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Chapter 10

Dimension theory

Dimension theory assigns to each commutative ring—say, noetherian—an invariant called the
dimension. The most standard definition, that of Krull dimension (which we shall not adopt at
first), defines the dimension in terms of the maximal lengths of ascending chains of prime ideals.
In general, however, the geometric intuition behind dimension is that it should assign to an affine
ring—say, one of the form C[x1, . . . , Xn]/I—something like the “topological dimension” of the
affine variety in Cn cut out by the ideal I.

In this chapter, we shall obtain three different expressions for the dimension of a noetherian
local ring (R,m), each of which will be useful at different times in proving results.

§1 The Hilbert function and the dimension of a local ring

1.1 Integer-valued polynomials

It is now necessary to do a small amount of general algebra.
Let P ∈ Q[t]. We consider the question of when P maps the integers Z, or more generally

the sufficiently large integers, into Z. Of course, any polynomial in Z[t] will do this, but there are
others: consider 1

2 (t2 − t), for instance.

Proposition 1.1 Let P ∈ Q[t]. Then P (m) is an integer for m� 0 integral if and only if P can
be written in the form

P (t) =
∑
n

cn

(
t

n

)
, cn ∈ Z.

In particular, P (Z) ⊂ Z.

So P is a Z-linear function of binomial coefficients.

Proof. Note that the set
{(

t
n

)}
n∈Z≥0

forms a basis for the set of polynomials Q[t]. It is thus clear

that P (t) can be written as a rational combination
∑
cn
(
t
n

)
for the cn ∈ Q. We need to argue that

the cn ∈ Z in fact.
Consider the operator ∆ defined on functions Z→ C as follows:

(∆f)(m) = f(m)− f(m− 1).

It is obvious that if f takes integer values for m � 0, then so does ∆f . It is also easy to check
that ∆

(
t
n

)
=
(

t
n−1
)
.

By looking at the function ∆P =
∑
cn
(

t
n−1
)

(which takes values in Z), it is easy to see that
the cn ∈ Z by induction on the degree. It is also easy to see directly that the binomial coefficients
take values in Z at all arguments. N
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1.2 Definition and examples

Let R be a ring.

Question What is a good definition for dim(R)? Actually, more generally, what is the dimension
of R at a given “point” (i.e. prime ideal)?

Geometrically, think of SpecR, for any ring; pick some point corresponding to a maximal ideal
m ⊂ R. We want to define the dimension of R at m. This is to be thought of kind of like
“dimension over the complex numbers,” for algebraic varieties defined over C. But it should be
purely algebraic. What might you do?

Here is an idea. For a topological space X to be n-dimensional at x ∈ X, there should be n
coordinates at the point x. In other words, the point x should be uniquely defined by the zero
locus of n points on the space. Motivated by this, we could try defining dimmR to be the number
of generators of m. However, this is a bad definition, as m may not have the same number of
generators as mRm. In other words, it is not a truly local definition.

Example 1.2 Let R be a noetherian integrally closed domain which is not a UFD. Let p ⊂ R be
a prime ideal which is minimal over a principal ideal but which is not itself principal. Then pRp

is generated by one element, as we will eventually see, but p is not.

We want our definition of dimension to be local. So this leads us to:

Definition 1.3 If R is a (noetherian) local ring with maximal ideal m, then the embedding
dimension of R, denoted EmdimR is the minimal number of generators for m. If R is a noetherian
ring and p ⊂ R a prime ideal, then the embedding dimension at p is that of the local ring Rp.

In the above definition, it is clearly sufficient to study what happens for local rings, and we
impose that restriction for now. By Nakayama’s lemma, the embedding dimension is the minimal
number of generators of m/m2, or the R/m-dimension of that vector space:

EmdimR = dimR/mm/m
2.

In general, however, the embedding dimension is not going to coincide with the intuitive “geo-
metric” dimension of an algebraic variety.

Example 1.4 Let R = C[t2, t3] ⊂ C[t], which is the coordinate ring of a cubic curve y2 = x3 as
R ' C[x, y]/(x2 − y3) via x = t3, y = t2. Let us localize at the prime ideal p = (t2, t3): we get Rp.

Now SpecR is singular at the origin. In fact, as a result, pRp ⊂ Rp needs two generators, but
the variety it corresponds to is one-dimensional.

So the embedding dimension is the smallest dimension into which you can embed R into a
smooth space. But for singular varieties this is not the dimension we want.

So instead of considering simply m/m2, let us consider the sequence of finite-dimensional vector
spaces

mk/mk+1.

Computing these dimensions as a function of k gives some invariant that describes the local geom-
etry of SpecR.

We shall eventually prove:

Theorem 1.5 Let (R,m) be a local noetherian ring. Then there exists a polynomial f ∈ Q[t] such
that

f(n) = `(R/mn) =

n−1∑
i=0

dimmi/mi+1 ∀n� 0.

Moreover, deg f ≤ dimm/m2.
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Note that this polynomial is well-defined, as any two polynomials agreeing for large n coincide.
Note also that R/mn is artinian so of finite length, and that we have used the fact that the length
is additive for short exact sequences. We would have liked to write dimR/mn, but we can’t, in
general, so we use the substitute of the length.

Based on this, we define:

Definition 1.6 The dimension of the local ring R is the degree of the polynomial f above. For
an arbitrary noetherian ring R, we define dimR = supp∈SpecR dim(Rp).

Let us now do a few example computations.

Example 1.7 (The affine line) Consider the local ring (R,m) = C[t](t). Then m = (t) and

mk/mk+1 is one-dimensional, generated by tk. In particular, the ring has dimension one.

Example 1.8 (A singular curve) Consider R = C[t2, t3](t2,t3), the local ring of y2 = x3 at zero.
Then mn is generated by t2n, t2n+1, . . . . mn+1 is generated by t2n+2, t2n+3, . . . . So the quotients
all have dimension two. The dimension of these quotients is a little larger than in Example 1.7,
but they do not grow. The ring still has dimension one.

Example 1.9 (The affine plane) Consider R = C[x, y](x,y). Then mk is generated by polyno-

mials in x, y that are homogeneous in degree k. So mk/mk+1 has dimensions that grow linearly in
k. This is a genuinely two-dimensional example.

It is this difference between constant linear and quadratic growth in R/mn as n→∞, and not
the size of the initial terms, that we want for our definition of dimension.

Let us now generalize Example 1.7 and Example 1.9 above to affine spaces of arbitrary dimen-
sion.

Example 1.10 (Affine space) Consider R = C[x1, . . . , xn](x1,...,xn). This represents the variety
Cn = AnC near the origin geometrically, so it should intuitively have dimension n. Let us check
that it does.

Namely, we need to compute the polynomial f above. Here R/mk looks like the set of poly-
nomials of degree < k over C. The dimension as a vector space of this is given by some binomial
coefficient

(
n+k−1
n

)
. This is a polynomial in k of degree n. In particular, `(R/mk) grows like kn.

So R is n-dimensional.

Finally, we offer one more example, showing that DVRs have dimension one. In fact, among
noetherian integrally closed local domains, DVRs are characterized by this property (?? of ??).

Example 1.11 (The dimension of a DVR) Let R be a DVR. Then mk/mk+1 is of length one
for each k. So R/mk has length k. Thus we can take f(t) = t, so R has dimension one.

1.3 The Hilbert function is a polynomial

While we have given a definition of dimension and computed various examples, we have yet to
check that our definition is well-defined. Namely, we have to prove Theorem 1.5.

Proof (Proof of Theorem 1.5). Fix a noetherian local ring (R,m). We are to show that `(R/mn)
is a polynomial for n � 0. We also have to bound this degree by dimR/mm/m

2, the embedding
dimension. We will do this by reducing to a general fact about graded modules over a polynomial
ring.

