that a formally smooth morphism between arbitrary noetherian rings is flat,
although we have only proved this in the case of a morphism of finite type. This is false if we do
not assume noetherian hypotheses. A formally smooth morphism need not be flat.

Example 2.19 Consider a field k, and consider R = k[T x]x∈Q>0
. This is the filtered colimit of

the polynomial rings k[T 1/n] over all n. There is a natural map R→ k sending each power of T to
zero. The claim is that R→ k is a formally smooth morphism which is not flat. It is a surjection,
so it is a lot different from the intuitive idea of a smooth map.

Yet it turns out to be formally smooth. To see this, consider an R-algebra S and an ideal
I ⊂ S such that S2 = 0. The claim is that an R-homomorphism k → S/I lifts to k → S. Consider
the diagram

S

��
R

77ooooooooooooooo // k

>>|
|

|
|

| // S/I,

in which we have to show that a dotted arrow exists.

However, there can be at most one R-homomorphism k → S/I, since k is a quotient of R. It
follows that each T x, x ∈ Q>0 is mapped to zero in S/I. So each T x, x ∈ I maps to elements of I
(by the map R→ S assumed to exist). It follows that T x = (T x/2)2 maps to zero in S, as I2 = 0.
Thus the map R→ S annihilates each T x, which means that there is a (unique) dotted arrow.

Note that R→ k is not flat. Indeed, multiplication by T is injective on R, but it acts by zero
on k.

This example was described by Anton Geraschenko on MathOverflow; see [Ger]. The same
reasoning shows more generally:

Proposition 2.20 Let R be a ring, I ⊂ R an ideal such that I = I2. Then the projection R→ R/I
is formally étale.

For a noetherian ring, if I = I2, then we know that I is generated by an idempotent in R
(see ??), and the projection R → R/I is projection on the corresponding direct factor (actually,
the complementary one). In this case, the projection is flat, and this is to be expected: as stated
earlier, formally étale implies flat for noetherian rings. But in the non-noetherian case, we can get
interesting examples.

Example 2.21 We shall now give an example showing that formally étale morphisms do not
necessarily preserve reducedness. We shall later see that this is true in the étale case (see Propo-
sition 3.19).

Let k be a field of characteristic 6= 2. Consider the ring R = k[T x]x∈Q>0
as before. Take

S = R[X]/(X2 − T ), and consider the ideal I generated by all the positive powers T x, x > 0. As
before, clearly I = I2, and thus S → S/I is formally étale. The claim is that S is reduced; clearly
S/I = k[X]/(X2) is not. Indeed, an element of S can be uniquely described by α = P (T )+Q(T )X
where P,Q are “polynomials” in T—in actuality, they are allowed to have terms T x, x ∈ Q>0. Then
α2 = P (T )2 +Q(T )2T + 2P (T )Q(T )X. It is thus easy to see that if α2 = 0, then α = 0.
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§3 Étale morphisms

3.1 Definition

The definition is just another nilpotent lifting property:

Definition 3.1 Let S be an R-algebra. Then S is formally étale over R (or the map R→ S is
formally étale) if given any R-algebra A and ideal I ⊂ A of square zero, the map

HomR(S,A)→ HomR(S,A/I)

is a bijection. A ring homomorphism is étale if and only if it is formally étale and of finite
presentation.

So S is formally étale over R if for every commutative solid diagram

S //

!!B
B

B
B A/I

R //

OO

A

OO

where I ⊂ A is an ideal of square zero, there exists a unique dotted arrow making the diagram
commute. As before, the functor of points can be used to test formal étaleness. Moreover, clearly
a ring map is formally étale if and only if it is both formally smooth and formally unramified.

We have the usual:

Proposition 3.2 Étale (resp. formally étale) morphisms are closed under composition and base
change.

Proof. Either a combination of the corresponding results for formal smoothness and formal unram-
ifiedness (i.e. Proposition 1.6, Proposition 1.7, and Proposition 2.3), or easy to verify directly. N

Filtered colimits preserve formal étaleness:

Lemma 3.3 Let R be a ring. Let I be a directed partially ordered set. Let (Si, ϕii′) be a system
of R-algebras over I. If each R→ Si is formally étale, then S = colimi∈I Si is formally étale over
R

The idea is that we can make the lifts on each piece, and glue them automatically.

