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Chapter 9

Dedekind domains

The notion of a Dedekind domain allows one to generalize the usual unique factorization in principal
ideal domains as in Z to settings such as the ring of integers in an algebraic number field. In general,
a Dedekind domain does not have unique factorization, but the ideals in a Dedekind domain do
factor uniquely into a product of prime ideals. We shall see that Dedekind domains have a short
characterization in terms of the characteristics we have developed.

After this, we shall study the case of an extension of Dedekind domains A ⊂ B. It will be of
interest to determine how a prime ideal of A factors in B. This should provide background for the
study of basic algebraic number theory, e.g. a rough equivalent of the first chapter of [Lan94] or
[Ser79].

§1 Discrete valuation rings

1.1 Definition

We start with the simplest case of a discrete valuation ring, which is the local version of a Dedekind
domain. Among the one-dimensional local noetherian rings, these will be the nicest.

Theorem 1.1 Let R be a noetherian local domain whose only prime ideals are (0) and the maximal
ideal m 6= 0. Then, the following are equivalent:

1. R is factorial.

2. m is principal.

3. R is integrally closed.

4. R is a valuation ring with value group Z.

Definition 1.2 A ring satisfying these conditions is called a discrete valuation ring (DVR).
A discrete valuation ring necessarily has only two prime ideals, namely m and (0).

Alternatively, we can say that a noetherian local domain is a DVR if and only if it is of
dimension one and integrally closed.

Proof. Assume 1: that is, suppose R is factorial. Then every prime ideal of height one is principal
by ??. But m is the only prime that can be height one: it is minimal over any nonzero nonunit of
R, so m is principal. Thus 1 implies 2, and similarly 2 implies 1 by ??.

1 implies 3 is true for any R: a factorial ring is always integrally closed, by ??.
4 implies 2 is easy as well. Indeed, suppose R is a valuation ring with value group Z. Then,

one chooses an element x ∈ R such that the valuation of x is one. It is easy to see that x generates
m: if y ∈ m is a non-unit, then the valuation of y is at least one, so y/x ∈ R and y ∈ (x).
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The proof that 2 implies 4 is also straightforward. Suppose m is principal, generated by t. In
this case, we claim that any x ∈ R is associate (i.e. differs by a unit from) a power of t. Indeed,
since

⋂
mn = 0 by the Krull intersection theorem (??), it follows that there exists n such that x

is divisible by tn but not by tn+1. In particular, if we write x = utn, then u /∈ (t) is a unit. This
proves the claim.

With this in mind, we need to show that R is a valuation ring with value group Z. If x ∈ R,
we define the valuation of x to be the nonnegative integer n such that (x) = (tn). One can easily
check that this is a valuation on R, which extends to the quotient field by additivity.

The interesting part of the argument is the claim that 3 implies 2. Suppose R is integrally
closed, noetherian, and of dimension one; we claim that m is principal. Choose x ∈ m − {0}. If
(x) = m, we are done.

Otherwise, we can look at m/(x) 6= 0. The module m/(x) is finitely generated module a
noetherian ring which is nonzero, so it has an associated prime. That associated prime is either
zero or m because R has dimension one. But 0 is not an associated prime because every element
in the module is killed by x. So m is an associated prime of m/(x).

There is y ∈ m/(x) whose annihilator is m. Thus, there is y ∈ m such that y /∈ (x) and
my ⊂ (x). In particular, y/x ∈ K(R)−R, but

(y/x)m ⊂ R.

There are two cases:

1. Suppose (y/x)m = R. Then we can write m = R(x/y). So m is principal. (This argument
shows that x/y ∈ R.)

2. The other possibility is that y/xm ( R. In this case, (y/x)m is an ideal, so

(y/x)m ⊂ m.

In particular, multiplication by y/x carries m to itself, and stabilizes the finitely generated
faithful module m. By ??, we see that y/x is integral over R. In particular, we find that
y/x ∈ R, as R was integrally closed, a contradiction as y /∈ (x). N

Let us give several examples of DVRs.

Example 1.3 The localization Z(p) at any prime ideal (p) 6= 0 is a DVR. The associated valuation
is the p-adic valuation.

Example 1.4 Although we shall not prove (or define) this, the local ring of an algebraic curve at
a smooth point is a DVR. The associated valuation measures the extent to which a function (or
germ thereof) has a zero (or pole) at that point.

Example 1.5 The formal power series ring C[[T ]] is a discrete valuation ring, with maximal ideal
(T ).

1.2 Another approach

In the proof of Theorem 1.1, we freely used the notion of associated primes, and thus some of the
results of ??. However, we can avoid all that and give a more “elementary approach,” as in [CF86].

Let us suppose that R is an integrally closed, local noetherian domain of dimension one. We
shall prove that the maximal ideal m ⊂ R is principal. This was the hard part of Theorem 1.1,
and the only part where we used associated primes earlier.