Let S =
⊕

nm
n/mn+1. Then S has a natural grading, and in fact it is a graded ring in a

natural way from the multiplication map

mn1 ×mn2 → mn1+n2 .
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In fact, S is the associated graded ring of the m-adic filtration. Note that S0 = R/m is a field,
which we will denote by k. So S is a graded k-algebra.

Lemma 1.12 S is a finitely generated k-algebra. In fact, S can be generated by at most Emdim(R)
elements.

Proof. Let x1, . . . , xr be generators for m with r = Emdim(R). They (or rather, their images) are
thus a k-basis for m/m2. Then their images in m/m2 ⊂ S generate S. This follows because S1

generates S as an S0-algebra: the products of the elements in m generate the higher powers of m.N

So S is a graded quotient of the polynomial ring k[t1, . . . , tr], with ti mapping to xi. In
particular, S is a finitely generated, graded k[t1, . . . , tr]-module. Note that also `(R/mn) =
dimk(S0) + · · · + dimk(Sn−1) for any n, thanks to the filtration. This is the invariant we are
interested in.

It will now suffice to prove the following more general proposition.

Proposition 1.13 Let M be any finitely generated graded module over the polynomial ring k[x1, . . . , xr].
Then there exists a polynomial f+M ∈ Q[t] of degree ≤ r, such that

f+M (t) =
∑
s≤t

dimMs t� 0.

Applying this to M = S will give the desired result. We can forget about everything else, and look
at this problem over graded polynomial rings.

This function is called the Hilbert function.

Proof (Proof of Proposition 1.13). Note that if we have an exact sequence of graded modules over
the polynomial ring,

0→M ′ →M →M ′′ → 0,

and polynomials fM ′ , fM ′′ as in the proposition, then fM exists and

fM = fM ′ + fM ′′ .

This is obvious from the definitions. Next, we observe that if M is a finitely generated graded
module, over two different polynomial rings, but with the same grading, then the existence (and
value) of fM is independent of which polynomial ring one considers. Finally, we observe that it is
sufficient to prove that fM (t) = dimMt is a polynomial in t for t� 0.

We will use these three observations and induct on n.
If n = 0, then M is a finite-dimensional graded vector space over k, and the grading must be

concentrated in finitely many degrees. Thus the result is evident as fM (t) will just equal dimM
(which will be the appropriate dimension for t� 0).

Suppose n > 0. Then consider the filtration of M

0 ⊂ ker(x1 : M →M) ⊂ ker(x21 : M →M) ⊂ · · · ⊂M.

This must stabilize by noetherianness at some M ′ ⊂M . Each of the quotients ker(xi1)/ ker(xi+1
1 )

is a finitely generated module over k[x1, . . . , xn]/(x1), which is a smaller polynomial ring. So each
of these quotients ker(xi+1

1 )/ ker(xi1) has a Hilbert function of degree ≤ n − 1 by the inductive
hypothesis.

Climbing up the filtration, we see that M ′ has a Hilbert function which is the sum of the Hilbert
functions of these quotients ker(xi+1

1 )/ ker(xi1). In particular, fM ′ exists. If we show that fM/M ′

exists, then fM necessarily exists. So we might as well show that the Hilbert function fM exists
when x1 is a non-zerodivisor on M .
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So, we have reduced to the case where M
x1→M is injective. Now M has a filtration

M ⊃ x1M ⊃ x21M ⊃ . . .

which is an exhaustive filtration of M in that nothing can be divisible by powers of x1 over and
over, or the degree would not be finite. So it follows that

⋂
xm1 M = 0.

Let N = M/x1M , which is isomorphic to xm1 M/xm+1
1 M since M

x1→ M is injective. Here N
is a finitely generated graded module over k[x2, . . . , xn], and by the inductive hypothesis on n, we
see that there is a polynomial f+N of degree ≤ n− 1 such that

f+N (t) =
∑
t′≤t

dimNt′ , t� 0.

Fix t� 0 and consider the k-vector space Mt, which has a finite filtration

Mt ⊃ (x1M)t ⊃ (x21M)t ⊃ . . .

which has successive quotients that are the graded pieces of N ' M/x1M ' x1M/x21M ' . . . in
dimensions t, t− 1, . . . . We find that

(x21M)t/(x
3
1M)t ' Nt−2,

for instance. Summing this, we find that

dimMt = dimNt + dimNt−1 + . . . .

The sum above is actually finite. In fact, by finite generation, there is K � 0 such that dimNq = 0
for q < −K. From this, we find that

dimMt =

t∑
t′=−K

dimNt′ ,
N

which implies that dimMt is a polynomial for t� 0. This completes the proof. N

Let (R,m) a noetherian local ring and M a finitely generated R-module.

Proposition 1.14 `(M/mmM) is a polynomial for m� 0.

Proof. This follows from Proposition 1.13, and in fact we have essentially seen the argument above.
Indeed, we consider the associated graded module

N =
⊕

mkM/mk+1M,

which is finitely generated over the associated graded ring⊕
mk/mk+1. N

Consequently, the graded pieces of N have dimensions growing polynomially for large degrees.
This implies the result.

Definition 1.15 We define the Hilbert function HM (m) to be the unique polynomial such that

HM (m) = `(M/mmM), m� 0.

It is clear, incidentally, that HM is integer-valued, so we see by Proposition 1.1 that HM is a
Z-linear combination of binomial coefficients.
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1.4 The dimension of a module

Let R be a local noetherian ring with maximal ideal m. We have seen (Proposition 1.14) that there
is a polynomial H(t) with

H(t) = `(R/mt), t� 0.

Earlier, we defined the dimension of R is the degree of f+M . Since the degree of the Hilbert
function is at most the number of generators of the polynomial ring, we saw that

dimR ≤ EmdimR.

Armed with the machinery of the Hilbert function, we can extend this definition to modules.

Definition 1.16 If R is local noetherian, and N a finite R-module, then N has a Hilbert poly-
nomial HN (t) which when evaluated at t � 0 gives the length `(N/mtN). We say that the
dimension of N is the degree of this Hilbert polynomial.

Clearly, the dimension of the ring R is the same thing as that of the module R.
We next show that the dimension behaves well with respect to short exact sequences. This is

actually slightly subtle since, in general, tensoring with R/mt is not exact; it turns out to be close
to being exact by the Artin-Rees lemma. On the other hand, the corresponding fact for modules
over a polynomial ring is very easy, as no tensoring was involved in the definition.

Proposition 1.17 Suppose we have an exact sequence

0→M ′ →M →M ′′ → 0

of graded modules over a polynomial ring k[x1, . . . , xn]. Then

fM (t) = fM ′(t) + fM ′′(t), f+M (t) = f+M ′(t) + f+M ′′(t).

As a result, deg fM = max deg fM ′ ,deg fM ′′ .

Proof. The first part is obvious as the dimension is additive on vector spaces. The second part
follows because Hilbert functions have nonnegative leading coefficients. N

Proposition 1.18 Fix an exact sequence

0→ N ′ → N → N ′′ → 0

of finite R-modules. Then dimN = max(dimN ′,dimN ′′).

Proof. We have an exact sequence

0→ K → N/mtN → N ′′/mtN ′′ → 0

where K is the kernel. Here K = (N ′+mtN)/mtN = N ′/(N ′∩mtN). This is not quite N ′/mtN ′,
but it’s pretty close. We have a surjection

N ′/mtN � N ′/(N ′ ∩mtN) = K.

In particular,
`(K) ≤ `(N ′/mtN ′).

On the other hand, we have the Artin-Rees lemma, which gives an inequality in the opposite
direction. We have a containment

mtN ′ ⊂ N ′ ∩mtN ⊂ mt−cN ′

8
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for some c. This implies that `(K) ≥ `(N ′/mt−cN ′).
Define M =

⊕
mtN/mt+1N , and define M ′,M ′′ similarly in terms of N ′, N ′′. Then we have

seen that

f+M (t− c) ≤ `(K) ≤ f+M (t).

We also know that the length of K plus the length of N ′′/mtN ′′ is f+M (t), i.e.

