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Chapter 18

Complete local rings

This chapter (barely started) is intended to give various results about complete local rings (e.g.
the Cohen structure theorems) and results relating rings to their completions (e.g. material on
excellent rings).

§1 The Cohen structure theorem

We want now a classification of complete local rings containing a field; it states that they are the
homomorphic images of power series rings:

Theorem 1.1 (Cohen structure theorem) Let (R,m) be a complete local noetherian ring, which
contains a field. Then R ' K[[x1, . . . , xn]/I for some ideal I ⊂ K[[x1, . . . , xn]] and some field K.

We have already shown that this result is true when R contains a copy of its own residue field;
that is, when the map R→ R/m admits a section.

We are going to show that this is the case if R contains a field.

Remark The condition that R should contain a field means that if R/m is of characteristic p,
then pR = 0. For, if p > 0, then R contains a copy of Z/pZ. If p = 0, R automatically contains a
copy of Q, as each n ∈ Z− {0} is automatically invertible in R.

Proof. We just need to show that R contains a copy of its own residue field. To do this, let κ
be the prime field contained in R, so κ = Q or Fp. Let k be the residue field R/m. We have a
diagram:

R

��
R/m

;;w
w

w
w

w
id // R/m,

in which we seek a lift; then we can apply ??, because R will contain a copy of its residue field.
Now, R is complete, so R = lim←−R/m

i. So it suffices to give a compatible sequence of lifts

R/mi

��
R/m

;;x
x

x
x

id // R/m,

,

which we will show exists. That is, given a section R/m → R/mi, we will lift it to a section
R/m→ R/mi+1, and these will glue to give the desired section R/m→ R.
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Now, everything here is a κ-algebra, and we are looking at a nilpotent lifting property for
κ-algebras. It follows that if we can prove that R/m is formally smooth over κ, then we will be
able to do the lifting at each stage, and R will contain a copy of its residue field. Thus, we must
show:

Proposition 1.2 Let κ be a perfect field, and let K/κ be any field extension. Then K is formally
smooth over κ.

Proof. To see this, we will use the fact that K/κ is separably generated. Namely, there is a
transcendence basis T ⊂ K such that K/κ({T}) is a separable algebraic extension. We will show
that K/κ({T}) and κ({T})/κ are each formally smooth, which will imply the result.

Now, we know that κ({T})/κ is formally smooth: it is the localization of a formally smooth
κ-algebra (the polynomial algebra κ[{T}]), and localization is always formally smooth.

Similarly, K/κ({T}) is formally smooth because any separable algebraic extension is in fact
formally étale. We have shown this for finite algebraic extensions (??), and a limiting argument
establishes it for infinite algebraic extensions. Namely, if A is a κ({T})-algebra and I a square-zero
ideal, then if we have a map K → A/I, the restriction to each finite subextension lifts uniquely to
A. As a result of this uniqueness, we can glue the liftings to get a lift of K → A/I to K → A. N

Corollary 1.3 Let (R,m) be a local ring containing a copy of its residue field k. Then R is
formally smooth over k if and only if R is geometrically regular: that is, all the localizations of
R⊗k k are regular.

Proof. If R is formally smooth over k, then R⊗k k is formally smooth over k and consequently all
the localizations are regular. N

Ok, need to think some more about this...I am currently leaving it as a comment.
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France, Paris, 1982.

[Bou98] Nicolas Bourbaki. Commutative algebra. Chapters 1–7. Elements of Mathematics
(Berlin). Springer-Verlag, Berlin, 1998. Translated from the French, Reprint of the 1989
English translation.

[Cam88] Oscar Campoli. A principal ideal domain that is not a euclidean domain. American
Mathematical Monthly, 95(9):868–871, 1988.
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Reinie Erné, Oxford Science Publications.

[LR08] T. Y. Lam and Manuel L. Reyes. A prime ideal principle in commutative algebra. J.
Algebra, 319(7):3006–3027, 2008.

[Mar02] David Marker. Model theory, volume 217 of Graduate Texts in Mathematics. Springer-
Verlag, New York, 2002. An introduction.

[Mat80] Hideyuki Matsumura. Commutative algebra, volume 56 of Mathematics Lecture Note
Series. Benjamin/Cummings Publishing Co., Inc., Reading, Mass., second edition, 1980.

[McC76] John McCabe. A note on Zariski’s lemma. The American Mathematical Monthly,
83(7):560–561, 1976.

[Mil80] James S. Milne. Étale cohomology, volume 33 of Princeton Mathematical Series. Prince-
ton University Press, Princeton, N.J., 1980.

[ML98] Saunders Mac Lane. Categories for the working mathematician, volume 5 of Graduate
Texts in Mathematics. Springer-Verlag, New York, second edition, 1998.
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de “platification” d’un module. Invent. Math., 13:1–89, 1971.
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