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Chapter 11

Completions

The algebraic version of completion is essentially analogous to the familiar process of completing
a metric space as in analysis, i.e. the process whereby R is constructed from Q. Here, however,
the emphasis will be on how the algebraic properties and structure pass to the completion. For
instance, we will see that the dimension is invariant under completion for noetherian local rings.

Completions are used in geometry and number theory in order to give a finer picture of local
structure; for example, taking completions of rings allows for the recovery of a topology that looks
more like the Euclidean topology as it has more open sets than the Zariski topology. Completions
are also used in algebraic number theory to allow for the study of fields around a prime number
(or prime ideal).

§1 Introduction

1.1 Motivation

Let R be a commutative ring. Consider a maximal ideal m ∈ SpecR. If one thinks of SpecR
as a space, and R as a collection of functions on that space, then Rm is to be interpreted as the
collection of “germs” of functions defined near the point m. (In the language of schemes, Rm is
the stalk of the structure sheaf.)

However, the Zariski topology is coarse, making it difficult small neighborhoods of m. Thus
the word “near” is to be taken with a grain of salt.

Example 1.1 Let X be a compact Riemann surface, and let x ∈ X. Let R be the ring of
holomorphic functions on X −{x} which are meromorphic at x. In this case, SpecR has the ideal
(0) and maximal ideals corresponding to functions vanishing at some point in X −{x}. So SpecR
is X − {x} together with a “generic” point.

Let us just look at the closed points. If we pick y ∈ X−{x}, then we can consider the local ring
Ry =

{
s−1r, s(y) 6= 0

}
. This ring is a direct limit of the rings O(U) of holomorphic functions on

open sets U that extend meromorphically to X. Here, however, U ranges only over open subsets
of X containing y that are the nonzero loci of elements R. Thus U really ranges over complements
of finite subsets. It does not range over open sets in the complex topology.

Near y, X looks like C in the complex topology. In the Zariski topology, this is not the case.
Each localization Ry actually remembers the whole Riemann surface. Indeed, the quotient field of
Ry is the rational function field of X, which determines X. Thus Ry remembers too much, and it
fails to give a truly local picture near y.

We would like a variant of localization that would remember much less about the global topol-
ogy.
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1.2 Definition

Definition 1.2 Let R be a commutative ring and I ⊂ R an ideal. Then we define the completion
of R at I as

R̂I = lim←−R/I
n.

By definition, this is the inverse limit of the quotients R/In, via the tower of commutative rings

· · · → R/I3 → R/I2 → R/I

where each map is the natural reduction map. Note that R̂I is naturally an R-algebra. If the map
R→ R̂I is an isomorphism, then R is said to be I-adically complete.

In general, though, we can be more general. Suppose R is a commutative ring with a linear
topology. Consider a neighborhood basis at the origin consisting of ideals {Iα}.

Definition 1.3 The completion R̂ of the topological ring R is the inverse limit R-algebra

lim←−R/Iα,

where the maps R/Iα → R/Iβ for Iα ⊂ Iβ are the obvious ones. R̂ is given a structure of a
topological ring via the inverse limit topology.

If the map R→ R̂ is an isomorphism, then R is said to be complete.

The collection of ideals {Iα} is a directed set, so we can talk about inverse limits over it.
When we endow R with the I-adic topology, we see that the above definition is a generalization
of Definition 1.2.

Exercise 11.1 Let R be a linearly topologized ring. Then the map R→ R̂ is injective if and only
if
⋂
Iα = 0 for the Iα open ideals; that is, if and only if R is Hausdorff.

Exercise 11.2 If R/Iα is finite for each open ideal Iα ⊂ R, then R̂ is compact as a topological
ring. (Hint: Tychonoff’s theorem.)

TO BE ADDED: Notation needs to be worked out for the completion
The case of a local ring is particularly important. Let R be a local ring and m its maximal ideal.

Then the completion of R with respect to m, denoted R̂, is the inverse limit R̂ = lim←(R/mnR).
We then topologize R̂ by setting powers of m to be basic open sets around 0. The topology formed
by these basic open sets is called the “Krull” or “m-adic topology.”

In fact, the case of local rings is the most important one. Usually, we will complete R at
maximal ideals. If we wanted to study R near a prime p ∈ SpecR, we might first replace R by Rp,
which is a local ring; we might make another approximation to R by completing Rp. Then we get
a complete local ring.

Definition 1.4 Let R be a ring, M an R-module, I ⊂ R an ideal. We define the completion of
M at I as

M̂I = lim←−M/InM.

This is an inverse limit of R-modules, so it is an R-module. Furthermore, it is even an R̂I -
module, as one easily checks. It is also functorial.

In fact, we get a functor

R−modules→ R̂I −modules.
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1.3 Classical examples

Let us give some examples.

Example 1.5 Recall that in algebraic number theory, a number field is a finite dimensional alge-
braic extension of Q. Sitting inside of Q is the ring of integers, Z. For any prime number p ∈ Z,
we can localize Z to the prime ideal (p) giving us a local ring Z(p). If we take the completion of
this local ring we get the p-adic numbers Qp. Notice that since Z(p)/p

n ∼= Z/p, this is really the
same as taking the inverse limit lim← Z/pn.