`(K) + f+M ′′(t) = f+M (t).

Now the length of K is a polynomial in t which is pretty similar to f+M ′ , in that the leading
coefficient is the same. So we have an approximate equality f+M ′(t)+f+M ′′(t) ' f

+
M (t). This implies

the result since the degree of f+M is dimN (and similarly for the others). N

Proposition 1.19 dimR is the same as dimR/RadR.

I.e., the dimension doesn’t change when you kill off nilpotent elements, which is what you would
expect, as nilpotents don’t affect Spec(R).

Proof. For this, we need a little more information about Hilbert functions. We thus digress sub-
stantially.

Finally, let us return to the claim about dimension and nilpotents. Let R be a local noetherian
ring and I = Rad(R). Then I is a finite R-module. In particular, I is nilpotent, so In = 0 for
n� 0. We will show that

dimR/I = dimR/I2 = . . .

which will imply the result, as eventually the powers become zero.
In particular, we have to show for each k,

dimR/Ik = dimR/Ik+1.

There is an exact sequence

0→ Ik/Ik+1 → R/Ik+1 → R/Ik → 0.

The dimension of these rings is the same thing as the dimensions as R-modules. So we can use
this short exact sequence of modules. By the previous result, we are reduced to showing that

dimIk/Ik+1 ≤ dimR/Ik.

Well, note that I kills Ik/Ik+1. In particular, Ik/Ik+1 is a finitely generated R/Ik-module. There
is an exact sequence ⊕

N

R/Ik → Ik/Ik+1 → 0

which implies that dimIk/Ik+1 ≤ dim
⊕

N R/I
k = dimR/Ik. N

Example 1.20 Let p ⊂ C[x1, . . . , xn] and let R = (C[x1, . . . , xn]/p)m for some maximal ideal m.
What is dimR? What does dimension mean for coordinate rings over C?

Recall by the Noether normalization theorem that there exists a polynomial ring C[y1, . . . , ym]
contained in S = C[x1, . . . , xn]/p and S is a finite integral extension over this polynomial ring. We
claim that

dimR = m.

There is not sufficient time for that today.

9
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1.5 Dimension depends only on the support

Let (R,m) be a local noetherian ring. Let M be a finitely generated R-module. We defined the
Hilbert polynomial of M to be the polynomial which evaluates at t � 0 to `(M/mtM). We
proved last time that such a polynomial always exists, and called its degree the dimension of M .
However, we shall now see that dimM really depends only on the support1 suppM . In this sense,
the dimension is really a statement about the topological space suppM ⊂ SpecR, not about M
itself.

In other words, we will prove:

Proposition 1.21 dimM depends only on suppM .

In fact, we shall show:

Proposition 1.22 dimM = maxp∈suppM dimR/p.

Proof. By Proposition 2.9 in Chapter 5, there is a finite filtration

0 = M0 ⊂M1 ⊂ · · · ⊂Mm = M,

such that each of the successive quotients is isomorphic to R/pi ⊂ R for some prime ideal pi. Given
a short exact sequence of modules, we know that the dimension in the middle is the maximum of
the dimensions at the two ends (Proposition 1.18). Iterating this, we see that the dimension of M
is the maximum of the dimension of the successive quotients Mi/Mi−1.

But the pi’s that occur are all in suppM , so we find

dimM = max
pi

R/pi ≤ max
p∈suppM

dimR/p.

We must show the reverse inequality. But fix any prime p ∈ suppM . Then Mp 6= 0, so one of
the R/pi localized at p must be nonzero, as localization is an exact functor. Thus p must contain
some pi. So R/p is a quotient of R/pi. In particular,

dimR/p ≤ dimR/pi. N

Having proved this, we throw out the notation dimM , and henceforth write instead dim suppM .

Example 1.23 Let R′ = C[x1, . . . , xn]/p. Noether normalization says that there exists a finite
injective map C[y1, . . . , ya]→ R′. The claim is that

dimR′m = a

for any maximal ideal m ⊂ R′. We are set up to prove a slightly weaker definition. In particular
(see below for the definition of the dimension of a non-local ring), by the proposition, we find the
weaker claim

dimR′ = a,

as the dimension of a polynomial ring C[y1, . . . , ya] is a. (I don’t think we have proved this
yet.)

1 Recall that suppM = {p : Mp 6= 0}.
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§2 Other definitions and characterizations of dimension

2.1 The topological characterization of dimension

We now want a topological characterization of dimension. So, first, we want to study how dimension
changes as we do things to a module. Let M be a finitely generated R-module over a local
noetherian ring R. Let x ∈ m for m as the maximal ideal. You might ask

What is the relation between dim suppM and dim suppM/xM?

Well, M surjects onto M/xM , so we have the inequality ≥. But we think of dimension as describing
the number of parameters you need to describe something. The number of parameters shouldn’t
change too much with going from M to M/xM . Indeed, as one can check,

suppM/xM = suppM ∩ V (x)

and intersecting suppM with the “hypersurface” V (x) should shrink the dimension by one.
We thus make:

Prediction

dim suppM/xM = dim suppM − 1.

Obviously this is not always true, e.g. if x acts by zero on M . But we want to rule that out. Under
reasonable cases, in fact, the prediction is correct:

Proposition 2.1 Suppose x ∈ m is a nonzerodivisor on M . Then

dim suppM/xM = dim suppM − 1.

Proof. To see this, we look at Hilbert polynomials. Let us consider the exact sequence

0→ xM →M →M/xM → 0

which leads to an exact sequence for each t,

0→ xM/(xM ∩mtM)→M/mtM →M/(xM + mtM)→ 0.

For t large, the lengths of these things are given by Hilbert polynomials, as the thing on the right
is M/xM ⊗R R/mt. We have

f+M (t) = f+M/xM (t) + `(xM/(xM ∩mtM), t� 0.

In particular, `(xM/(xM ∩mtM)) is a polynomial in t. What can we say about it? Well, xM 'M
as x is a nonzerodivisor. In particular

xM/(xM ∩mtM) 'M/Nt

where
Nt =

{
a ∈M : xa ∈ mtM

}
.

In particular, Nt ⊃ mt−1M . This tells us that `(M/Nt) ≤ `(M/mt−1M) = f+M (t − 1) for t � 0.
Combining this with the above information, we learn that

f+M (t) ≤ f+M/xM (t) + f+M (t− 1),

11
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which implies that f+M/xM (t) is at least the successive difference f+M (t) − f+M (t − 1). This last

polynomial has degree dim suppM−1. In particular, f+M/xM (t) has degree at least dim suppM−1.

This gives us one direction, actually the hard one. We showed that intersecting something with
codimension one doesn’t drive the dimension down too much.

Let us now do the other direction. We essentially did this last time via the Artin-Rees lemma.
We know that Nt = {a ∈M : xa ∈ mt}. The Artin-Rees lemma tells us that there is a constant
c such that Nt+c ⊂ mtM for all t. Therefore, `(M/Nt+c) ≥ `(M/mtM) = f+M (t), t � 0. Now
remember the exact sequence 0 → M/Nt → M/mtM → M/(xM + mtM) → 0. We see from this
that

`(M/mtM) = `(M/Nt) + f+M/xM (t) ≥ f+M (t− c) + f+M/xM (t), t� 0,

which implies that
f+M/xM (t) ≤ f+M (t)− f+M (t− c),

so the degree must go down. And we find that deg f+M/xM < deg f+M . N

This gives us an algorithm of computing the dimension of an R-module M . First, it reduces to
computing dimR/p for p ⊂ R a prime ideal. We may assume that R is a domain and that we are
looking for dimR. Geometrically, this corresponds to taking an irreducible component of SpecR.

Now choose any x ∈ R such that x is nonzero but noninvertible. If there is no such element,
then R is a field and has dimension zero. Then compute dimR/x (recursively) and add one.