Proof. We will show that m is principal, by showing it is invertible (as will be seen below). We
divide the proof into steps:
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Step one For a nonzero ideal I ⊂ R, let I−1 := {x ∈ K(R) : xI ⊂ R}, where K(R) is the
quotient field of R. Then clearly I−1 ⊃ R and I−1 is an R-module, but in general we cannot say
that I−1 6= R even if I is proper. Nevertheless, we claim that in the present situation, we have

m−1 6= R.

This is the conclusion of Step one.
The proof runs across a familiar line: we show that any maximal element in the set of ideals

I ⊂ R with I−1 6= R is prime. The set of such ideals is nonempty: it contains any (a) for a ∈ m
(in which case (a)−1 = Ra−1 6= R). There must be a maximal element in this set of ideals by
noetherianness, which as we will see is prime; thus, that maximal element must be m, which proves
our claim.

So to fill in the missing link, we must prove:

Lemma 1.6 If S is a noetherian domain, any maximal element in the set of ideals I ⊂ S with
I−1 6= S is prime.

Proof. Let J be a maximal element, and suppose we have ab ∈ J , with a, b /∈ J . I claim that if
z ∈ J−1 − S, then za, zb ∈ J−1 − S. The J−1 part follows since J−1 is a S-module.

By symmetry it is enough to prove the other half for a, namely that za /∈ S; but then if za ∈ S,
we would have z((a) + J) ⊂ S, which implies ((a) + J)−1 6= S, contradiction, for J was maximal.

Then it follows that z(ab) = (za)b ∈ J−1 − S, by applying the claim just made twice. But
ab ∈ J , so z(ab) ∈ S, contradiction. N

Step two In the previous step, we have established that m−1 6= R.
We now claim that mm−1 = R. First, we know of course that mm−1 ⊂ R by definition of

inverses, and equally m ⊂ mm−1 too. So mm−1 is an ideal sandwiched between m and R. Thus
we only need to prove that mm−1 = m is impossible. If this were the case, we could choose some
a ∈ m−1−R which must satisfy am ⊂ m. Then a would integral over R. As R is integrally closed,
this is impossible.

Step three Finally, we claim that m is principal, which is the final step of the proof. In fact, let
us prove a more general claim.

Proposition 1.7 Let (R,m) be a local noetherian domain such that mm−1 = R. Then m is
principal.

Proof. Indeed, since mm−1 = R, write

1 =
∑

mini, mi ∈ m, ni ∈ m−1.

At least one mjnj is invertible, since R is local. It follows that there are x ∈ m and y ∈ m−1 whose
product xy is a unit in R. We may even assume xy = 1.

Then we claim m = (x). Indeed, we need only prove m ⊂ (x). For this, if q ∈ m, then qy ∈ R
by definition of m−1, so

q = x(qy) ∈ (x). N

So we are done in this case too. Taking stock, we have an effective way to say whether a ring
is a DVR. These three conditions are much easier to check in practice (noetherianness is usually
easy, integral closure is usually automatic, and the last one is not too hard either for reasons that
will follow) than the existence of an absolute value.
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§2 Dedekind rings

2.1 Definition

We now introduce a closely related notion.

Definition 2.1 A Dedekind ring is a noetherian domain R such that

1. R is integrally closed.

2. Every nonzero prime ideal of R is maximal.

Remark If R is Dedekind, then any nonzero element is height one. This is evident since every
nonzero prime is maximal.

If R is Dedekind, then R is locally factorial. In fact, the localization of R at a nonzero prime
p is a DVR.

Proof. Rp has precisely two prime ideals: (0) and pRp. As a localization of an integrally closed
domain, it is integrally closed. So Rp is a DVR by the above result (hence factorial). N

Assume R is Dedekind now. We have an exact sequence

0→ R∗ → K(R)∗ → Cart(R)→ Pic(R)→ 0.

Here Cart(R) ' Weil(R). But Weil(R) is free on the nonzero primes, or equivalently maximal
ideals, R being Dedekind. In fact, however, Cart(R) has a simpler description.

Proposition 2.2 Suppose R is Dedekind. Then Cart(R) consists of all nonzero finitely generated
submodules of K(R) (i.e. fractional ideals).

This is the same thing as saying as every nonzero finitely generated submodule of K(R) is
invertible.

Proof. Suppose M ⊂ K(R) is nonzero and finitely generated It suffices to check that M is invertible
after localizing at every prime, i.e. that Mp is an invertible—or equivalently, trivial, Rp-module.
At the zero prime, there is nothing to check. We might as well assume that p is maximal. Then
Rp is a DVR and Mp is a finitely generated submodule of K(Rp) = K(R).

Let S be the set of integers n such that there exists x ∈Mp with v(x) = n, for v the valuation
of Rp. By finite generation of M , S is bounded below. Thus S has a least element k. There is an
element of Mp, call it x, with valuation k.

It is easy to check that Mp is generated by x, and is in fact free with generator x. The reason
is simply that x has the smallest valuation of anything in Mp. N

What’s the upshot of this?