Proof. Consider a diagram as in Definition 3.1. By assumption we get unique R-algebra maps
Si → A lifting the compositions Si → S → A/I. Hence these are compatible with the transition
maps ϕii′ and define a lift S → A. This proves existence. The uniqueness is clear by restricting to
each Si. N

Lemma 3.4 Let R be a ring. Let S ⊂ R be any multiplicative subset. Then the ring map R →
S−1R is formally étale.

Proof. Let I ⊂ A be an ideal of square zero. What we are saying here is that given a ring map
ϕ : R→ A such that ϕ(f) mod I is invertible for all f ∈ S we have also that ϕ(f) is invertible in
A for all f ∈ S. This is true because A∗ is the inverse image of (A/I)∗ under the canonical map
A→ A/I. N

We now want to give the standard example of an étale morphism; geometrically, this corre-
sponds to a hypersurface in affine 1-space given by a nonsingular equation. We will eventually
show that any étale morphism looks like this, locally.
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Example 3.5 Let R be a ring, P ∈ R[X] a polynomial. Suppose Q ∈ R[X]/P is such that in the
localization (R[X]/P )Q, the image of the derivative P ′ ∈ R[X] is a unit. Then the map

R→ (R[X]/P )Q

is called a standard étale morphism.

The name is justified by:

Proposition 3.6 A standard étale morphism is étale.

Proof. It is sufficient to check the condition on the Kähler differentials, since a standard étale
morphism is evidently flat and of finite presentation. Indeed, we have that

Ω(R[X]/P )Q/R = Q−1Ω(R[X]/P )/R = Q−1
R[X]

(P ′(X), P (X))R[X]

by basic properties of Kähler differentials. Since P ′ is a unit after localization at Q, this last object
is clearly zero. N

Example 3.7 A separable algebraic extension of a field k is formally étale. Indeed, we just need
to check this for a finite separable extension L/k, in view of Lemma 3.3, and then we can write
L = k[X]/(P (X)) for P a separable polynomial. But it is easy to see that this is a special case of
a standard étale morphism. In particular, any unramified extension of a field is étale, in view of
the structure theory for unramified extensions of fields (Theorem 1.12).

Example 3.8 The example of Example 2.19 is a formally étale morphism, because we showed the
map was formally smooth and it was clearly surjective. It follows that a formally étale morphism
is not necessarily flat!

We also want a slightly different characterization of an étale morphism. This criterion will be
of extreme importance for us in the sequel.

Theorem 3.9 An R-algebra S of finite presentation is étale if and only if it is flat and unramified.

This is in fact how étale morphisms are defined in [SGA03] and in [Har77].

Proof. An étale morphism is smooth, hence flat (Theorem 2.15). Conversely, suppose S is flat
and unramified over R. We just need to show that S is smooth over R. But this follows by the
fiberwise criterion for smoothness, Theorem 2.16, and the fact that an unramified extension of a
field is automatically étale, by Example 3.7. N

Finally, we would like a criterion for when a morphism of smooth algebras is étale. We state it
in the local case first.

Proposition 3.10 Let B,C be local, formally smooth, essentially of finite presentation A-algebras
and let f : B → C be a local A-morphism. Then f is formally étale if and only if and only if the
map ΩB/A ⊗B C → ΩC/A is an isomorphism.

The intuition is that f induces an isomorphism on the cotangent spaces; this is analogous to the
definition of an étale morphism of smooth manifolds (i.e. one that induces an isomorphism on
each tangent space, so is a local isomorphism at each point).
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Proof. We prove this for A noetherian.
We just need to check that f is flat if the map on differentials is an isomorphism. Since B,C

are flat A-algebras, it suffices (by the general criterion, ??), to show that B ⊗A k → C ⊗A k is flat
for k the residue field of A. We will also be done if we show that B ⊗A k → C ⊗A k is flat. Note
that the same hypotheses (that

So we have reduced to a question about rings essentially of finite type over a field. Namely, we
have local rings B,C which are both formally smooth, essentially of finite-type k-algebras, and a
map B → C that induces an isomorphism on the Kähler differentials as above.