Example 1.6 Let X be a Riemann surface. Let x ∈ X be as before, and let R be as before: the
ring of meromorphic functions on X with poles only at x. We can complete R at the ideal my ⊂ R
corresponding to y ∈ X − {x}. This is always isomorphic to a power series ring

C[[t]]

where t is a holomorphic coordinate at y.
The reason is that if one considers R/mny , one always gets C[t]/(tn), where t corresponds to a

local coordinate at y. Thus these rings don’t remember much about the Riemann surface. They’re
all isomorphic, for instance.

Remark There is always a map R→ R̂I by taking the limit of the maps R/Ii.

1.4 Noetherianness and completions

A priori, one might think this operation of completion gives a big mess. The amazing thing is that
for noetherian rings, completion is surprisingly well-behaved.

Proposition 1.7 Let R be noetherian, I ⊂ R an ideal. Then R̂I is noetherian.

Proof. Choose generators x1, . . . , xn ∈ I. This can be done as I is finitely generated Consider a
power series ring

R[[t1, . . . , tn]];

the claim is that there is a map R[[t1 . . . tn]]→ R̂I sending each ti to xi ∈ R̂I . This is not trivial,
since we aren’t talking about a polynomial ring, but a power series ring.

To build this map, we want a compatible family of maps

R[[t1, . . . , tn]]→ R[t1, . . . , tn]/(t1, . . . , tn)k → R/Ik.

where the second ring is the polynomial ring where homogeneous polynomials of degree ≥ k are
killed. There is a map from R[[t1, . . . , tn]] to the second ring that kills monomials of degree ≥ k.
The second map R[t1, . . . , tn]/(t1, . . . , tn)k → R/Ik sends ti → xi and is obviously well-defined.

So we get the map
φ : R[[t1, . . . , tn]]→ R̂I ,

which I claim is surjective. Let us prove this. Suppose a ∈ R̂I . Then a can be thought of as a
collection of elements (ak) ∈ R/Ik which are compatible with one another. We can lift each ak to
some ak ∈ R in a compatible manner, such that

ak+1 = ak + bk, bk ∈ Ik.

Since bk ∈ Ik, we can write it as
bk = fk(x1, . . . , xn)

for fk a polynomial in R of degree k, by definition of the generators in Ik.
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I claim now that
a = φ

(∑
fk(t1, . . . , tn)

)
.

The proof is just to check modulo Ik for each k. This we do by induction. When one reduces
modulo Ik, one gets ak (as one easily checks).

As we have seen, R̂I is the quotient of a power series ring. In the homework, it was seen that
R[[t1, . . . , tn]] is noetherian; this is a variant of the Hilbert basis theorem proved in class. So R̂I is
noetherian. N

In fact, following [Ser65], we shall sometimes find it convenient to note a generalization of the
above argument.

Lemma 1.8 Suppose A is a filtered ring, M,N filtered A-modules and φ : M → N a morphism
of filtered modules. Suppose gr(φ) surjective and M,N complete; then φ is surjective.

Proof. This will be a straightforward “successive approximation” argument. Indeed, let {Mn} , {Nn}
be the filtrations on M,N . Suppose n ∈ N . We know that there is m0 ∈M such that

n− φ(m0) ∈ N1

since M/M1 → N/N1 is surjective. Similarly, we can choose m1 ∈M1 such that

n− φ(m0)− φ(m1) ∈M2

because n−φ(m0) ∈ N1 and M1/M2 → N1/N2 is surjective. We inductively continue the sequence
m2,m3, . . . such that it tends to zero rapidly; we then have that n − φ (

∑
mi) ∈

⋂
Ni, so n =

φ (
∑
mi) as N is complete. N

Theorem 1.9 Suppose A is a filtered ring. Let M be a filtered A-module, separated with respect
to its topology. If gr(M) is noetherian over gr(A), then M is a noetherian A-module.

Proof. If N ⊂M , then we can obtain an induced filtration on N such that gr(N) is a submodule
of gr(M). Since noetherianness equates to the finite generation of each submodule, it suffices to
show that if gr(M) is finitely generated, so is M .

Suppose gr(M) is generated by homogeneous elements e1, . . . , en of degrees d1, . . . , dn, repre-
sented by elements e1, . . . , en ∈M . From this we can define a map

An →M

sending the ith basis vector to ei. This will induce a surjection gr(An) → gr(M). We will have
to be careful, though, exactly how we define the filtration on An, because the di may have large
degrees, and if we are not careful, the map on gr’s will be zero.

We choose the filtration such that at the mth level, we get the subgroup of An such that the
ith coordinate is in In−di (for {In} the filtration of A). It is then clear that the associated map

gr(An)→ gr(M)

has image containing each ei. Since An is complete with respect to this topology, we find that
An → M is surjective by Lemma 1.8. This shows that M is finitely generated and completes the
proof. N

Corollary 1.10 Suppose A is a ring, complete with respect to the I-adic topology. If A/I is
noetherian and I/I2 a finitely generated A-module, then A is noetherian.
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Proof. Indeed, we need to show that gr(A) is a noetherian ring (by Theorem 1.9). But this is the
ring

A/I ⊕ I/I2 ⊕ I2/I3 ⊕ . . . .