Theorem 2.3 If R is a Dedekind ring, then any nonzero ideal I ⊂ R is invertible, and therefore
uniquely described as a product of powers of (nonzero) prime ideals, I =

∏
pni
i .

Proof. This is simply because I is in Cart(R) = Weil(R) by the above result. N

This is Dedekind’s generalization of unique factorization.
We now give the standard examples:

Example 2.4 1. Any PID (in particular, any DVR) is Dedekind.
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2. If K is a finite extension of Q, and set R to be the integral closure of Z in K, then R is a
Dedekind ring. The ring of integers in any number field is a Dedekind ring.

3. If R is the coordinate ring of an algebraic variety which is smooth and irreducible of dimension
one, then R is Dedekind.

4. Let X be a compact Riemann surface, and let S ⊂ X be a nonempty finite subset. Then the
ring of meromorphic functions on X with poles only in S is Dedekind. The maximal ideals
in this ring are precisely those corresponding to points of X − S.

2.2 A more elementary approach

We would now like to give a more elementary approach to the unique factorization of ideals in
Dedekind domains, one which does not use the heavy machinery of Weil and Cartier divisors.

In particular, we can encapsulate what has already been proved as:

Theorem 2.5 Let A be a Dedekind domain with quotient field K. Then there is a bijection between
the discrete valuations of K that assign nonnegative orders to elements of A and the nonzero prime
ideals of A.

Proof. Indeed, every valuation gives a prime ideal of elements of positive order; every prime ideal
p gives a discrete valuation on Ap, hence on K. N

This result, however trivial to prove, is the main reason we can work essentially interchangeably
with prime ideals in Dedekind domains and discrete valuations.

Now assume A is Dedekind. A finitely generated A-submodule of the quotient field F is called
a fractional ideal; by multiplying by some element of A, we can always pull a fractional ideal into
A, when it becomes an ordinary ideal. The sum and product of two fractional ideals are fractional
ideals.

Theorem 2.6 (Invertibility) If I is a nonzero fractional ideal and I−1 := {x ∈ F : xI ⊂ A},
then I−1 is a fractional ideal and II−1 = A.

Thus, the nonzero fractional ideals are an abelian group under multiplication.

Proof. To see this, note that invertibility is preserved under localization: for a multiplicative set
S, we have S−1(I−1) = (S−1I)−1, where the second ideal inverse is with respect to S−1A; this
follows from the fact that I is finitely generated. Note also that invertibility is true for discrete
valuation rings: this is because the only ideals are principal, and principal ideals (in any integral
domain) are obviously invertible.

So for all primes p, we have (II−1)p = Ap, which means the inclusion of A-modules II−1 → A
is an isomorphism at each localization. Therefore it is an isomorphism, by general algebra. N

The next result says we have unique factorization of ideals:

Theorem 2.7 (Factorization) Each ideal I ⊂ A can be written uniquely as a product of powers
of prime ideals.

Proof. Let’s use the pseudo-inductive argument to obtain existence of a prime factorization. Let
I be the maximal ideal which can’t be written in such a manner, which exists since A is Noethe-
rian. Then I isn’t prime (evidently), so it’s contained in some prime p. But I = (Ip−1)p, and
Ip−1 6= I can be written as a product of primes, by the inductive assumption. Whence so can I,
contradiction.

Uniqueness of factorization follows by localizing at each prime. N
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Definition 2.8 Let P be the subgroup of nonzero principal ideals in the group I of nonzero ideals.
The quotient I/P is called the ideal class group.

The ideal class group of the integers, for instance (or any principal ideal domain) is clearly
trivial. In general, this is not the case, because Dedekind domains do not generally admit unique
factorization.

Proposition 2.9 Let A be a Dedekind domain. Then A is a UFD if and only if its ideal class
group is trivial.

Proof. If the ideal class group is trivial, then A is a principal ideal domain, hence a UFD by elemen-
tary algebra. Conversely, suppose A admits unique factorization. Then, by the following lemma,
every prime ideal is principal. Hence every ideal is principal, in view of the unique factorization
of ideals. N

Lemma 2.10 Let R be a UFD, and let p be a prime ideal which contains no proper prime sub-ideal
except for 0. Then p is principal.

The converse holds as well; a domain is a UFD if and only if every prime ideal of height one is
principal, by Theorem 1.15.

Proof. First, p contains an element x 6= 0, which we factor into irreducibles π1 . . . πk. One of these,
say πj , belongs to p, so p ⊃ (πj). Since p is minimal among nonzero prime ideals, we have p = (πj).
(Note that (πj) is prime by unique factorization.) N

Exercise 9.1 This exercise is from [Liu02]. If A is the integral closure of Z in a number field
(so that A is a Dedekind domain), then it is known (cf. [Lan94] for a proof) that the ideal class
group of A is finite. From this, show that every open subset of SpecA is a principal open set D(f).
Scheme-theoretically, this means that every open subscheme of SpecA is affine (which is not true
for general rings).