The claim is that B → C is flat (even local-étale). Note that both B,C are regular local rings,
and the condition about Kähler differentials implies that they of the same dimension. Consequently,
B → C is injective: if it were not injective, then the dimension of Im(B → C) would be less
than dimB = dimC. But since C is unramified over Im(B → C), the dimension can only drop:
dimC ≤ dim Im(B → C).1 This contradicts dimB = dimC. It follows that B → C is injective,
and hence flat by ?? below (one can check that there is no circularity).

3.2 The local structure theory

We know two easy ways of getting an unramified morphism out of a ring R. First, we can take
a standard étale morphism, which is necessarily unramified; next we can take a quotient of that.
The local structure theory states that this is all we can have, locally.

Warning: this section will use Zariski’s Main Theorem, which is not in this book
yet.

For this we introduce a definition.

Definition 3.11 Let R be a commutative ring, S an R-algebra of finite type. Let q ∈ SpecS and
p ∈ SpecR be the image. Then S is called unramified at q (resp. étale at p) if ΩSq/Rp

= 0
(resp. that and Sq is Rp-flat).

Now when works with finitely generated algebras, the module of Kähler differentials is always
finitely generated over the top ring. In particular, if ΩSq/Rp

= (ΩS/R)q = 0, then there is f ∈ S−q
with ΩSf/R = 0. So being unramified at q is equivalent to the existence of f ∈ S − q such that Sf
is unramified over R. Clearly if S is unramified over R, then it is unramified at all primes, and
conversely.

Theorem 3.12 Let φ : R → S be morphism of finite type, and q ⊂ S prime with p = φ−1(q).
Suppose φ is unramified at q. Then there is f ∈ R− p and g ∈ S − q (divisible by φ(f)) such that
the morphism

Rf → Sg

factors as a composite

Rf → (Rf [x]/P )h � Sg

where the first is a standard étale morphism and the second is a surjection. Moreover, we can
arrange things such that the fibers above p are isomorphic.

Proof. We shall assume that R is local with maximal ideal p. Then the question reduces to finding
g ∈ S such that Sg is a quotient of an algebra standard étale over R. This reduction is justified
by the following argument: if R is not necessarily local, then the morphism Rp → Sp is still
unramified. If we can show that there is g ∈ Sp − qSp such that (Sp)g is a quotient of a standard
étale Rp-algebra, it will follow that there is f /∈ p such that the same works with Rf → Sgf .

1This follows by the surjection of modules of Kähler differentials, in view of ??.
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We shall now reduce to the case where S is a finite R-algebra. Let R be local, and let R → S
be unramified at q. By assumption, S is finitely generated over R. We have seen by ?? that S
is quasi-finite over R at q. By Zariski’s Main Theorem (??), there is a finite R-algebra S′ and
q′ ∈ SpecS′ such that S near q and S′ near q′ are isomorphic (in the sense that there are g ∈ S−q,
h ∈ S′ − q′ with Sg ' S′h). Since S′ must be unramified at q′, we can assume at the outset, by
replacing S by S′, that R→ S is finite and unramified at q.

We shall now reduce to the case where S is generated by one element as R-algebra. This will
occupy us for a few paragraphs.

We have assumed that R is a local ring with maximal ideal p ⊂ R; the maximal ideals of S are
finite, say, q, q1, . . . , qr because S is finite over R; these all contain p by Nakayama. These are no
inclusion relations among q and the qi as S/pS is an artinian ring.

Now S/q is a finite separable field extension of R/p by Theorem 1.12; indeed, the morphism
R/p→ S/pS → S/q is a composite of unramified extensions and is thus unramified. In particular,
by the primitive element theorem, there is x ∈ S such that x is a generator of the field extension
R/p → S/q. We can also choose x to lie in the other qi by the Chinese remainder theorem.
Consider the subring C = R[x] ⊂ S. It has a maximal ideal s which is the intersection of q with
C. We are going to show that locally, C and S look the same.

Lemma 3.13 (Reduction to the monogenic case) Let (R, p) be a local ring and S a finite
R-algebra. Let q, q1, . . . , qr ∈ SpecS be the prime ideals lying above p. Suppose S is unramified at
q.

Then there is x ∈ S such that the rings R[x] ⊂ S and S are isomorphic near q: more precisely,
there is g ∈ R[x]− q with R[x]g = Sg.