Notice that this algorithm said nothing about Hilbert polynomials, and only talked about the
structure of prime ideals.

2.2 Recap

Last time, we were talking about dimension theory. Recall that R is a local noetherian ring with
maximal ideal m, M a finitely generated R-module. We can look at the lengths `(M/mtM) for
varying t; for t � 0 this is a polynomial function. The degree of this polynomial is called the
dimension of suppM .

Remark If M = 0, then we define dim suppM = −1 by convention.

Last time, we showed that if M 6= 0 and x ∈ m such that x is a nonzerodivisor on M (i.e.

M
x→M injective), then

dim suppM/xM = dim suppM − 1.

Using this, we could give a recursion for calculating the dimension. To compute dimR = dim SpecR,
we note three properties:

1. dimR = supp a minimal primeR/p. Intuitively, this says that a variety which is the union of
irreducible components has dimension equal to the maximum of these irreducibles.

2. dimR = 0 for R a field. This is obvious from the definitions.

3. If R is a domain, and x ∈ m − {0}, then dimR/(x) + 1 = dimR. This is obvious from the
boxed formula as x is a nonzerodivisor.

These three properties uniquely characterize the dimension invariant.
More precisely, if d : {local noetherian rings} → Z≥0 satisfies the above three proper-

ties, then d = dim.

Proof. Induction on dimR. It is clearly sufficient to prove this for R a domain. If R is a field,
then it’s clear; if dimR > 0, the third condition lets us reduce to a case covered by the inductive
hypothesis (i.e. go down). N

12
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Let us rephrase 3 above:

3’: If R is a domain and not a field, then

dimR = sup
x∈m−0

dimR/(x) + 1.

Obviously 3’ implies 3, and it is clear by the same argument that 1,2, 3’ characterize the notion of
dimension.

2.3 Krull dimension

We shall now define another notion of dimension, and show that it is equivalent to the older one
by showing that it satisfies these axioms.

Definition 2.2 Let R be a commutative ring. A chain of prime ideals in R is a finite sequence

p0 ( p1 ( · · · ( pn.

This chain is said to have length n.

Definition 2.3 The Krull dimension of R is equal to the maximum length of any chain of prime
ideals. This might be ∞, but we will soon see this cannot happen for R local and noetherian.

Remark For any maximal chain {pi, 0 ≤ i ≤ n} of primes (i.e. which can’t be expanded), we
must have that p0 is minimal prime and pn a maximal ideal.

Theorem 2.4 For a noetherian local ring R, the Krull dimension of R exists and is equal to the
usual dimR.

Proof. We will show that the Krull dimension satisfies the above axioms. For now, write Krdim
for Krull dimension.

1. First, note that Krdim(R) = maxp∈R minimal Krdim(R/p). This is because any chain of prime
ideals in R contains a minimal prime. So any chain of prime ideals in R can be viewed as a
chain in some R/p, and conversely.

2. Second, we need to check that Krdim(R) = 0 for R a field. This is obvious, as there is
precisely one prime ideal.

3. The third condition is interesting. We must check that for (R,m) a local domain,

Krdim(R) = max
x∈m−{0}

Krdim(R/(x)) + 1.

If we prove this, we will have shown that condition 3’ is satisfied by the Krull dimension. It
will follow by the inductive argument above that Krdim(R) = dim(R) for any R. There are
two inequalities to prove. First, we must show

Krdim(R) ≥ Krdim(R/x) + 1, ∀x ∈ m− 0.

So suppose k = Krdim(R/x). We want to show that there is a chain of prime ideals of length
k + 1 in R. So say p0 ( · · · ( pk is a chain of length k in R/(x). The inverse images in R
give a proper chain of primes in R of length k, all of which contain (x) and thus properly
contain 0. Thus adding zero will give a chain of primes in R of length k + 1.

13
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Conversely, we want to show that if there is a chain of primes in R of length k+1, then there
is a chain of length k in R/(x) for some x ∈ m− {0}. Let us write the chain of length k+ 1:

q−1 ⊂ q0 ( · · · ( qk ⊂ R.

Now evidently q0 contains some x ∈ m − 0. Then the chain q0 ( · · · ( qk can be identified
with a chain in R/(x) for this x. So for this x, we have that KrdimR ≤ sup KrdimR/(x)+1.N

There is thus a combinatorial definition of definition.
Geometrically, let X = SpecR for R an affine ring over C (a polynomial ring mod some ideal).

Then R has Krull dimension ≥ k iff there is a chain of irreducible subvarieties of X,

X0 ⊃ X1 ⊃ · · · ⊃ Xk.

You will meet justification for this in Section 3.6 below.

Remark (Warning!) Let R be a local noetherian ring of dimension k. This means that there is
a chain of prime ideals of length k, and no longer chains. Thus there is a maximal chain whose
length is k. However, not all maximal chains in SpecR have length k.

Example 2.5 Let R = (C[X,Y, Z]/(XY,XZ))(X,Y,Z). It is left as an exercise to the reader to see
that there are maximal chains of length not two.

There are more complicated local noetherian domains which have maximal chains of prime ide-
als not of the same length. These examples are not what you would encounter in daily experience,
and are necessarily complicated. This cannot happen for finitely generated domains over a field.

Example 2.6 An easier way all maximal chains could fail to be of the same length is if SpecR
has two components (in which case R = R0 ×R1 for rings R0, R1).

2.4 Yet another definition

Let’s start by thinking about the definition of a module. Recall that if (R,m) is a local noetherian
ring and M a finitely generated R-module, and x ∈ m is a nonzerodivisor on M , then

dim suppM/xM = dim suppM − 1.

Question What if x is a zerodivisor?

This is not necessarily true (e.g. if x ∈ Ann(M)). Nonetheless, we claim that even in this case:

Proposition 2.7 For any x ∈ m,

dim suppM ≥ dim suppM/xM ≥ dim suppM − 1.

The upper bound on dimM/xM is obvious as M/xM is a quotient of M . The lower bound is
trickier.

Proof. Let N = {a ∈M : xna = 0 for some n}. We can construct an exact sequence

0→ N →M →M/N → 0.

Let M ′′ = M/N . Now x is a nonzerodivisor on M/N by construction. We claim that

0→ N/xN →M/xM →M ′′/xM ′′ → 0

14



CRing Project, Chapter 10

is exact as well. For this we only need to see exactness at the beginning, i.e. injectivity of
N/xN →M/xM . So we need to show that if a ∈ N and a ∈ xM , then a ∈ xN .

To see this, suppose a = xb where b ∈M . Then if φ : M →M ′′, then φ(b) ∈M ′′ is killed by x

as xφ(b) = φ(bx) = φ(a). This means that φ(b) = 0 as M ′′
x→M ′′ is injective. Thus b ∈ N in fact.

So a ∈ xN in fact.
From the exactness, we see that (as x is a nonzerodivisor on M ′′)

dimM/xM = max(dimM ′′/xM ′′,dimN/xN) ≥ max(dimM ′′ − 1,dimN)

≥ max(dimM ′′,dimN)− 1.

The reason for the last claim is that suppN/xN = suppN as N is x-torsion, and the dimension
depends only on the support. But the thing on the right is just dimM − 1. N

As a result, we find:

Proposition 2.8 dim suppM is the minimal integer n such that there exist elements x1, . . . , xn ∈
m with M/(x1, . . . , xn)M has finite length.

Note that n always exists, since we can look at a bunch of generators of the maximal ideal, and
M/mM is a finite-dimensional vector space and is thus of finite length.

Proof. Induction on dim suppM . Note that dim supp(M) = 0 if and only if the Hilbert polynomial
has degree zero, i.e. M has finite length or that n = 0 (n being defined as in the statement).

Suppose dim suppM > 0.

1. We first show that there are x1, . . . , xdimM with M/(x1, . . . , xdimM )M have finite length. Let
M ′ ⊂M be the maximal submodule having finite length. There is an exact sequence

0→M ′ →M →M ′′ → 0

where M ′′ = M/M ′ has no finite length submodules. In this case, we can basically ignore
M ′, and replace M by M ′′. The reason is that modding out by M ′ doesn’t affect either n or
the dimension.