2.3 Modules over Dedekind domains

Let us now consider some properties of Dedekind domains.

Proposition 2.11 Let A be a Dedekind domain, and let M be a finitely generated A module. Then
M is projective (or equivalently flat, or locally free) if and only if it is torsion-free.

Proof. If M is projective, then it is a direct summand of a free module, so it is torsion-free. So we
need to show that if M is torsion-free, then it is projective. Recall that to show M is projective,
it suffices to show that Mp is projective for any prime p ⊂ M . But note that Ap is a PID so a
module over it is torsion free if and only if it is flat, by Lemma ??. However, it is also a local
Noetherian ring, so a module is flat if and only if it is projective. So Mp is projective if and only
if it is torsion-free, so it now suffices to show that it is torsion-free.

However for any multiplicative set S ⊂ A, if M is torsion-free then MS is also torsion-free.
This is because if

a

s′
· m
s

= 0

then there is t such that tam = 0, as desired. N

Proposition 2.12 Let A be a Dedekind domain. Then any finitely generated module M over it
has (not canonically) a decomposition M = M tors ⊕M tors−free.

8
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Proof. Note that by Lemma ??, we have a short exact sequence

0→M tors →M →M tors−free → 0

but by proposition 2.11 the torsion free part is projective, so M can be split, not necessarily
canonically as M tors ⊕M tors−free, as desired. N

Note that we may give further information about the torsion free part of the module:

M tors =
⊕
p

M tors
p

First note that there is a map

M tors →
⊕
p

M tors
p

because M is torsion, every element is supported at finitely many points, so the image of f in
M tors

p is only nonzero for finitely many p. It is an isomorphism, because it is an isomorphism after
every localization.

So we have pretty much specified what the torsion part is. We can in fact also classify the
torsion free part; in particular, we have

M tors−free ' ⊕L

where L are locally free modules of rank 1. This is because we know from above that the torsion
free module is projective, we may apply Problem Set 10, Problem 12, and then since L is a line
bundle, and I−D is also, L⊗ I−D is a line bundle, and then M/L⊗ I−D is flat, so it is projective,
so we may split it off.

Lemma 2.13 For A a Dedekind Domain, and I ⊂ A an ideal, then I is a locally free module of
rank 1.

Proof. First note that I is torsion-free and therefore projective by 2.11, and it is also finitely
generated, because A is Noetherian. But for a finitely generated module over a Noetherian ring,
we know that it is projective if and only if it is locally free, so we have shown that it is locally free.

Also recall that for a module which is locally free, the rank is well defined, i.e, any localization
which makes it free makes it free of the same rank. So to test the rank, it suffices to show that
if we tensor with the field of fractions K, it is free of rank 1. But note that since K, being a
localization of A is flat over A so we have short exact sequence

0→ I ⊗A K → A⊗A K → (A/I)⊗A K → 0

However, note that supp(A/I) = V (Ann(A/I)) = V (I), and the prime (0) is not in V (I), so
A/I ⊗A K, which is the localization of A/I at (0) vanishes, so we have

I ⊗A K ' A⊗A K

but this is one-dimensional as a free K module, so the rank is 1, as desired. N

We close by listing a collection of useful facts about Dedekind domains. A dozen things every Good Algebraist should know about Dedekind domains.
R is a Dedekind domain.

1. R is local ⇐⇒ R is a field or a DVR.

2. R semi-local =⇒ it is a PID.

9
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3. R is a PID ⇐⇒ it is a UFD ⇐⇒ C(R) = {1}

4. R is the full ring of integers of a number field K =⇒ |C(R)| < ∞, and this number is the
class number of K.

5. C(R) can be any abelian group. This is Clayborn’s Theorem.

6. For any non-zero prime p ∈ SpecR, pn/pn+1 ∼= R/p as an R-module.

7. “To contain is to divide”, i.e. if A,B ⊂ R, then A ⊂ B ⇐⇒ A = BC for some C ⊂ R.

8. (Generation of ideals) Every non-zero ideal B ⊂ R is generated by two elements. Moreover,
one of the generators can be taken to be any non-zero element of B.

9. (Factor rings) If A ⊂ R is non-zero, then R/A is a PIR (principal ideal ring).

10. (Steinitz Isomorphism Theorem) If A,B ⊂ R are non-zero ideals, then A ⊕ B ∼= RR ⊕ AB
as R-modules.

11. If M is a finitely generated torsion-free R-module of rank n,1 then it is of the form M ∼=
Rn−1 ⊕A, where A is a non-zero ideal, determined up to isomorphism.

12. If M is a finitely generated torsion R-module, then M is uniquely of the form M ∼= R/A1 ⊕
· · · ⊕R/An with A1 ( A2 ( · · · ( An ( R.