Proof. Choose x as in the paragraph preceding the statement of the lemma. Define s in the same
way. We have morphisms

R→ Cs → Ss

where Ss denotes S localized at C − s, as usual. The second morphism here is finite. However,
we claim that Ss is in fact a local ring with maximal ideal qSs; in particular, Ss = Sq. Indeed,
S can have no maximal ideals other than q lying above s; for, if qi lay over s for some i, then
x ∈ qi ∩ C = s. But x /∈ s because x is not zero in S/q.

It thus follows that Ss is a local ring with maximal ideal qSs. In particular, it is equal to Sq,
which is a localization of Ss at the maximal ideal. In particular, the morphism

Cs → Ss = Sq

is finite. Moreover, we have sSq = qSq by unramifiedness of R → S. So since the residue fields
are the same by choice of x, we have sSq + Cs = Sq. Thus by Nakyama’s lemma, we find that
Ss = Sq = Cs.

There is thus an element g ∈ C − r such that Sg = Cg. In particular, S and C are isomorphic
near q. N

We can thus replace S by C and assume that C has one generator.
With this reduction now made, we proceed. We are now considering the case where S is gen-

erated by one element, so a quotient S = R[X] for some monic polynomial P . Now S = S/pS is
thus a quotient of k[X], where k = R/p is the residue field. It thus follows that

S = k[X]/(P )

for P a monic polynomial, as S is a finite k-vector space.
Suppose P has degree n. Let x ∈ S be a generator of S/R. We know that 1, x, . . . , xn−1 has

reductions that form a k-basis for S ⊗R k, so by Nakayama they generate S as an R-module. In
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particular, we can find a monic polynomial P of degree n such that P (x) = 0. It follows that the
reduction of P is necessarily P . So we have a surjection

R[X]/(P )� S

which induces an isomorphism modulo p (i.e. on the fiber).
Finally, we claim that we can modify R[X]/P to make a standard étale algebra. Now, if we let

q′ be the preimage of q in R[X]/P , then we have morphisms of local rings

R→ (R[X]/P )q′ → Sq.

The claim is that R[X]/(P ) is unramified over R at q′.
To see this, let T = (R[X]/P )q′ . Then, since the fibers of T and Sq are the same at p, we have

that
ΩT/R ⊗R k(p) = ΩT⊗Rk(p)/k(p) = Ω(Sq/pSq)/k(p) = 0

as S is R-unramified at q. It follows that ΩT/R = pΩT/R, so a fortiori ΩT/R = qΩT/R; since this is
a finitely generated T -module, Nakayama’s lemma implies that is zero. We conclude that R[X]/P
is unramified at q′; in particular, by the Kähler differential criterion, the image of the derivative
P ′ is not in q′. If we localize at the image of P ′, we then get what we wanted in the theorem. N

We now want to deduce a corresponding (stronger) result for étale morphisms. Indeed, we
prove:

Theorem 3.14 If R → S is étale at q ∈ SpecS (lying over p ∈ SpecR), then there are f ∈
R− p, g ∈ S − q such that the morphism Rf → Sg is a standard étale morphism.

Proof. By localizing suitably, we can assume that (R, p) is local, and (in view of ??), R → S is a
quotient of a standard étale morphism

(R[X]/P )h � S

with the kernel some ideal I. We may assume that the surjection is an isomorphism modulo p,
moreover. By localizing S enough2 we may suppose that S is a flat R-module as well.

Consider the exact sequence of (R[X]/P )h-modules

0→ I → (R[X]/P )h/I → S → 0.

Let q′ be the image of q in Spec(R[X]/P )h. We are going to show that the first term vanishes
upon localization at q′. Since everything here is finitely generated, it will follow that after further
localization by some element in (R[X]/P )h − q′, the first term will vanish. In particular, we will
then be done.

Everything here is a module over (R[X]/P )h, and certainly a module over R. Let us tensor
everything over R with R/p; we find an exact sequence

I → S/pS → S/pS → 0;

we have used the fact that the morphism (R[X]/P )h → S was assumed to induce an isomorphism
modulo p.