It is easy to see that this is generated by I/I2 as an A/I-algebra. By Hilbert’s basis theorem, this
is noetherian under the conditions of the result. N

Corollary 1.10 gives another means of showing that if a ring A is noetherian, then its completion
Â with respect to an ideal I ⊂ A is noetherian. For the algebra gr(A) (where A is given the I-adic
topology) is noetherian because it is finitely generated over A/I. Moreover, gr(Â) = gr(A), so Â
is noetherian.

§2 Exactness properties

The principal result of this section is:

Theorem 2.1 If R is noetherian and I ⊂ R an ideal, then the construction M → M̂I is exact
when restricted to finitely generated modules.

Let’s be more precise. If M is finitely generated, and 0 → M ′ → M → M ′′ → 0 is an exact
sequence,1 then

0→ M̂ ′I → M̂I → M̂ ′′I → 0

is also exact.

We shall prove this theorem in several pieces.

2.1 Generalities on inverse limits

For a moment, let us step back and think about exact sequences of inverse limits of abelian groups.
Say we have a tower of exact sequences of abelian groups

0 // ...

��

// ...

��

// ...

��

// 0

0 // A2

��

// B2

��

// C2

��

// 0

0 // A1

��

// B1

��

// C1

��

// 0

0 // A0
// B0

// C0
// 0

.

Then we get a sequence

0→ lim←−An → lim←−Bn → lim←−Cn → 0.

In general, it is not exact. But it is left-exact.

Proposition 2.2 Hypotheses as above, 0→ lim←−An → lim←−Bn → lim←−Cn is exact.

1The ends are finitely generated by noetherianness.
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Proof. It is obvious that φ ◦ ψ = 0.
Let us first show that φ : lim←−An → lim←−Bn is injective. So suppose a is in the projective limit,

represented by a compatible sequence of elements (ak) ∈ Ak. If φ maps to zero, all the ak go to
zero in Bk. Injectivity of Ak → Bk implies that each ak is zero. This implies φ is injective.

Now let us show exactness at the next step. Let ψ : lim←−Bn → lim←−Cn and let b = (bk) be in
kerψ. This means that each bk gets killed when it maps to Ck. This means that each bk comes
from something in ak. These ak are unique by injectivity of Ak → Bk. It follows that the ak have
no choice but to be compatible. Thus (ak) maps into (bk). So b is in the image of φ. N

So far, so good. We get some level of exactness. But the map on the end is not necessarily
surjective. Nonetheless:

Proposition 2.3 ψ : lim←−Bn → lim←−Cn is surjective if each An+1 → An is surjective.

Proof. Say c ∈ lim←−Cn, represented by a compatible family (ck). We have to show that there is a
compatible family (bk) ∈ lim←−Bn which maps into c. It is easy to choose the bk individually since
Bk → Ck is surjective. The problem is that a priori we may not get something compatible.

We construct bk by induction on then, therefore. Assume that bk which lifts ck has been
constructed. We know that ck receives a map from ck+1.

ck+1

��
bk // ck

.

Choose any x ∈ Bk+1 which maps to ck+1. However, x might not map down to bk, which would
screw up the compatibility conditions. Next, we try to adjust x. Consider x′ ∈ Bk to be the image
of x under Bk+1 → Bk. We know that x′ − bk maps to zero in Ck, because ck+1 maps to ck. So
x′ − bk comes from something in Ak, call it a.

x // ck+1

��
bk // ck

.

But a comes from some a ∈ Ak+1. Then we define

bk+1 = x− a,

which adjustment doesn’t change the fact that bk+1 maps to ck+1. However, this adjustment
makes bk+1 compatible with bk. Then we construct the family bk by induction. We have seen
surjectivity. N

Now, let us study the exactness of completions.

Proof (Proof of Theorem 2.1). Let us try to apply the general remarks above to studying the
sequence

0→ M̂ ′I → M̂I → M̂ ′′I → 0.

Now M̂I = lim←−M/In. We can construct surjective maps

M/In �M ′′/In

8
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whose inverse limits lead to M̂I → M̂ ′′I . The image is M/(M ′+ InM). What is the kernel? Well,
it is M ′ + InM/InM . This is equivalently

M ′/M ′ ∩ InM.

So we get an exact sequence

0→M ′/M ′ ∩ InM →M/InM →M ′′/InM ′′ → 0.

By the above analysis of exactness of inverse limits, we get an exact sequence

0→ lim←−M
′/(InM ∩M ′)→ M̂I → M̂ ′′I → 0.

We of course have surjective maps M ′/InM ′ → M ′/(InM ∩M ′) though these are generally not
isomorphisms. Something “divisible by In” in M but in M ′ is generally not divisible by In in M ′.
Anyway, we get a map

lim←−M
′/InM ′ → lim←−M

′/InM ∩M ′

where the individual maps are not necessarily isomorphisms. Nonetheless, I claim that the map
on inverse limits is an isomorphism. This will imply that completion is indeed an exact functor.

But this follows because the filtrations {InM ′} , {InM ∩M ′} are equivalent in view of the
Artin-Rees lemma, ??. N

Last time, we were talking about completions. We showed that if R is noetherian and I ⊂ R
an ideal, an exact sequence

0→M ′ →M →M → 0

of finitely generated R-modules leads to a sequence

0→ M̂ ′I → M̂I → M̂ ;I → 0

which is also exact. We showed this using the Artin-Rees lemma.