TO BE ADDED: eventually, proofs of these should be added

§3 Extensions

In this section, we will essentially consider the following question: if A is a Dedekind domain,
and L a finite extension of the quotient field of A, is the integral closure of A in L a Dedekind
domain? The general answer turns out to be yes, but the result is somewhat simpler for the case
of a separable extension, with which we begin.

3.1 Integral closure in a finite separable extension

One of the reasons Dedekind domains are so important is

Theorem 3.1 Let A be a Dedekind domain with quotient field K, L a finite separable extension
of K, and B the integral closure of A in L. Then B is Dedekind.

This can be generalized to the Krull-Akizuki theorem below (??).
First let us give an alternate definition of “separable”. For a finite field extension k′ of k,

we may consider the bilinear pairing k′ ⊗k k′ → k given by x, y 7→ Trk′/k(xy). Which is to say
xy ∈ k′ can be seen as a k-linear map of finite dimensional vector spaces k′ → k′, and we are
considering the trace of this map. Then we claim that k′ is separable if and only if the bilinear
pairing k′ × k′ → k is non-degenerate.

To show the above claim, first note that the pairing is non-degenerate if and only if it is non-
degenerate after tensoring with the algebraic closure. This is because if Tr(xy) = 0 for all y ∈ k′,
then Tr((x⊗ 1k)y) = 0 for all y ∈ k′ ⊗k k, which we may see to be true by decomposing into pure

tensors. The other direction is obtained by selecting a basis of k over k, and then noting that for
yi basis elements, if Tr(

∑
xyi) = 0 then Tr(xyi) = 0 for each i.

1The rank is defined as rk(M) = dimK(R)M ⊗R K(R) where K(R) is the quotient field.

10
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So now we just need to show that X = k′ ⊗k k is reduced if and only if the map X ⊗k X → k
given by a⊗ b 7→ Tr(ab) is non-degenerate. To do this, we show that elements of the kernel of the
bilinear map are exactly the nilpotents. But note that X is a finite dimensional algebra over k, and
we may elements as matrices. Then if Tr(AB) = 0 for all B if and only if Tr(PAP−1PBP−1) = 0
for all B, so we may assume A is in Upper Triangular Form. From this, the claim becomes clear.

Proof. We need to check that B is Noetherian, integrally, closed, and of dimension 1.

• Noetherian. Indeed, B is a finitely generated A-module, which obviously implies Noethe-
rianness. To see this, note that the K-linear map (., .) : L × L → K, a, b → Tr(ab) is
nondegenerate since L is separable over K (??). Let F ⊂ B be a free module spanned by
a K-basis for L. Then since traces preserve integrality and A is integrally closed, we have
B ⊂ F ∗, where F ∗ := {x ∈ K : (x, F ) ⊂ A}. Now F ∗ is A-free on the dual basis of F though,
so B is a submodule of a finitely generated A module, hence a finitely generated A-module.

• Integrally closed. B is the integral closure of A in L, so it is integrally closed (integrality
being transitive).

• Dimension 1. Indeed, if A ⊂ B is an integral extension of domains, then dimA = dimB.
This follows essentially from the theorems of “lying over” and “going up.” Cf. [Eis95].

So, consequently the ring of algebraic integers (integral over Z) in a number field (finite exten-
sion of Q) is Dedekind. N

Note that the above proof actually implied (by the argument about traces) the following useful
fact:

Proposition 3.2 Let A be a noetherian integrally closed domain with quotient field K. Let L be
a finite separable extension and B the ring of integers. Then B is a finitely generated A-module.

We shall give another, more explicit proof of Proposition 3.2 whose technique will be useful
in the sequel. Let α ∈ B be a generator of L/K. Let n = [L : K] and σ1, . . . , σn the distinct
embeddings of L into the algebraic closure of K. Define the discriminant of α to be

D(α) =

det

1 σ1α (σ1α)2 . . .
1 σ2α (σ2α)2 . . .
...

...
...

. . .




2

.

This maps to the same element under each σi, so is in K∗ (and even A∗ by integrality); it is nonzero
by basic facts about vanderMonde determinants since each σi maps α to a different element. The
next lemma clearly implies that B is contained in a finitely generated A-module, hence is finitely
generated (since A is noetherian).

Lemma 3.3 We have B ⊂ D(α)−1A[α].

Proof. Indeed, suppose x ∈ B. We can write x = c0(1)+c1(α)+ . . . cn−1(αn−1) where each ci ∈ K.
We will show that in fact, each ci ∈ D(α)−1A, which will prove the lemma. Applying each σi, we
have for each i, σix = c0(1) + c1(σiα) + · · ·+ cn−1(σiα

n−1). Now by Cramer’s lemma, each ci can
be written as a quotient of determinants of matrices involving σjx and the αj . The denominator
determinant is in fact D(α). The numerator is in K and must be integral, hence is in A. This
proves the claim and the lemma. N

The above technique may be illustrated with an example.