However, by étaleness we assumed that S was R-flat, so we find that exactness holds at the
left too. It follows that

I = pI,

so a fortiori
I = q′I,

which implies by Nakayama that Iq′ = 0. Localizing at a further element of (R[X]/P )h − q′, we
can assume that I = 0; after this localization, we find that S looks precisely a standard étale
algebra. N

2We are not assuming S finite over R here,
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3.3 Permanence properties of étale morphisms

We shall now return to (more elementary) commutative algebra, and discuss the properties that
an étale extension A→ B has. An étale extension is not supposed to make B differ too much from
A, so we might expect some of the same properties to be satisfied.

We might not necessarily expect global properties to be preserved (geometrically, an open
imbedding of schemes is étale, and that does not necessarily preserve global properties), but local
ones should be.

Thus the right definition for us will be the following:

Definition 3.15 A morphism of local rings (A,mA)→ (B,mB) is local-unramified mAB is the
maximal ideal of B and B/mB is a finite separable extension of A/mA.

A morphism of local rings A→ B is local-étale if it is flat and local-unramified.

Proposition 3.16 Let (R,m)→ (S, n) be a local-étale morphism of noetherian local rings. Then
dimR = dimS.

Proof. Indeed, we know that mS = n because R → S is local-unramified. Also R/m → S/n is a
finite separable extension. We have a natural morphism

m⊗R S → n

which is injective (as the map m ⊗R S → S is injective by flatness) and consequently is an
isomorphism. More generally, mn ⊗R S ' nn for each n. By flatness again, it follows that

mn/mn+1 ⊗R/m (S/n) = mn/mn+1 ⊗R S ' nn/nn+1. (17.5)

Now if we take the dimensions of these vector spaces, we get polynomials in n; these polynomials
are the dimensions of R,S, respectively. It follows that dimR = dimS. N

Proposition 3.17 Let (R,m)→ (S, n) be a local-étale morphism of noetherian local rings. Then
depthR = depthS.

Proof. We know that a nonzerodivisor in R maps to a nonzerodivisor in S. Thus by an easy
induction we reduce to the case where depthR = 0. This means that m is an associated prime of
R; there is thus some x ∈ R, nonzero (and necessarily a non-unit) such that the annihilator of x
is all of m. Now x is a nonzero element of S, too, as the map R → S is an inclusion by flatness.
It is then clear that n = mS is the annilhilator of x in S, so n is an associated prime of S too. N

Corollary 3.18 Let (R,m)→ (S, n) be a local-étale morphism of noetherian local rings. Then R
is regular (resp. Cohen-Macaulay) if and only if S is.

Proof. The results Proposition 3.17 and Proposition 3.16 immediately give the result about Cohen-
Macaulayness. For regularity, we use (17.5) with n = 1 to see at once that the embedding dimen-
sions of R and S are the same. N

Recall, however, that regularity of S implies that of R if we just assume that R→ S is flat (by
Serre’s characterization of regular local rings as those having finite global dimension).

We shall next show that reducedness is preserved under étale extensions. We shall need another
hypothesis, though, that the map of local rings be essentially of finite type. This will always be
the case in situations of interest, when we are looking at the map on local rings induced by a
morphism of rings of finite type.

Proposition 3.19 Let (R,m) → (S, n) be a local-étale morphism of noetherian local rings. Sup-
pose S is essentially of finite type over R. Then S is reduced if and only if R is reduced.
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Proof. As R→ S is injective by (faithful) flatness, it suffices to show that if R is reduced, so is S.
Now there is an imbedding R →

∏
p minimalR/p of R into a product of local domains. We get an

imbedding of S into a product of local rings
∏
S/pS. Each S/pS is essentially of finite type over

R/p, and local-étale over it too.
We are reduced to showing that each S/pS is reduced. So we need only show that a local-étale,

essentially of finite type local ring over a local noetherian domain is reduced.
So suppose A is a local noetherian domain, B a local-étale, essentially of finite type local A-

algebra. We want to show that B is reduced, and then we will be done. Now A imbeds into its
field of fractions K; thus B imbeds into B⊗AK. Then B⊗AK is formally unramified over K and
is essentially of finite type over K. This means that B ⊗A K is a product of fields by the usual
classification, and is in particular reduced. Thus B was itself reduced. N

To motivate the proof that normality is preserved, though, we indicate another proof of this
fact, which does not even use the essentially of finite type hypothesis. Recall that a noetherian
ring A is reduced if and only if for every prime p ∈ SpecA of height zero, Ap is regular (i.e., a
field), and for every prime p of height > 0, Rp has depth at least one. See ??.