Remark In particular, for finitely generated modules over a noetherian ring, completion is an
exact functor: if A → B → C is exact, so is the sequence of completions. This can be seen
by drawing in kernels and cokernels, and using the fact that completions preserve short exact
sequences.

2.2 Completions and flatness

Suppose that M is a finitely generated R-module. Then there is a surjection Rn � M , whose
kernel is also finitely generated as R is noetherian. It follows that M is finitely presented. In
particular, there is a sequence

Rm → Rn →M → 0.

We get an exact sequence

R̂m → R̂n → M̂ → 0

where the second map is just multiplication by the same m-by-n matrix as in the first case.

Corollary 2.4 If M is finitely generated and R noetherian, there is a canonical isomorphism

M̂I 'M ⊗R R̂I .

9
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Proof. We know that there is a map M → M̂I , so the canonical morphism φM : M ⊗R R̂I → M̂I

exists (because this induces a map from M ⊗R R̂I). We need to check that it is an isomorphism.

If there is an exact sequence M ′ →M →M ′′ → 0, there is a commutative diagram

M ′ ⊗R R̂I
φM′

��

// M ⊗R R̂I
φM

��

// M ′′ ⊗R R̂I

��

// 0

M̂ ′I
// M̂I

// M̂ ′′I
// 0

.

Exactness of completion and right-exactness of ⊗ implies that this diagram is exact. It follows
that if φM , φM ′ are isomorphisms, so is φM ′′ .

But any M ′′ appears at the end of such a sequence with M ′,M are free by the finite presentation
argument above. So it suffices to prove φ an isomorphism for finite frees, which reduces to the case
of φR an isomorphism. That is obvious. N

Corollary 2.5 If R is noetherian, then R̂I is a flat R-module.

Proof. Indeed, tensoring with R̂I is exact (because it is completion, and completion is exact) on
the category of finitely generated R-modules. Exactness on the category of all R-modules follows
by taking direct limits, since every module is a direct limit of finitely generated modules, and direct
limits preserve exactness. N

Remark Warning: M̂I is, in general, not M⊗R R̂I when M is not finitely generated. One example
to think about is M = Z[t], R = Z. The completion of M at I = (p) is the completion of Z[t] at
pZ[t], which contains elements like

1 + pt+ p2t2 + . . . ,

which belong to the completion but not to R̂I ⊗M = Zp[t].

Remark By the Krull intersection theorem, if R is a local noetherian ring, then the map from
R→ R̂ is an injection.

§3 Hensel’s lemma

One thing that you might be interested in doing is solving Diophantine equations. Say R = Z; you
want to find solutions to a polynomial f(X) ∈ Z[X]. Generally, it is very hard to find solutions.
However, there are easy tests you can do that will tell you if there are no solutions. For instance,
reduce mod a prime. One way you can prove that there are no solutions is to show that there are
no solutions mod 2.

But there might be solutions mod 2 and yet you might not be sure about solutions in Z. So
you might try mod 4, mod 8, and so on—you get a whole tower of problems to consider. If you
manage to solve all these equations, you can solve the equations in the 2-adic integers Z2 = Ẑ(2).
But the Krull intersection theorem implies that Z→ Z2 is injective. So if you expected that there
was a unique solution in Z, you might try looking at the solutions in Z2 to be the solutions in Z.

The moral is that solving an equation over Z2 is intermediate in difficulty between Z/2 and
Z. Nonetheless, it turns out that solving an equation mod Z/2 is very close to solving it over Z2,
thanks to Hensel’s lemma.

10
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3.1 The result

Theorem 3.1 (Hensel’s Lemma) Let R be a noetherian ring, I ⊂ R an ideal. Let f(X) ∈ R[X]
be a polynomial such that the equation f(X) = 0 has a solution a ∈ R/I. Suppose, moreover, that
f ′(a) is invertible in R/I.

Then a lifts uniquely to a solution of the equation f(X) = 0 in R̂I .

Example 3.2 Let R = Z, I = (5). Consider the equation f(x) = x2 + 1 = 0 in R. This has a
solution modulo five, namely 2. Then f ′(2) = 4 is invertible in Z/5. So the equation x2 + 1 = 0
has a solution in Z5. In other words,

√
−1 ∈ Z5.

Let’s prove Hensel’s lemma.

Proof. Now we have a ∈ R/I such that f(a) = 0 ∈ R/I and f ′(a) is invertible. The claim is going
to be that for each m ≥ 1, there is a unique element an ∈ R/In such that

an → a (I), f(an) = 0 ∈ R/In.

Uniqueness implies that this sequence (an) is compatible, and thus gives the required element of
the completion. It will be a solution of f(X) = 0 since it is a solution at each element of the tower.

Let us now prove the claim. For n = 1, a1 = a necessarily. The proof is induction on n.
Assume that an exists and is unique. We would like to show that an+1 exists and is unique. Well,
if it is going to exist, when we reduce an+1 modulo In, we must get an or uniqueness at the n-th
step would fail.