So let us replace M with M ′′ and thereby assume that M has no finite length submodules.
In particular, M does not contain a copy of R/m, i.e. m /∈ Ass(M). By prime avoidance,
this means that there is x1 ∈ m that acts as a nonzerodivisor on M . Thus

dimM/x1M = dimM − 1.

The inductive hypothesis says that there are x2, . . . , xdimM with

(M/x1M)/(x2, . . . , xdimM )(M/xM) 'M/(x1, . . . , xdimM )M

of finite length. This shows the claim.

2. Conversely, suppose that there M/(x1, . . . , xn)M has finite length. Then we claim that
n ≥ dimM . This follows because we had the previous result that modding out by a single
element can chop off the dimension by at most 1. Recursively applying this, and using the
fact that dim of a finite length module is zero, we find

0 = dimM/(x1, . . . , xn)M ≥ dimM − n. N
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Corollary 2.9 Let (R,m) be a local noetherian ring. Then dimR is equal to the minimal n such
that there exist x1, . . . , xn ∈ R with R/(x1, . . . , xn)R is artinian. Or, equivalently, such that
(x1, . . . , xn) contains a power of m.

Remark We manifestly have here that the dimension of R is at most the embedding dimension.
Here, we’re not worried about generating the maximal ideal, but simply something containing a
power of it.

We have been talking about dimension. Let R be a local noetherian ring with maximal ideal
m. Then, as we have said in previous lectures, dimR can be characterized by:

1. The minimal n such that there is an n-primary ideal generated by n elements x1, . . . , xn ∈ m.
That is, the closed point m of SpecR is cut out set-theoretically by the intersection

⋂
V (xi).

This is one way of saying that the closed point can be defined by n parameters.

2. The maximal n such that there exists a chain of prime ideals

p0 ⊂ p1 ⊂ · · · ⊂ pn.

3. The degree of the Hilbert polynomial f+(t), which equals `(R/mt) for t� 0.

2.5 Krull’s Hauptidealsatz

Let R be a local noetherian ring. The following is now clear from what we have shown:

Theorem 2.10 R has dimension 1 if and only if there is a nonzerodivisor x ∈ m such that R/(x)
is artinian.

Remark Let R be a domain. We said that a nonzero prime p ⊂ R is height one if p is minimal
among the prime ideals containing some nonzero x ∈ R.

According to Krull’s Hauptidealsatz, p has height one if and only if dimRp = 1.

We can generalize the notion of p as follows.

Definition 2.11 Let R be a noetherian ring (not necessarily local), and p ∈ SpecR. Then we
define the height of p, denoted height(p), as dimRp. We know that this is the length of a maximal
chain of primes in Rp. This is thus the maximal length of prime ideals of R,

p0 ⊂ · · · ⊂ pn = p

that ends in p. This is the origin of the term “height.”

Remark Sometimes, the height is called the codimension. This corresponds to the codimension
in SpecR of the corresponding irreducible closed subset of SpecR.

Theorem 2.12 (Krull’s Hauptidealsatz) Let R be a noetherian ring, and x ∈ R a nonzerodi-
visor. If p ∈ SpecR is minimal over x, then p has height one.

Proof. Immediate from Theorem 2.10. N

Theorem 2.13 (Artin-Tate) Let A be a noetherian domain. Then the following are equivalent:

1. There is f ∈ A− {0} such that Af is a field.

2. A has finitely many maximal ideals and has dimension at most 1.
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Proof. We follow [GD].
Suppose first that there is f with Af a field. Then all nonzero prime ideals of A contain f . We

need to deduce that A has dimension ≤ 1. Without loss of generality, we may assume that A is
not a field.

There are finitely many primes p1, . . . , pk which are minimal over f ; these are all height one.
The claim is that any maximal ideal of A is of this form. Suppose m were maximal and not one
of the pi. Then by prime avoidance, there is g ∈ m which lies in no pi. A minimal prime P of
g has height one, so by our assumptions contains f . However, it is then one of the pi; this is a
contradiction as g ∈ P. N

2.6 Further remarks

We can recast earlier notions in terms of dimension.

Remark A noetherian ring has dimension zero if and only ifR is artinian. Indeed, R has dimension
zero iff all primes are maximal.

Remark A noetherian domain has dimension zero iff it is a field. Indeed, in this case (0) is
maximal.

Remark R has dimension ≤ 1 if and only if every non-minimal prime of R is maximal. That is,
there are no chains of length ≥ 2.

Remark A (noetherian) domain R has dimension ≤ 1 iff every nonzero prime ideal is maximal.

In particular,

Proposition 2.14 R is Dedekind iff it is a noetherian, integrally closed domain of dimension 1.

§3 Further topics

3.1 Change of rings

Let f : R→ R′ be a map of noetherian rings.

Question What is the relationship between dimR and dimR′?

A map f gives a map SpecR′ → SpecR, where SpecR′ is the union of various fibers over
the points of SpecR. You might imagine that the dimension is the dimension of R plus the fiber
dimension. This is sometimes true.

Now assume that R,R′ are local with maximal ideals m,m′. Assume furthermore that f is
local, i.e. f(m) ⊂ m′.

Theorem 3.1 dimR′ ≤ dimR+ dimR′/mR′. Equality holds if f : R→ R′ is flat.

Here R′/mR′ is to be interpreted as the “fiber” of SpecR′ above m ∈ SpecR. The fibers can
behave weirdly as the basepoint varies in SpecR, so we can’t expect equality in general.

Remark Let us review flatness as it has been a while. An R-module M is flat iff the operation
of tensoring with M is an exact functor. The map f : R → R′ is flat iff R′ is a flat R-module.
Since the construction of taking fibers is a tensor product (i.e. R′/mR′ = R′ ⊗R R/m), perhaps
the condition of flatness here is not as surprising as it might be.
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Proof. Let us first prove the inequality. Say

dimR = a, dimR′/mR′ = b.

We’d like to see that
dimR′ ≤ a+ b.

To do this, we need to find a + b elements in the maximal ideal m′ that generate a m′-primary
ideal of R′.

There are elements x1, . . . , xa ∈ m that generate an m-primary ideal I = (x1, . . . , xa) in R.
There is a surjection R′/IR′ � R′/mR′. The kernel mR′/IR′ is nilpotent since I contains a power
of m. We’ve seen that nilpotents don’t affect the dimension. In particular,

dimR′/IR′ = dimR′/mR′ = b.

There are thus elements y1, . . . , yb ∈ m′/IR′ such that the ideal J = (y1, . . . , yb) ⊂ R′/IR′ is
m′/IR′-primary. The inverse image of J in R′, call it J ⊂ R′, is m′-primary. However, J is
generated by the a+ b elements

f(x1), . . . , f(xa), y1, . . . , yb

if the yi lift yi.
But we don’t always have equality. Nonetheless, if all the fibers are similar, then we should

expect that the dimension of the “total space” SpecR′ is the dimension of the “base” SpecR plus
the “fiber” dimension SpecR′/mR′. The precise condition of f flat articulates the condition that
the fibers “behave well.” Why this is so is something of a mystery, for now. But for some evidence,
take the present result about fiber dimension.

Anyway, let us now prove equality for flat R-algebras. As before, write a = dimR, b =
dimR′/mR′. We’d like to show that

dimR′ ≥ a+ b.

By what has been shown, this will be enough. This is going to be tricky since we now need
to give lower bounds on the dimension; finding a sequence x1, . . . , xa+b such that the quotient
R/(x1, . . . , xa+b) is artinian would bound above the dimension.

So our strategy will be to find a chain of primes of length a+ b. Well, first we know that there
are primes

q0 ⊂ q1 ⊂ · · · ⊂ qb ⊂ R′/mR′.