So suppose R→ S is a local-étale and suppose R is reduced. We are going to apply the above
criterion, together with the results already proved, to show that S is reduced.

Let q ∈ SpecS be a minimal prime, whose image in SpecR is p. Then we have a morphism

Rp → Sq

which is locally of finite type, flat, and indeed local-étale, as it is formally unramified (as R → S
was). We know that dimRp = dimSq by Proposition 3.16, and consequently since Rp is regular,
so is Sq. Thus the localization of S at any minimal prime is regular.

Next, if q ∈ SpecS is such that Sq has height has positive dimension, then Rp → Sq (where p
is as above) is local-étale and consequently dimRq = dimSq > 0. Thus, depthRp = depthSq > 0
because R was reduced. It follows that the above criterion is valid for S.

Recall that a noetherian ring is a normal domain if it is integrally closed in its quotient field,
and simply normal if all its localizations are normal domains; this equates to the ring being a
product of normal domains. We want to show that this is preserved under étaleness. To do this,
we shall use a criterion similar to that used at the end of the last section. We have the following
important criterion for normality.

Theorem 3.20 (Serre) Let A be a noetherian ring. Then A is normal if and only if for all
p ∈ SpecR:

1. If dimAp ≤ 1, then Ap is regular.

2. If dimAp ≥ 2, then depthAp ≥ 2.

This is discussed in ??.
From this, we will be able to prove without difficulty the next result.

Proposition 3.21 Let (R,m) → (S, n) be a local-étale morphism of noetherian local rings. Sup-
pose S is essentially of finite type over R. Then S is normal if and only if R is normal.

Proof. This is proved in the same manner as the result for reducedness was proved at the end of
the previous subsection. For instance, suppose R normal. Let q ∈ SpecS be arbitrary, contracting
to p ∈ SpecR. If dimSq ≤ 1, then dimRp ≤ 1 so that Rp, hence Sq is regular. If dimSq ≥ 2, then
dimRp ≥ 2, so depthSq = depthRp ≥ 2. N

We mention a harder result:
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Theorem 3.22 If f : (R,m) → (S, n) is local-unramified, injective, and essentially of finite type,
with R normal and noetherian, then R→ S is local-étale. Thus, an injective unramified morphism
of finite type between noetherian rings, whose source is a normal domain, is étale.

A priori, it is not obvious at all that R → S should be flat. In fact, proving flatness directly
seems to be difficult, and we will have to use the local structure theory for unramified morphisms
together with nontrivial facts about étale morphisms to establish this result.

Proof. We essentially follow [Mil80] in the proof. Clearly, only the local statement needs to be
proved.

We shall use the (non-elementary, relying on ZMT) structure theory of unramified morphisms,
which implies that there is a factorization of R→ S via

(R,m)
g→ (T, q)

h→ (S, n),

where all morphisms are local homomorphisms of local rings, g : R→ T is local-étale and essentially
of finite type, and h : T → S is surjective. This was established in ??.

We are going to show that h is an isomorphism, which will complete the proof. Let K be the
quotient field of R. Consider the diagram

R

��

g // T
h //

��

S

��
K

g⊗1// T ⊗R K
h⊗1 // S ⊗R K.

Now the strategy is to show that h is injective. We will prove this by chasing around the diagram.
Here R → S is formally unramified and essentially of finite type, so K → S ⊗R K is too,

and S ⊗R K is in particular a finite product of separable extensions of K. The claim is that it
is nonzero; this follows because f : R → S is injective, and S → S ⊗R K is injective because
localization is exact. Consequently R→ S ⊗R K is injective, and the target must be nonzero.

As a result, the surjective map h ⊗ 1 : T ⊗R K → S ⊗R K is nonzero. Now we claim that
T ⊗R K is a field. Indeed, it is an étale extension of K (by base-change), so it is a product of
fields. Moreover, T is a normal domain since R is (by Proposition 3.21) and R → T is injective
by flatness, so the localization T ⊗RK is a domain as well. Thus it must be a field. In particular,
the map h⊗ 1 : T ⊗RK → S ⊗RK is a surjection from a field to a product of fields. It is thus an
isomorphism.