So let a be any lifting of an to R/In+1. Then an+1 is going to be that lifting plus some
ε ∈ In/In+1. We want

f(a+ ε) = 0 ∈ R/In+1.

But this is
f(a) + εf ′(a)

because ε2 = 0 ∈ R/In+1. However, this lets us solve for ε, because then necessarily ε = −f(a)
f ′(a) ∈ I

n.

Note that f ′(a) ∈ R/In+1 is invertible. If you believe this for a moment, then we have seen that ε
exists and is unique; note that ε ∈ In because f(a) ∈ In.

Lemma 3.3 f ′(a) ∈ R/In+1 is invertible.

Proof. If we reduce this modulo R/I, we get the invertible element f ′(a) ∈ R/I. Note also that
the I/In+1 is a nilpotent ideal in R/In+1. So we are reduced to showing, more generally:

Lemma 3.4 Let A be a ring,2 J a nilpotent ideal.3 Then an element x ∈ A is invertible if and
only if its reduction in A/J is invertible.

Proof. One direction is obvious. For the converse, say x ∈ A has an invertible image. This implies
that there is y ∈ A such that xy ≡ 1 mod J . Say

xy = 1 +m,

where m ∈ J . But 1 +m is invertible because

1

1 +m
= 1−m+m2 ± . . . .

N

The expression makes sense as the high powers of m are zero. So this means that y(1 + m)−1 is
the inverse to x. N

2E.g. R/In+1.
3E.g. J = I/In+1.
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This was one of many versions of Hensel’s lemma. There are many ways you can improve on a
statement. The above version says something about “nondegenerate” cases, where the derivative
is invertible. There are better versions which handle degenerate cases.

Example 3.5 Consider x2 − 1; let’s try to solve this in Z2. Well, Z2 is a domain, so the only
solutions can be ±1. But these have the same reduction in Z/2. The lifting of the solution is
non-unique.

The reason why Hensel’s lemma fails is that f ′(±1) = ±2 is not invertible in Z/2. But it is not
far off. If you go to Z/4, we do get two solutions, and the derivative is at least nonzero at those
places.

One possible extension of Hensel’s lemma is to allow the derivative to be noninvertible, but at
least to bound the degree to which it is noninvertible. From this you can get interesting information.
But then you may have to look at equations R/In instead of just R/I, where n depends on the
level of noninvertibility.

Let us describe the multivariable Hensel lemma.

Theorem 3.6 Let f1, . . . , fn be polynomials in n variables over the ring R. Let J be the Jacobian
matrix ( ∂fi∂xj

). Suppose ∆ = detJ ∈ R[x1, . . . , xn].

If the system {fi(x) = 0} has a solution a ∈ (R/I)n in R/I for some ideal I satisfying the
condition that ∆(a) is invertible, then there is a unique solution of {fi(x) = 0} in R̂nI which lifts
a.

The proof is the same idea: successive approximation, using the invertibility of ∆.

3.2 The classification of complete DVRs (characteristic zero)

Let R be a complete DVR with maximal ideal m and quotient field F . We let k := R/m; this is
the residue field and is, e.g., the integers mod p for the p-adic integers.

The main result that we shall prove is the following:

Theorem 3.7 Suppose k is of characteristic zero. Then R ' k[[X]], the power series ring in one
variable, with respect to the usual discrete valuation on k[[X]].

The “usual discrete valuation” on the power series ring is the order at zero. Incidentally, this
applies to the (non-complete) subring of C[[X]] consisting of power series that converge in some
neighborhood of zero, which is the ring of germs of holomorphic functions at zero; the valuation
again measures the zero at z = 0.

To prove it (following [Ser79]), we need to introduce another concept. A system of repre-
sentatives is a set S ⊂ R such that the reduction map S → k is bijective. A uniformizer is a
generator of the maximal ideal m. Then:

Proposition 3.8 If S is a system of representatives and π a uniformizer, we can write each x ∈ R
uniquely as

x =

∞∑
i=0

siπ
i, where si ∈ S.

Proof. Given x, we can find by the definitions s0 ∈ S with x− s0 ∈ πR. Repeating, we can write
x− s0 π ∈ R as x− s0 π − s1 ∈ πR, or x − s0 − s1π ∈ π2R. Repeat the process inductively and
note that the differences x−

∑n
i=0 siπ

i ∈ πn+1R tend to zero.
In the p-adic numbers, we can take {0, . . . , p − 1} as a system of representatives, so we find

each p-adic integer has a unique p-adic expansion x =
∑∞
i=0 xip

i for xi ∈ {0, . . . , p− 1}. N

12
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We now prove the first theorem.

Proof. Note that Z − 0 ⊂ R gets sent to nonzero elements in the residue field k, which is of
characteristic zero. This means that Z− 0 ⊂ R consists of units, so Q ⊂ R.

Let L ⊂ R be a subfield. Then L ' L ⊂ k; if t ∈ k−L, I claim that there is L′ ⊃ R containing
L with t ∈ L′.

If t is transcendental, lift it to T ∈ R; then T is transcendental over L and is invertible in R,
so we can take L′ := L(T ).