Let qi be the inverse images in R′. Then the qi are a strictly ascending chain of primes in R′ where
q0 contains mR′. So we have a chain of length b; we need to extend this by additional terms.

Now f−1(q0) contains m, hence is m. Since dimR = a, there is a chain {pi} of prime ideals of
length a going down from f−1(q0) = m. We are now going to find primes p′i ⊂ R′ forming a chain
such that f−1(p′i) = pi. In other words, we are going to lift the chain pi to SpecR′. We can do
this at the first stage for i = a, where pa = m and we can set p′a = q0. If we can indeed do this
lifting, and catenate the chains qj , p

′
i, then we will have a chain of the appropriate length.

We will proceed by descending induction. Assume that we have p′i+1 ⊂ R′ and f−1(p′i+1) =
pi+1 ⊂ R. We want to find p′i ⊂ p′i+1 such that f−1(p′i) = pi. The existence of that prime is a
consequence of the following general fact.

Theorem 3.2 (Going down) Let f : R → R′ be a flat map of noetherian commutative rings.
Suppose q ∈ SpecR′, and let p = f−1(q). Suppose p0 ⊂ p is a prime of R. Then there is a prime
q0 ⊂ q with

f−1(q0) = p0.
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Proof. We may replace R′ with R′q. There is still a map

R→ R′q

which is flat as localization is flat. The maximal ideal in R′q has inverse image p. So the problem
now reduces to finding some p0 in the localization that pulls back appropriately.

Anyhow, throwing out the old R and replacing with the localization, we may assume that R′

is local and q the maximal ideal. (The condition q0 ⊂ q is now automatic.)
The claim now is that we can replace R with R/p0 and R′ with R′/p0R

′ = R′ ⊗R/p0. We can
do this because base change preserves flatness (see below), and in this case we can reduce to the
case of p0 = (0)—in particular, R is a domain. Taking these quotients just replaces SpecR,SpecR′

with closed subsets where all the action happens anyhow.
Under these replacements, we now have:

1. R′ is local with maximal ideal q

2. R is a domain and p0 = (0).

We want a prime of R′ that pulls back to (0) in R. I claim that any minimal prime of R′ will
work. Suppose otherwise. Let q0 ⊂ R′ be a minimal prime, and suppose x ∈ R ∩ f−1(q0) − {0}.
But q0 ∈ Ass(R′). So f(x) is a zerodivisor on R′. Thus multiplication by x on R′ is not injective.

But, R is a domain, so R
x→ R is injective. Tensoring with R′ must preserve this, implying

that R′
x→ R′ is injective because R′ is flat. This is a contradiction. N

We used:

Lemma 3.3 Let R→ R′ be a flat map, and S an R-algebra. Then S → S ⊗R R′ is a flat map.

Proof. The construction of taking an S-module with S ⊗R R′ is an exact functor, because that’s
the same thing as taking an S-module, restricting to R, and tensoring with R′. N

The proof of the fiber dimension theorem is now complete.

3.2 The dimension of a polynomial ring

Adding an indeterminate variable corresponds geometrically to taking the product with the affine
line, and so should increase the dimension by one. We show that this is indeed the case.

Theorem 3.4 Let R be a noetherian ring. Then dimR[X] = dimR+ 1.

Interestingly, this is false if R is non-noetherian, cf. []. Let R be a ring of dimension n.

Lemma 3.5 dimR[x] ≥ dimR+ 1.

Proof. Let p0 ⊂ · · · ⊂ pn be a chain of primes of length n = dimR. Then p0R[x] ⊂ · · · ⊂ pnR[x] ⊂
(x, pn)R[x] is a chain of primes in R[x] of length n + 1 because of the following fact: if q ⊂ R is
prime, then so is qR[x] ⊂ R[x].2 Note also that as pn ( R, we have that pnR[x] ( (x, pn). So this
is indeed a legitimate chain. N

Now we need only show:

Lemma 3.6 Let R be noetherian of dimension n. Then dimR[x] ≤ dimR+ 1.

2This is because R[x]/qR[x] = (R/q)[x] is a domain.
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Proof. Let q0 ⊂ · · · ⊂ qm ⊂ R[x] be a chain of primes in R[x]. Let m = qm∩R. Then if we localize
and replace R with Rm, we get a chain of primes of length m in Rm[x]. In fact, we get more. We
get a chain of primes of length m in (R[x])qm

, and a local inclusion of noetherian local rings

Rm ↪→ (R[x])qm .

To this we can apply the fiber dimension theorem. In particular, this implies that

m ≤ dim(R[x])qm
≤ dimRm + dim(R[x])qm

/m(R[x])qm
.

Here dimRm ≤ dimR = n. So if we show that dim(R[x])qm
/m(R[x])qm

≤ 1, we will have seen that
m ≤ n+ 1, and will be done. But this last ring is a localization of (Rm/mRm)[x], which is a PID
by the euclidean algorithm for polynomial rings over a field, and thus of dimension ≤ 1. N

3.3 A refined fiber dimension theorem

Let R be a local noetherian domain, and let R → S be an injection of rings making S into an
R-algebra. Suppose S is also a local domain, such that the morphism R → S is local. This is
essentially the setup of Section 3.2, but in this section, we make the refining assumption that S
is essentially of finite type over R; in other words, S is the localization of a finitely generated
R-algebra.

Let k be the residue field of R, and k′ that of S; because R → S is local, there is induced a
morphism of fields k → k′. We shall prove, following [GD]:

Theorem 3.7 (Dimension formula)

dimS + tr.deg.S/R ≤ dimR+ tr.deg.k′/k. (10.1)

Here tr.deg.B/A is more properly the transcendence degree of the quotient field of B over that of
A. Geometrically, it corresponds to the dimension of the “generic” fiber.

Proof. Let m ⊂ R be the maximal ideal. We know that S is a localization of an algebra of the
form (R[x1, . . . , xk])/p where p ⊂ R[x1, . . . , xn] is a prime ideal q. We induct on k.

Since we can “dévissage” the extension R→ S as the composite

R→ (R[x1, . . . , xk−1]/(p ∩R[x1, . . . , xk−1])q′ → S,

(where q′ ∈ SpecR[x1, . . . , xk−1]/(p ∩R[x1, . . . , xk−1] is the pull-back of q), we see that it suffices
to prove (10.1) when k = 1, that is S is the localization of a quotient of R[x].

So suppose k = 1. Then we have S = (R[x])q/p where q ⊂ R[x] is another prime ideal lying
over m. Let us start by considering the case where q = 0.

Lemma 3.8 Let (R,m) be a local noetherian domain as above. Let S = R[x]q where q ∈ SpecR[x]
is a prime lying over m. Then (10.1) holds with equality.

Proof. In this case, tr.deg.S/R = 1. Now q could be mR[x] or a prime ideal containing that,
which is then automatically maximal, as we know from the proof of Section 3.2. Indeed, primes
containing mR[x] are in bijection with primes of R/m[x], and these come in two forms: zero, and
those generated by one element. (Note that in the former case, the residue field is the field of
rational functions k(x) and in the second, the residue field is finite over k.)

1. In the first case, dimS = dimR[x]mR[x] = dimR and but the residue field extension is
(R[x]mR[x])/mR[x]mR[x] = k(x), so tr.deg.k′/k = 1 and the formula is satisfied.

20



CRing Project, Chapter 10

2. In the second case, q properly contains mR[x]. Then dimR[x]q = dimR+ 1, but the residue
field extension is finite. So in this case too, the formula is satisfied. N

Now, finally, we have to consider the case where p ⊂ R[x] is not zero, and we have S = (R[x]/p)q
for q ∈ SpecR[x]/p lying over m. In this case, tr.deg.S/R = 0. So we need to prove

dimS ≤ dimR+ tr.deg.k′/k.