11
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Example 3.4 Let pi be a power of a prime p and consider the extension Q(ζpi)/Q for ζpi a
primitive pi-th root of unity. This is a special case of a cyclotomic extension, an important
example in the subject. We claim that the ring of integers (that is, the integral closure of Z) in
Q(ζpi) is precisely Z[ζpi ]. This is true in fact for all cyclotomic extensions, but we will not be able
to prove it here.

First of all, ζpi satisfies the equation Xpi−1(p−1) + Xpi−1(p−2) + · · · + 1 = 0. This is because
if ζp is a p-th root of unity, (ζp − 1)(1 + ζp + · · · + ζp−1p ) = ζpp − 1 = 0. In particular, X − ζpi |
Xpi−1(p−1) + Xpi−1(p−2) + · · · + 1, and consequently (taking X = 1), we find that 1 − ζpi divides
p in the ring of integers in Q(ζpi)/Q. This is true for any primitive pi-th root of unity for any pi.

Thus the norm to Q of 1− ζjpi for any j is a power of p.

I claim that this implies that the discriminant D(ζpi) is a power of p, up to sign. But by the

vanderMonde formula, this discriminant is a product of terms of the form
∏

(1− ζjpi) up to roots
of unity. The norm to Q of each factor is thus a power of p, and the discriminant itself plus or
minus a power of p.

By the lemma, it follows that the ring of integers is contained in Z[p−1, ζpi ]. To get down
further to Z[ζpi ] requires a bit more work. TO BE ADDED: this proof

3.2 The Krull-Akizuki theorem

We are now going to prove a general theorem that will allow us to remove the separability hypothesis
in ??. Let us say that a noetherian domain has dimension at most one if every nonzero prime
ideal is maximal; we shall later generalize this notion of “dimension.”

Theorem 3.5 (Krull-Akizuki) Suppose A is a noetherian domain of dimension at most one.
Let L be a finite extension of the quotient field K(A), and suppose B ⊂ L is a domain containing
A. Then B is noetherian of dimension at most one.

From this, it is clear:

Theorem 3.6 The integral closure of a Dedekind domain in any finite extension of the quotient
field is a Dedekind domain.

Proof. Indeed, by Krull-Akizuki, this integral closure is noetherian and of dimension ≤ 1; it is
obviously integrally closed as well, hence a Dedekind domain. N

Now let us prove Krull-Akizuki. TO BE ADDED: we need to introduce material about
length

Proof. We are going to show that for any a ∈ A − {0}, the A-module B/aB has finite length.
(This is quite nontrivial, since B need not even be finitely generated as an A-module.) From this
it will be relatively easy to deduce the result.

Indeed, if I ⊂ B is any nonzero ideal, then I contains a nonzero element of A; to see this, we
need only choose an element b ∈ I and consider an irreducible polynomial

a0X
n + · · ·+ an ∈ K[X]

that it satisfies. We can assume that all the ai ∈ A by clearing denominators. It then follows
that an ∈ A ∩ I. So choose some a ∈ (A ∩ I) − {0}. We then know by the previous paragraph
(though we have not proved it yet) that B/aB has finite length as an A-module (and a fortiori as
a B-module); in particular, the submodule I/aB is finitely generated as a B-module. The exact
sequence

0→ aB → I → I/aB → 0

12
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shows that I must be finitely generated as a B-module, since the two outer terms are. Thus any
ideal of B is finitely generated, so B is noetherian.

TO BE ADDED: B has dimension at most one
To prove the Krull-Akizuki theorem, we are going to prove:

Lemma 3.7 (Finite length lemma) If A is a noetherian domain of dimension at most one,
then for any torsion-free A-module M such that K(A) ⊗AM is finite-dimensional (alternatively:
M has finite rank) and a 6= 0, M/aM has finite length.

Proof. We are going to prove something stronger. If M has rank n and is torsion-free, then will
show

`(M/aM) ≤ n`(A/aA). (9.1)

Note that A/aA has finite length. This follows because there is a filtration of A/aA whose quotients
are of the form A/p for p prime; but these p cannot be zero as A/aA is torsion. So these primes
are maximal, and A/aA has a filtration whose quotients are simple. Thus `(A/aA) <∞. In fact,
we see thus that any torsion, finitely-generated module has finite length; this will be used in the
sequel.

There are two cases:

1. M is finitely generated. We can choose generators m1, . . . ,mn in M of K(A)⊗AM ; we then
from these generators get a map

An →M

which becomes an isomorphism after localizing at A − {0}. In particular, the kernel and
cokernel are torsion modules. The kernel must be trivial (A being a domain), and An →M
is thus injective. Thus we have found a finite free submodule F ⊂ M such that M/F is a
torsion module T , which is also finitely generated.

We have an exact sequence

0→ F/(aM ∩ F )→M/aM → T/aT → 0.