If the minimal polynomial of t over L is f(X) ∈ k[X], we have f(t) = 0. Moreover, f
′
(t) 6= 0

because these fields are of characteristic zero and all extensions are separable. So lift f(X) to
f(X) ∈ R[X]; by Hensel lift t to u ∈ R with f(u) = 0. Then f is irreducible in L[X] (otherwise
we could reduce a factoring to get one of f ∈ L[X]), so L[u] = L[X]/(f(X)), which is a field L′.

So if K ⊂ R is the maximal subfield (use Zorn’s lemma), this is our system of representatives
by the above argument. N

§4 Henselian rings

There is a substitute for completeness that captures the essential properties: Henselianness. A ring
is Henselian if it satisfies Hensel’s lemma, more or less. We mostly follow [Ray70] in the treatment.

4.1 Semilocal rings

To start with, we shall need a few preliminaries on semi-local rings.
Fix a local ring A with maximal ideal m ⊂ A. Fix a finite A-algebra B; by definition, B is a

finitely generated A-module.

Proposition 4.1 Hypotheses as above, the maximal ideals of B are in bijection with the prime
ideals of B containing mB, or equivalently the prime ideals of B = B ⊗A A/m.

Proof. We have to show that every maximal ideal of B contains mB. Suppose n ⊂ B was maximal
and was otherwise. Then by Nakayama’s lemma, n+mB 6= B is a proper ideal strictly containing
n; this contradicts maximality.

It is now clear that the maximal ideals of B are in bijection naturally with those of B. However,
B is an artinian ring, as it is finite over the field A/m, so every prime ideal in it is maximal. N

The next thing to observe is that B, as an artinian ring, decomposes as a product of local
artinian rings. In fact, this decomposition is unique. However, this does not mean that B itself is
a product of local rings (B is not necessarily artinian). Nonetheless, if such a splitting exists, it is
necessarily unique.

Proposition 4.2 Suppose R =
∏
Ri is a finite product of local rings Ri. Then the Ri are unique.

Proof. To give a decomposition R =
∏
Ri is equivalent to giving idempotents ei. If we had another

decomposition R =
∏
Sj , then we would have new idempotents fj . The image of each fj in each

Ri is either zero or one as a local ring has no nontrivial idempotents. From this, one can easily
deduce that the fj ’s are sums of the ei’s, and if the Sj are local, one sees that the Sj ’s are just the
Ri’s permuted. N

In fact, there is a canonical way of determining the factors Ri. A finite product of local rings
as above is semi-local ; the maximal ideals mi are finite in number, and, furthermore, the canonical
map

R→
∏

Rmi

13
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is an isomorphism.
In general, this splitting fails for semi-local rings, and in particular for rings finite over a local

ring. We have seen that this splitting nonetheless works for rings finite over a field.
To recapitulate, we can give a criterion for when a semi-local ring splits as above.

Proposition 4.3 Let R be a semilocal ring with maximal ideals m1, . . . ,mk. Then R splits into
local factors if and only if, for each i, there is an idempotent ei ∈

⋂
j 6=imj − mi. Then the rings

Rei are local and R =
∏
Rei.

Proof. If R splits into local factors, then clearly we can find such idempotents. Conversely, suppose
given the ei. Then for each i 6= j, eiej is an idempotent eij that belongs to all the maximal ideals
mk. So it is in the Jacobson radical. But then 1− eij is invertible, so eij(1− eij) = 0 implies that
eij = 0.

It follows that the {ei} are orthogonal idempotents. To see that R =
∏
Rei as rings, we now

need only to see that the {ei} form a complete set; that is,
∑
ei = 1. But the sum

∑
ei is an

idempotent itself since the ei are mutually orthogonal. Moreover, the sum
∑
ei belongs to no mi,

so it is invertible, thus equal to 1. The claim is now clear, since each Rei is local by assumption.N

Note that if we can decompose a semilocal ring into a product of local rings, then we can go
no further in a sense—it is easy to check that a local ring has no nontrivial idempotents.

4.2 Henselian rings

Definition 4.4 A local ring (R,m) is henselian if every finite R-algebra is a product of local
R-algebras.

It is clear from the remarks of the previous section that the decomposition as a product of local
algebras is unique. Furthermore, we have already seen:

Proposition 4.5 A field is henselian.

Proof. Indeed, then any finite algebra over a field is artinian (as a finite-dimensional vector space).N

This result was essentially a corollary of basic facts about artinian rings. In general, though,
henselian rings are very far from artinian. For instance, we will see that every complete local ring
is henselian.

We continue with a couple of further easy claims.

Proposition 4.6 A local ring that is finite over a henselian ring is henselian.

Proof. Indeed, if R is a henselian local ring and S a finite R-algebra, then every finite S-algebra
is a finite R-algebra, and thus splits into a product of local rings. N

We have seen that henselianness of a local ring (R,m) with residue field k is equivalent to the
condition that every finite R-algebra S splits into a product of local rings. Since S ⊗R k always
splits into a product of local rings, and this splitting is unique, we see that if a splitting of S exists,
it necessarily lifts the splitting of S ⊗R k.

Since a “splitting” is the same thing (by Proposition 4.3) as a complete collection of idempo-
tents, one for each maximal ideal, we are going to characterize henselian rings by the property that
one can lift idempotents from the residue ring.