Finally, we can show that h is injective. Indeed, it suffices to show that the composite T →
T ⊗R K → S ⊗R K is injective. But the first map is injective as it is a map from a domain to a
localization, and the second is an isomorphism (as we have just seen). So h is injective, hence an
isomorphism. Thus T ' S, and we are done. N

Note that this fails if the source is not normal.

Example 3.23 Consider a nodal cubic C given by y2 = x2(x − 1) in A2
k over an algebraically

closed field k. As is well-known, this curve is smooth except at the origin. There is a map C → C
where C is the normalization; this is a finite map, and a local isomorphism outside of the origin.

The claim is that C → C is unramified but not étale. If it were étale, then C would be smooth
since C is. So it is not étale. We just need to see that it is unramified, and for this we need only
see that the map is unramified at the origin.

We may compute: the normalization of C is given by C = A1
k, with the map

t 7→ (t2 + 1, t(t2 + 1)).
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Now the two points ±1 are both mapped to 0. We will show that

OC,0 → OA1
k,1

is local-unramified; the other case is similar. Indeed, any line through the origin which is not a
tangent direction will be something in mC,0 that is mapped to a uniformizer in OA1

k,1
. For instance,

the local function x ∈ OC,0 is mapped to the function t 7→ t2 + 1 on A1
k, which has a simple zero

at 1 (or −1). It follows that the maximal ideal mC,0 generates the maximal ideal of OA1
k,1

(and

similarly for −1).

3.4 Application to smooth morphisms

We now want to show that the class of étale morphisms essentially determines the class of smooth
morphisms. Namely, we are going to show that smooth morphisms are those that look étale-locally
like étale morphisms followed by projection from affine space. (Here “projection from affine space”
is the geometric picture: in terms of commutative rings, this is the embedding A ↪→ A[x1, . . . , xn].)

Here is the first goal:

Theorem 3.24 Let f : (A,m)→ (B, n) be an essentially of finite presentation, local morphism of
local rings. Then f is formally smooth if and only if there exists a factorization

A→ C → B

where (C, q) is a localization of the polynomial ring A[X1, . . . , Xn] at a prime ideal with A → C
the natural embedding, and C → B a formally étale morphism.

For convenience, we have stated this result for local rings, but we can get a more general
criterion as well (see below). This states that smooth morphisms, étale locally, look like the
imbedding of a ring into a polynomial ring. In [SGA03], this is in fact how smooth morphisms are
defined.

Proof. First assume f smooth. We know then that ΩB/A is a finitely generated projective B-
module, hence free, say of rank n. There are t1, . . . , tn ∈ B such that {dti} forms a basis for
ΩB/A: namely, just choose a set of such elements that forms a basis for ΩB/A⊗B B/n (since these
elements generate ΩB/A).

Now these elements {ti} give a map of rings A[X1, . . . , Xn] → B. We let q be the pre-image
of n (so n contains the image of m ⊂ A), and take C = C = A[X1, . . . , Xn]q. This gives local
homomorphisms A→ C,C → B. We only need to check that C → B is étale. But the map

ΩC/A ⊗C B → ΩB/A

is an isomorphism, by construction. Since C,B are both formally smooth over A, we find that
C → B is étale by the characterization of étaleness via cotangent vectors (Proposition 3.10).

The other direction, that f is formally smooth if it admits such a factorization, is clear because
the localization of a polynomial algebra is formally smooth, and a formally étale map is clearly
formally smooth. N

Corollary 3.25 Let (R,m) → (S, n) be a formally smooth, essentially of finite type morphism of
noetherian rings. Then if R is normal, so is S. Ditto for reduced.

Proof.
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3.5 Lifting under nilpotent extensions

In this subsection, we consider the following question. Let A be a ring, I ⊂ A an ideal of square
zero, and let A0 = A/I. Suppose B0 is a flat A0-algebra (possibly satisfying other conditions).
Then, we ask if there exists a flat A-algebra B such that B0 ' B ⊗A A0 = B/IB. If there is, we
say that B can be lifted along the nilpotent thickening from B0 to B—we think of B as the mostly
the same as B0, but with some additional “fuzz” (given by the additional nilpotents).