Here the former has length at most `(F/aF ) = n`(A/aA), and we get the bound `(M/aM) ≤
n`(A/aA)+`(T/aT ). However, we have the annoying last term to contend with, which makes
things somewhat inconvenient. Thus, we use a trick: for each t > 0, we consider the exact
sequence

0→ F/(atM ∩ F )→M/atM → T/atT → 0.

This gives
`(M/atM) ≤ tn`(A/aA) + `(T/atT ) ≤ tn`(A/aA) + `(T ).

However, `(T ) < ∞ as T is torsion (cf. the first paragraph). If we divide by t, we get the
inequality

1

t
`(M/atM) ≤ n`(A/aA) +

`(T )

t
. (9.2)

However, the filtration atM ⊂ at−1M ⊂ · · · ⊂ aM ⊂ M whose quotients are all isomorphic
to M/aM (M being torsion-free) shows that `(M/atM) = t`(M/aM) In particular, letting
t→∞ in (9.2) gives (9.1) in the case where M is finitely generated.

2. M is not finitely generated. Now we can use a rather cheeky argument. M is the inductive
limit of its finitely generated submodules MF ⊂ M , each of which is itself torsion free and
of rank at most n. Thus M/aM is the inductive limit of its submodules MF /(aM ∩MF ) as
MF ranges over We know that `(MF /(aM ∩MF )) ≤ n`(A/aA) for each finitely generated
MF ⊂M by the first case above (and the fact thatMF /(aM∩MF ) is a quotient ofMF /aMF ).

13
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But if M/aM is the inductive limit of submodules of length at most n`(A/aA), then it itself
can have length at most n`(A/aA). For M/aM must be in fact equal to the submodule
MF /(aM ∩ MF ) that has the largest length (no other submodule MF ′/(aM ∩ MF ′) can
properly contain this). N

With this lemma proved, it is now clear that Krull-Akizuki is proved as well.

3.3 Extensions of discrete valuations

As a result, we find:

Theorem 3.8 Let K be a field, L a finite separable extension. Then a discrete valuation on K
can be extended to one on L.

TO BE ADDED: This should be clarified — what is a discrete valuation?

Proof. Indeed, let R ⊂ K be the ring of integers of the valuation, that is the subset of elements
of nonnegative valuation. Then R is a DVR, hence Dedekind, so the integral closure S ⊂ L is
Dedekind too (though in general it is not a DVR—it may have several non-zero prime ideals) by
Theorem 3.1. Now as above, S is a finitely generated R-module, so if m ⊂ R is the maximal ideal,
then

mS 6= S

by Nakayama’s lemma (cf. for instance [Eis95]). So mS is contained in a maximal ideal M of S
with, therefore, M ∩ R = m. (This is indeed the basic argument behind lying over, which I could
have just invoked.) Now SM ⊃ Rm is a DVR as it is the localization of a Dedekind domain at a
prime ideal, and one can appeal to ??. So there is a discrete valuation on SM. Restricted to R, it
will be a power of the given R-valuation, because its value on a uniformizer π is < 1. However, a
power of a discrete valuation is a discrete valuation too. So we can adjust the discrete valuation
on SM if necessary to make it an extension.

This completes the proof. N

Note that there is a one-to-one correspondence between extensions of the valuation on K and
primes of S lying above m. Indeed, the above proof indicated a way of getting valuations on L
from primes of S. For an extension of the valuation on K to L, let M := {x ∈ S : |x| < 1}.

§4 Action of the Galois group

Suppose we have an integral domain (we don’t even have to assume it Dedekind) A with quotient
field K, a finite Galois extension L/K, with B the integral closure in L. Then the Galois group
G = G(L/K) acts on B; it preserves B because it preserves equations in A[X]. In particular, if
P ⊂ B is a prime ideal, so is σP, and the set SpecB of prime ideals in B becomes a G-set.

4.1 The orbits of the Galois group

It is of interest to determine the orbits; this question has a very clean answer.

Proposition 4.1 The orbits of G on the prime ideals of B are in bijection with the primes of A,
where a prime ideal p ⊂ A corresponds to the set of primes of B lying over A.2 Alternatively, any
two primes P,Q ⊂ B lying over A are conjugate by some element of G.

2It is useful to note here that the lying over theorem works for arbitrary integral extensions.

14
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In other words, under the natural map SpecB → SpecA = SpecBG, the latter space is the
quotient under the action of G, while A = BG is the ring of invariants in B.3

Proof. We need only prove the second statement. Let S be the multiplicative set A − p. Then
S−1B is the integral closure of S−1A, and in S−1A = Ap, the ideal p is maximal. Let Q,P lie over
p; then S−1Q, S−1P lie over S−1p and are maximal (to be added). If we prove that S−1Q, S−1P
are conjugate under the Galois group, then Q,P must also be conjugate by the properties of
localization. In particular, we can reduce to the case of p,Q,P all maximal.