Let us, by abuse of notation, identify q with its preimage in R[x]. (Recall that SpecR[x]/p is
canonically identified as a closed subset of SpecR[x].) Then we know that dim(R[x]/p)q is the
largest chain of primes in R[x] between p, q. In particular, it is at most dimR[x]q − heightp ≤
dimR+ 1− 1 = dimR. So the result is clear. N

In [GD], this is used to prove the geometric result that if φ : X → Y is a morphism of varieties
over an algebraically closed field (or a morphism of finite type between nice schemes), then the
local dimension (that is, the dimension at x) of the fiber φ−1(φ(x)) is an upper semi-continuous
function of x ∈ X.

3.4 An infinite-dimensional noetherian ring

We shall now present an example, due to Nagata, of an infinite-dimensional noetherian ring. Note
that such a ring cannot be local.

Consider the ring R = C[{xi,j}0≤i≤j ] of polynomials in infinitely many variables xi,j . This is
clearly an infinite-dimensional ring, but it is also not noetherian. We will localize it suitably to
make it noetherian.

Let pn ⊂ R be the ideal (x1,n, x2,n, . . . , xn,n) for all i ≤ n. Let S = R −
⋃

pn; this is a
multiplicatively closed set.

Theorem 3.9 (Nagata) The ring S−1R is noetherian and has infinite dimension.

We start with

Proposition 3.10 The ring in the statement of the problem is noetherian.

The proof is slightly messy, so we first prove a few lemmas.
Let R′ = S−1R as in the problem statement. We start by proving that every ideal in R′ is

contained in one of the pn (which, by abuse of notation, we identify with their localizations in
R′ = S−1R). In particular, the pn are the maximal ideals in R′.

Lemma 3.11 The pn are the maximal ideals in R′.

Proof. We start with an observation:

If f 6= 0, then f belongs to only finitely many pn.

To see this, let us use the following notation. If M is a monomial, we let S(M) denote the set
of subscripts xa,b that occur and S2(M) the set of second subscripts (i.e. the b’s). For f ∈ R,
we define S(f) to be the intersection of the S(M) for M a monomial occurring nontrivially in f .
Similarly we define S2(f).

Let us prove:

Lemma 3.12 f ∈ pn iff n ∈ S2(f). Moreover, S(f) and S2(f) are finite for any f 6= 0.

Proof. Indeed, f ∈ pn iff every monomial in f is divisible by some xi,n, i ≤ n, as pn = (xi,n)i≤n.
From this the first assertion is clear. The second too, because f will contain a nonzero monomial,
and that can be divisible by only finitely many xa,b. N
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From this, it is clear how to define S2(f) for any element in R′, not necessarily a polynomial in
R. Namely, it is the set of n such that f ∈ pn. It is now clear, from the second statement of
the lemma, that any f 6= 0 lies in only finitely many pn. In particular, the observation has been
proved.

Let T = {S2(f), f ∈ I − 0}. I claim that ∅ ∈ T iff I = (1). For ∅ ∈ T iff there is a polynomial
lying in no pn. Since the union

⋃
pn is the set of non-units (by construction), we find that the

assertion is clear.

Lemma 3.13 T is closed under finite intersections.

Proof. Suppose T1, T2 ∈ T . Without loss of generality, there are polynomials F1, F2 ∈ R such that
S2(F1) = T1, S2(F2) = T2. A generic linear combination aF1 + bF2 will involve no cancellation for
a, b ∈ C, and the monomials in this linear combination will be the union of those in F1 and those
in F2 (scaled appropriately). So S2(aF1 + bF2) = S2(F1) ∩ S2(F2). N

Finally, we can prove the result that the pn are the only maximal ideals. Suppose I was
contained in no pn, and form the set T as above. This is a collection of finite sets. Since I 6⊂ pn
for each n, we find that n /∈

⋂
T∈T T . This intersection is thus empty. It follows that there is a

finite intersection of sets in T which is empty as T consists of finite sets. But T is closed under
intersections. There is thus an element in I whose S2 is empty, and is thus a unit. Thus I = (1).N

We have proved that the pn are the only maximal ideals. This is not enough, though. We need:

Lemma 3.14 R′pn
is noetherian for each n.

Proof. Indeed, any polynomial involving the variables xa,b for b 6= n is invertible in this ring. We
see that this ring contains the field

C({xa,b, b 6= n}),

and over it is contained in the field C({xa,b,∀a, b}). It is a localization of the algebra C({xa,b, b 6=
n})[x1,n, . . . , xn,n] and is consequently noetherian by Hilbert’s basis theorem. N

The proof will be completed with:

Lemma 3.15 Let R be a ring. Suppose every element x 6= 0 in the ring belongs to only finitely
many maximal ideals, and suppose that Rm is noetherian for each m ⊂ R maximal. Then R is
noetherian.

Proof. Let I ⊂ R be a nonzero ideal. We must show that it is finitely generated. We know that I
is contained in only finitely many maximal ideals m1, . . . ,mk. At each of these maximal ideals, we
know that Imi

is finitely generated. Clearing denominators, we can choose a finite set of generators
in R. So we can collect them together and get a finite set a1, . . . , aN ⊂ I which generate Imi

⊂ Rmi

for each i. It is not necessarily true that J = (a1, . . . , aN ) = I, though we do have ⊂. However,
Im = Jm except at finitely many maximal ideals n1, . . . , nM because a nonzero element is a.e. a
unit. However, these nj are not among the mi. In particular, for each j, there is bj ∈ I − nj as
I 6⊂ nj . Then we find that the ideal

(a1, . . . , aN , b1, . . . , bM ) ⊂ I N

becomes equal to I in all the localizations. So it is I, and I is finitely generated

We need only see that the ring R′ has infinite dimension. But for each n, there is a chain of
primes (x1,n) ⊂ (x1,n, x2,n) ⊂ · · · ⊂ (x1,n, . . . , xn,n) of length n− 1. The supremum of the lengths
is thus infinite.
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3.5 Catenary rings

Definition 3.16 A ring R is catenary if given any two primes p ( p′, any two maximal prime
chains from p to p′ have the same length.

Nagata showed that there are noetherian domains which are not catenary. We shall see that affine
rings, or rings finitely generated over a field, are always catenary.

Definition 3.17 If p ∈ SpecR, then dimp := dimR/p.

Lemma 3.18 Let S be a k-affine domain with tr.d.kS = n, and let p ∈ SpecS be height one.
Then tr.d.k(S/p) = n− 1.

Proof. Case 1: assume S = k[x1, . . . , xn] is a polynomial algebra. In this case, height 1 primes
are principal, so p = (f) for some f . Say f has positive degree with respect to x1, so f =
gr(x2, . . . , xn)xr1 + · · · . We have that k[x2, . . . , xn]∩ (f) = (0) (just look at degree with respect to
x1). It follows that k[x2, . . . , xn] ↪→ S/(f), so x̄2, . . . , x̄n are algebraically independent in S/p. By
x̄1 is algebraic over Q(k[x̄2, . . . , x̄n]) as witnessed by f . This, tr.d.kS/p = n− 1.

Case 2: reduction to case 1. Let R = k[x1, . . . , xn] be a Noether normalization for S, and let
p0 = p∩R. Observe that Going Down applies (because S is a domain and R is normal). It follows
that htR(p0) = htS(p) = 1. By case 1, we get that tr.d.(R/p0) = n − 1. By (∗), we get that
tr.d.R/p0 = tr.d.(S/p). N

Theorem 3.19 Any k-affine algebra S is catenary (even if S is not a domain). In fact, any
saturated prime chain from p to p′ has length dimp − dimp′. If S is a domain, then all maximal
ideals have the same height.

Proof. Consider any chain p ( p1 ( · · · ( pr = p′. Then we get the chain

S/p� S/p1 � · · ·� S/pr = S/p′

Here pi/pi−1 is height 1 in S/pi−1, so each arrow decreases the transcendence degree by exactly 1.
Therefore, tr.d.kS/p

′ = tr.d.kS/p− r.

r = tr.d.kS/p− tr.d.kS/p′ = dimS/p− dimS/p′ = dimp− dimp′.