We are going to show that this can always be done for étale algebras, and that this always can
be done locally for smooth algebras. As a result, we will get a very simple characterization of what
finiteétale algebras over a complete (and later, henselian) local ring look like: they are the same
as étale extensions of the residue field (which we have classified completely).

In algebraic geometry, one spectacular application of these ideas is Grothendieck’s proof in
[SGA03] that a smooth projective curve over a field of characteristic p can be “lifted” to charac-
teristic zero. The idea is to lift it successively along nilpotent thickenings of the base field, bit by
bit (for instance, Z/pnZ of Z/pZ), by using the techniques of this subsection; then, he uses hard
existence results in formal geometry to show that this compatible system of nilpotent thickenings
comes from a curve over a DVR (e.g. the p-adic numbers). The application in mind is the (partial)
computation of the étale fundamental group of a smooth projective curve over a field of positive
characteristic. We will only develop some of the more basic ideas in commutative algebra.

Namely, here is the main result. For a ring A, let Et(A) denote the category of étale A-
algebras (and A-morphisms). Given A→ A′, there is a natural functor Et(A)→ Et(A′) given by
base-change.

Theorem 3.26 Let A → A0 be a surjective morphism whose kernel is nilpotent. Then Et(A) →
Et(A0) is an equivalence of categories.

SpecA and SpecA0 are identical topologically, so this result is sometimes called the topological
invariance of the étale site. Let us sketch the idea before giving the proof. Full faithfulness is
the easy part, and is essentially a restatement of the nilpotent lifting property. The essential
surjectivity is the non-elementary part, and relies on the local structure theory. Namely, we will
show that a standard étale morphism can be lifted (this is essentially trivial). Since an étale
morphism is locally standard étale, we can locally lift an étale A0-algebra to an étale A-algebra.
We next “glue” the local liftings using the full faithfulness.

Proof. Without loss of generality, we can assume that the ideal defining A0 has square zero. Let
B,B′ be étale A-algebras. We need to show that

HomA(B,B′) = HomA0(B0, B
′
0),

whereB0, B
′
0 denote the reductions toA0 (i.e. the base change). But HomA0

(B0, B
′
0) = HomA(B,B′0),

and this is clearly the same as HomA(B,B′) by the definition of an étale morphism. So full faith-
fulness is automatic.

The trickier part is to show that any étale A0-algebra can be lifted to an étale A-algebra. First,
note that a standard étale A0-algebra of the form (A0[X]/(P (X))Q can be lifted to A—just lift
P and Q. The condition that it be standard étale is invertibility of P ′, which is unaffected by
nilpotents.

Now the strategy is to glue these appropriately. The details should be added at some point,
but they are not. TO BE ADDED: details N
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Séminaire de géométrie algébrique du Bois Marie 1960–61. [Algebraic Geometry Seminar
of Bois Marie 1960-61], Directed by A. Grothendieck, With two papers by M. Ray-
naud, Updated and annotated reprint of the 1971 original [Lecture Notes in Math., 224,
Springer, Berlin; MR0354651 (50 #7129)].

[Tam94] Günter Tamme. Introduction to étale cohomology. Universitext. Springer-Verlag, Berlin,
1994. Translated from the German by Manfred Kolster.

[Vis08] Angelo Vistoli. Notes on Grothendieck topologies, fibered categories, and descent theory.
Published in FGA Explained, 2008. arXiv:math/0412512v4.

[Was97] Lawrence C. Washington. Introduction to cyclotomic fields, volume 83 of Graduate Texts
in Mathematics. Springer-Verlag, New York, second edition, 1997.

[Wei94] Charles A. Weibel. An introduction to homological algebra, volume 38 of Cambridge
Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1994.

35


	Étale, unramified, and smooth morphisms
	Unramified morphisms
	Definition
	Unramified extensions of a field
	Conormal modules and universal thickenings

	Smooth morphisms
	Definition
	Quotients of formally smooth rings
	The Jacobian criterion
	The fiberwise criterion for smoothness
	Formal smoothness and regularity
	A counterexample

	Étale morphisms
	Definition
	The local structure theory
	Permanence properties of étale morphisms
	Application to smooth morphisms
	Lifting under nilpotent extensions