The rest of the proof is now an application of the Chinese remainder theorem. Suppose that,
for all σ ∈ G, we have σP 6= Q. Then the ideals σP,Q are distinct maximal ideals, so by the
remainder theorem, we can find x ≡ 1 mod σP for all σ ∈ G and x ≡ 0 mod Q. Now, consider
the norm NL

K(x); the first condition implies that it is congruent to 1 modulo p. But the second
implies that the norm is in Q ∩K = p, contradiction. N

4.2 The decomposition and inertia groups

Now, let’s zoom in on a given prime p ⊂ A. We know that G acts transitively on the set P1, . . . ,Pg

of primes lying above p; in particular, there are at most [L : K] of them.

Definition 4.2 If P is any one of the Pi, then the stabilizer in G of this prime ideal is called the
decomposition group GP.

We have, clearly, (G : GP) = g.

Now if σ ∈ GP, then σ acts on the residue field B/P while fixing the subfield A/p. In this
way, we get a homomorphism σ → σ from G into the automorphism group of B/P over A/p) (we
don’t call it a Galois group because we don’t yet know whether the extension is Galois).

The following result will be crucial in constructing the so-called “Frobenius elements” of crucial
use in class field theory.

Proposition 4.3 Suppose A/p is perfect. Then B/P is Galois over A/p, and the homomorphism
σ → σ is surjective from GP → G(B/P/A/p).

Proof. In this case, the extension B/P/A/p is separable, and we can choose x ∈ B/P generating
it by the primitive element theorem. We will show that x satisfies a polynomial equation P (X) ∈
A/p[X] all of whose roots lie in B/P, which will prove that the residue field extension is Galois.
Moreover, we will show that all the nonzero roots of P in B/P are conjugates of x under elements
of GP. This latter will imply surjectivity of the homomorphism σ → σ, because it shows that any
conjugate of x under G(B/P/A/p) is a conjugate under GP.

We now construct the aforementioned polynomial. Let x ∈ B lift x. Choose y ∈ B such
that y ≡ x mod P but y ≡ 0 mod Q for the other primes Q lying over p. We take P (X) =∏
σ∈G(X − σ(y)) ∈ A[X]. Then the reduction P satisfies P (x) = P (y) = 0, and P factors

completely (via
∏
σ(X − σ(t))) in B/P[X]. This implies that the residue field extension is Galois,

as already stated. But it is also clear that the polynomial P (X) has roots of zero and σ(y) = σ(x)
for σ ∈ GP. This completes the proof of the other assertion, and hence the proposition. N

Definition 4.4 The kernel of the map σ → σ is called the inertia group TP. Its fixed field is
called the inertia field.

These groups will resurface significantly in the future.

3The reader who does not know about the Spec of a ring can disregard these remarks.
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Remark Although we shall never need this in the future, it is of interest to see what happens when
the extension L/K is purely inseparable.4 Suppose A is integrally closed in K, and B is the integral
closure in L. Let the characteristic be p, and the degree [L : K] = pi. In this case, x ∈ B if and

only if xp
i ∈ A. Indeed, it is clear that the condition mentioned implies integrality. Conversely, if x

is integral, then so is xp
i

, which belongs to K (by basic facts about purely inseparable extensions).

Since A is integrally closed, it follows that xp
i ∈ A.

Let now p ⊂ A be a prime ideal. I claim that there is precisely one prime ideal P of B
lying above A, and Ppi = p. Namely, this ideal consists of x ∈ B with xp

i ∈ p! The proof is
straightforward; if P is any prime ideal lying over p, then x ∈ P iff xp

i ∈ L ∩ P = p. In a
terminology to be explained later, p is totally ramified.

4Cf. [Lan02], for instance.
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[CF86] J. W. S. Cassels and A. Fröhlich, editors. Algebraic number theory, London, 1986. Aca-
demic Press Inc. [Harcourt Brace Jovanovich Publishers]. Reprint of the 1967 original.

[Cla11] Pete L. Clark. Factorization in euclidean domains. 2011. Available at http://math.

uga.edu/~pete/factorization2010.pdf.

[dJea10] Aise Johan de Jong et al. Stacks Project. Open source project, available at http:

//www.math.columbia.edu/algebraic_geometry/stacks-git/, 2010.

[Eis95] David Eisenbud. Commutative algebra, volume 150 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 1995. With a view toward algebraic geometry.

[For91] Otto Forster. Lectures on Riemann surfaces, volume 81 of Graduate Texts in Mathe-
matics. Springer-Verlag, New York, 1991. Translated from the 1977 German original by
Bruce Gilligan, Reprint of the 1981 English translation.

[GD] Alexander Grothendieck and Jean Dieudonné. Élements de géometrie algébrique. Pub-
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[Per04] Hervé Perdry. An elementary proof of Krull’s intersection theorem. The American
Mathematical Monthly, 111(4):356–357, 2004.

[Qui] Daniel Quillen. Homology of commutative rings. Mimeographed notes.
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de “platification” d’un module. Invent. Math., 13:1–89, 1971.
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