Definition 4.7 A local ring (R,m) satisfies lifting idempotents if for every finite R-algebra
S, the canonical (reduction) map between idempotents of S and those of S/mS is surjective.

14
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Recall that there is a functor Idem from rings to sets that sends each ring to its collection of
idempotents. So the claim is that the natural map Idem(S)→ Idem(S/mS) is a surjection.

In fact, in this case, we shall see that the map Idem(S)→ Idem(S/mS) is even injective.

Proposition 4.8 The map from idempotents of S to those of S/mS is always injective.

We shall not even use the fact that S is a finite R-algebra here.

Proof. Suppose e, e′ ∈ S are idempotents whose images in S/mS are the same. Then

(e− e′)3 = e3 − 3e2e′ + 3e′2e− e′3 = e3 − e′3 = e− e.

Thus if we let x = e− e′, we have x3 − x = 0, and x belongs to mS. Thus

x(1− x2) = 0,

and 1 − x2 is invertible in S (because x2 belongs to the Jacobson radical of S). Thus x = 0 and
e = e′. N

With this, we now want a characterization of henselian rings in terms of the lifting idempotents
property.

Proposition 4.9 Suppose (R,m) satisfies lifting idempotents, and let S be a finite R-algebra.
Then given orthogonal idempotents e1, . . . , en of S/mS, there are mutually orthogonal lifts {ei} ∈ S.

The point is that we can make the lifts mutually orthogonal. (Recall that idempotents are
orthogonal if their product is zero.)

Proof. Indeed, by assumption we can get lifts {ei} which are idempotent; we need to show that
they are mutually orthogonal. But in any case eiej for i 6= j is an idempotent, which lies in mS ⊂ S
and thus in the Jacobson radical. It follows that eiej = 0, proving the orthogonality. N

Proposition 4.10 A local ring is henselian if and only if it satisfies lifting idempotents.

Proof. Suppose first (R,m) satisfies lifting idempotents. Let S be any finite R-algebra. Then S/mS
is artinian, so factors as a product of local artinian rings

∏
Si. This factorization corresponds to

idempotents ei ∈ S/mS. We can lift these to orthogonal idempotents ei ∈ S by Proposition 4.9.
These idempotents correspond to a decomposition

S =
∏

Si

which lifts the decomposition S =
∏
Si. Since the Si are local, so are the Si. Thus R is henselian.

Conversely, suppose R henselian. Let S be a finite R-algebra and let e ∈ S = S/mS be
idempotent. Since S is a product of local rings, e is a finite sum of the primitive idempotents in
S. By henselianness, each of these primitive idempotents lifts to S, so e does too. N

Proposition 4.11 Let R be a local ring and I ⊂ R an ideal consisting of nilpotent elements. Then
R is henselian if and only if R/I is.

Proof. One direction is clear by Proposition 4.6. For the other, suppose R/I is henselian. Let
m ⊂ R be the maximal ideal. Let S be any finite R-algebra; we have to show surjectivity of

Idem(S)→ Idem(S/mS).

However, we are given that, by henselianness of S/I,

Idem(S/IS)→ Idem(S/mS)

is a surjection. Now we need only observe that Idem(S)→ Idem(S/IS) is a bijection. This follows
because idempotents in S (resp. S/IS) correspond to disconnections of SpecS (resp. SpecS/IS)
by ??. However, as I consists of nilpotents, SpecS and SpecS/IS are homeomorphic naturally.N
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4.3 Hensel’s lemma

We now want to show that Hensel’s lemma is essentially what characterizes henselian rings, which
explains the name. Throughout, we use the symbol to denote reduction mod an ideal (usually m
or m times another ring).

Proposition 4.12 Let (R,m) be a local ring with residue field k. Then R is henselian if and only
if, whenever a monic polynomial P ∈ R[X] satisfies

P = QR ∈ k[X],

for some relatively prime polynomials Q,R ∈ k[X], then the factorization lifts to a factorization

P = QR ∈ R[X].

This notation should be improved.

Proof. Suppose R henselian and suppose P is a polynomial whose reduction admits such a fac-
torization. Consider the finite R-algebra S = R[X]/(P ); since S = S/mS can be represented as
k[X]/(P ), it admits a splitting into components

S = k[X]/(Q)× k[X]/(R).

Since R is henselian, this splitting lifts to S, and we get a splitting

S = S1 × S2.

Here S1 ⊗ k ' k[X]/(Q) and S2 ⊗ k ' k[X]/(R). The image of X in S1 ⊗ k is annihilated by Q,
and the image of X in S2 ⊗ k is annihilated by R.

Lemma 4.13 Suppose R is a local ring, S a finite R-algebra generated by an element x ∈ S.
Suppose the image x ∈ S = S ⊗R k satisfies a monic polynomial equation u(x) = 0. Then there is
a monic polynomial U lifting u such that U(x) = 0 (in S).

Proof. Let x ∈ S be the generating element that satisfies u(x) = 0, and let x ∈ S be a lift of it.
Suppose u has rank n. Then 1, x, . . . , xn−1 spans S by Nakayama’s lemma. Thus there is a monic
polynomial U of degree n that annihilates x; the reduction must be a multiple of u, hence u.