To get the last statement, take p = 0 and p′ = m. Then we get that ht(m) = dimS. N

Note that the last statement fails in general.

Example 3.20 Take S = k×k[x1, . . . , xn]. Then ht(0×k[x1, . . . , xn]) = 0, but ht
(
k×(x1, . . . , xn)

)
=

n.

But that example is not connected.

Example 3.21 S = k[x, y, z]/(xy, xz).

But this example is not a domain. In general, for any prime p in any ring S, we have

ht(p) + dimp ≤ dimS.

Theorem 3.22 Let S be an affine algebra, with minimal primes {p1, . . . , pr}. Then the following
are equivalent.
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1. dimpi are all equal.

2. ht(p) + dimp = dimS for all primes p ∈ SpecS. In particular, if S is a domain, we get this
condition.

Proof. (1 ⇒ 2) ht(p) is the length of some saturated prime chain from p to some minimal prime
pi. This length is dimpi − dimp = dimS − dimp (by condition 1). Thus, we get (2).

(2⇒ 1) Apply (2) to the minimal prime pi to get dimpi = dimS for all i. N

We finish with a (non-affine) noetherian domain S with maximal ideals of different heights. We
need the following fact.
Fact: If R is a ring with a ∈ R, then there is a canonical R-algebra isomorphism R[x]/(ax− 1) ∼=
R[a−1], x↔ a−1.

Example 3.23 Let
(
R, (pi)

)
be a DVR with quotient field K. Let S = R[x], and assume for now

that we know that dimS = 2. Look at m2 = (pi, x) and m1 = (pix− 1). Note that m1 is maximal
because S/m1 = K. It is easy to show that ht(m1) = 1. However, m2 ) (x) ) (0), so ht(m2) = 2.

3.6 Dimension theory for topological spaces

The present subsection (which consists mostly of exercises) is a digression that may illuminate the
notion of Krull dimension.

Definition 3.24 Let X be a topological space.3 Recall that X is irreducible if cannot be written
as the union of two proper closed subsets F1, F2 ( X.

We say that a subset of X is irreducible if it is irreducible with respect to the induced topology.

In general, this notion is not valid from the topological spaces familiar from analysis. For
instance:

Exercise 10.1 Points are the only irreducible subsets of R.

Nonetheless, irreducible sets behave very nicely with respect to certain operations. As you will
now prove, if U ⊂ X is an open subset, then the irreducible closed subsets of U are in bijection
with the irreducible closed subsets of X that intersect U .

Exercise 10.2 A space is irreducible if and only if every open set is dense, or alternatively if
every open set is connected.

Exercise 10.3 Let X be a space, Y ⊂ X an irreducible subset. Then Y ⊂ X is irreducible.

Exercise 10.4 Let X be a space, U ⊂ X an open subset. Then the map Z → Z ∩ U gives a
bijection between the irreducible closed subsets of X meeting U and the irreducible closed subsets
of U . The inverse is given by Z ′ → Z ′.

As stated above, the notion of irreducibility is useless for spaces like manifolds. In fact, by
?? 10.2, a Hausdorff space cannot be irreducible unless it consists of one point. However, for the
highly non-Hausdorff spaces encountered in algebraic geometry, this notion is very useful.

Let R be a commutative ring, and X = SpecR.

Exercise 10.5 A closed subset F ⊂ SpecR is irreducible if and only if it can be written in the
form F = V (p) for p ⊂ R prime. In particular, SpecR is irreducible if and only if R has one
minimal prime.

3We do not include the empty space.
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In fact, spectra of rings are particularly nice: they are sober spaces.

Definition 3.25 A space X is called sober if to every irreducible closed F ⊂ X, there is a unique
point ξ ∈ F such that F = {ξ}. This point is called the generic point.

Exercise 10.6 Check that if X is any topological space and ξ ∈ X, then the closure {ξ} of the
point ξ is irreducible.

Exercise 10.7 Show that SpecR for R a ring is sober.

Exercise 10.8 Let X be a space with a cover {Xα} by open subsets, each of which is a sober
space. Then X is a sober space. (Hint: any irreducible closed subset must intersect one of the Xα,
so is the closure of its intersection with that one.)

We now come to the main motivation of this subsection, and the reason for its inclusion here.

Definition 3.26 Let X be a topological space. Then the dimension (or combinatorial dimen-
sion) of X is the maximal k such that a chain

F0 ( F1 ( · · · ( Fk ⊂ X

with the Fi irreducible, exists. This number is denoted dimX and may be infinite.

Exercise 10.9 What is the Krull dimension of R?

Exercise 10.10 Let X =
⋃
Xi be the finite union of subsets Xi ⊂ X.

Exercise 10.11 Let R be a ring. Then dim SpecR is equal to the Krull dimension of R.

Most of the spaces one wishes to work with in standard algebraic geometry have a strong form
of compactness. Actually, compactness is the wrong word, since the spaces of algebraic geometry
are not Hausdorff.

Definition 3.27 A space is noetherian if every descending sequence of closed subsets F0 ⊃ F1 ⊃
. . . stabilizes.

Exercise 10.12 If R is noetherian, SpecR is noetherian as a topological space.

3.7 The dimension of a tensor product of fields

The following very clear result gives us the dimension of the tensor product of fields.

Theorem 3.28 (Grothendieck-Sharp) Let K,L be field extensions of a field k. Then

dimK ⊗k L = min(tr.deg.K, tr.deg.L).

This result is stated in the errata of [GD], vol IV (4.2.1.5), but that did not make it well-known;
apparently it was independently discovered and published again by R. Y. Sharp, ten years later.4

Note that in general, this tensor product is not noetherian.

4Thanks to Georges Elencwajg for a helpful discussion at http://math.stackexchange.com/questions/56669/

a-tensor-product-of-a-power-series/56794.
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Proof. We start by assuming K is a finitely generated, purely transcendental extension of k. Then
K is the quotient field of a polynomial ring k[x1, . . . , xn]. It follows that K ⊗k L is a localization
of L[x1, . . . , xn], and consequently of dimension at most n = tr.deg.K.

Now the claim is that if tr.deg.L > n, then we have equality

dimK ⊗k L = n.

To see this, we have to show that K⊗k L admits an L-homomorphism to L. For then there will be
a maximal ideal m of K⊗kL which comes from a maximal ideal M of L[x1, . . . , xn] (corresponding
to this homomorphism). Consequently, we will have (K ⊗k L)m = (L[x1, . . . , xn])M, which has
dimension n.

So we need to produce this homomorphism K ⊗k L → L. Since K = k(x1, . . . , xn) and L has
transcendence degree more than n, we just choose n algebraically independent elements of L, and
use that to define a map of k-algebras K → L. By the universal property of the tensor product,
we get a section K ⊗k L → L. This proves the result in the case where K is a finitely generated,
purely transcendental extension.

Now we assume that K has finite transcendence degree over k, but is not necessarily purely
transcendental. Then K contains a subfield E which is purely transcendental over k and such that
E/K is algebraic. Then K ⊗k L is integral over its subring E ⊗k L. The previous analysis applies
to E ⊗k L, and by integrality the dimensions of the two objects are the same.

Finally, we need to consider the case when K is allowed to have infinite transcendence degree
over k. Again, we may assume that K is the quotient field of the polynomial ring k[{xα}] (by the
integrality argument above). We need to show that if L has larger transcendence degree than K,
then dimK ⊗k L =∞. As before, there is a section K ⊗k L→ L, and K ⊗k L is a localization of
the polynomial ring L[{xα}]. If we take the maximal ideal in L[{xα}] corresponding to this section
K ⊗k L → L, it is of the form (xα − tα)α for the tα ∈ L. It is easy to check that the localization
of L[{xα}] at this maximal ideal, which is a localization of K ⊗k L, has infinite dimension. N
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