Returning to the proposition, we see that the image of the generator X in S1, S2 must satisfy
polynomial equations Q,R that lift Q,R. Thus X satisfies QR in S[X]/(P ); in other words, QR
is a multiple of P , hence equal to P . Thus we have lifted the factorization P = QR. This proves
that factorizations can be lifted.

Now, let us suppose that factorizations can always be lifted for finite R-algebras. We are now
going to show that R satisfies lifting idempotents. Suppose S is a finite R-algebra, e a primitive
idempotent in S. We can lift e to some element e′ ∈ S. Since e′ is contained in a finite R-algebra
that contains R, we know that e′ is integral over R, so that we can find a map R[X]/(P ) → S
sending the generator X 7→ e′, for some polynomial P . We are going to use the fact that R[X]/(P )
splits to lift the idempotent e.

Let m1, . . . ,mk be the maximal ideals of S. These equivalently correspond to the points of
SpecS. We know that e′ belongs precisely to one of the mi (because a primitive idempotent in S
is one on one maximal ideal and zero elsewhere). Call this m1, say.

We have a map SpecS → SpecR[X]/(P ) coming from the map φ : R[X]/(P ) → S. We claim
that the image of m1 is different from the images of the mj , j > 1. Indeed, b ∈ mj precisely for
j > 1, so the image of m1 does not contain X. However, the image of mj , j > 1 does contain X.

Consider a primitive idempotent forR[X]/(P ) corresponding to φ−1(m1), say f . Then f belongs
to every other maximal ideal of R[X]/(P ) but not to φ−1(m1). Thus φ(f), which is idempotent,
belongs to m1 but not to any other maximal ideal of S. It follows that φ(f) must lift e, and we
have completed the proof. N
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Corollary 4.14 If every monogenic,4 finitely presented and finite R-algebra is a product of local
rings, then R is henselian.

Proof. Indeed, the proof of the above result shows that if R[X]/(P ) splits for every monic P , then
R is henselian. N

From the above result, we can get a quick example of a non-complete henselian ring:

Example 4.15 The integral closure of the localization Z(p) in the ring Zp of p-adic integers is a
henselian ring. Indeed, it is first of all a discrete valuation ring (as we can restrict the valuation
on Zp; note that an element of Qp which is algebraic over Q and has norm at most one is integral
over Z(p)). This follows from the criterion of Proposition 4.12. If a monic polynomial P factors
in the residue field, then it factors in Zp, and if P has coefficients integral over Z(p), so does any
factor.

Example 4.16 If k is a complete field with a nontrivial absolute value and X is any topological
space, we can consider for each open subset U ⊂ X the ring A(U) of continuous maps U → k. As
U ranges over the open subsets containing an element x, the colimit lim−→A(U) (the “local ring” at
x) is a local henselian ring. See [Ray70].

Proposition 4.17 Let (Ri,mi) be an inductive system of local rings and local homomorphisms.
If each Ri is henselian, then the colimit lim−→Ri is henselian too.

Proof. We already know (??) that the colimit is a local ring, and that the maximal ideal of lim−→Ri
is the colimit lim−→mi. Finally, given any monic polynomial in lim−→Ri with a factoring in the residue
field, the polynomial and the factoring come from some finite Ri; the henselianness of Ri allows
us to lift the factoring. N

4.4 Example: Puiseux’s theorem

Using the machinery developed here, we are going to prove:

Theorem 4.18 Let K be an algebraically closed field of characteristic zero. Then any finite ex-
tension of the field of meromorphic power series5 K((T )) is of the form K((T 1/n)) for some n.

In particular, we see that any finite extension of K((T )) is abelian, even cyclic. The idea is going
to be to look at the integral closure of K[[T ]] in the finite extension, argue that it itself is a DVR,
and then refine an “approximate” root in this DVR of the equation αn = T to an exact one.

Proof. Let R = K[[T ]] be the power series ring; it is a complete, and thus henselian, DVR. Let L
be a finite extension of K((T )) of degree n and S the integral closure of R in S, which we know
to be a DVR. This is a finite R-algebra (cf. ??), so S is a product of local domains. Since S is a
domain, it is itself local. It is easy to see that if n ⊂ S is the maximal ideal, then S is n-adically
complete (for instance because the maximal ideal of R is a power of n, and S is a free R-module).

Let m ⊂ R be the maximal ideal. We have the formula ef = n, because there is only one prime
of S lying above m. But f = 1 as the residue field of R is algebraically closed. Hence e = n, and
the extension is totally ramified.

Let α ∈ S be a uniformizer; we know that α is congruent, modulo n2, to something in R as the
residue extension is trivial. Then αn is congruent to something in R, which must be a uniformizer
by looking at the valuation. By rescaling, we may assume

αn ≡ T mod n2.
4That is, generated by one element.
5That is, the quotient field of K[[T ]].

17



CRing Project, Chapter 11

Since the polynomial Xn−T is separable in the residue field, we can (using Hensel’s lemma) refine
α to a new α′ ≡ α mod n2 with

α′n = T.

Then α′ is also a uniformizer at n (as α′ ≡ α mod n2). It follows that R[α′] must in fact be equal
to S,6 and thus L is equal to K((T ))(α′) = K((T 1/n)). N

6??; a citation here is needed.
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