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Chapter 0

Categories

The language of categories is not strictly necessary to understand the basics of commutative alge-
bra. Nonetheless, it is extremely convenient and powerful. It will clarify many of the constructions
made in the future when we can freely use terms like “universal property” or “adjoint functor.”
As a result, we begin this book with a brief introduction to category theory. We only scratch the
surface; the interested reader can pursue further study in [ML98] or [KS06].

Nonetheless, the reader is advised not to take the present chapter too seriously; skipping it for
the moment to chapter 1 and returning here as a reference could be quite reasonable.

§1 Introduction

1.1 Definitions

Categories are supposed to be places where mathematical objects live. Intuitively, to any given
type of structure (e.g. groups, rings, etc.), there should be a category of objects with that structure.
These are not, of course, the only type of categories, but they will be the primary ones of concern
to us in this book.

The basic idea of a category is that there should be objects, and that one should be able to
map between objects. These mappings could be functions, and they often are, but they don’t have
to be. Next, one has to be able to compose mappings, and associativity and unit conditions are
required. Nothing else is required.

Definition 1.1 A category C consists of:

1. A collection of objects, ob C.

2. For each pair of objects X,Y ∈ ob C, a set of morphisms HomC(X,Y ) (abbreviated
Hom(X,Y )).

3. For each object X ∈ ob C, there is an identity morphism 1X ∈ HomC(X,X) (often just
abbreviated to 1).

4. There is a composition law ◦ : HomC(X,Y ) × HomC(Y,Z) → HomC(X,Z), (g, f) → g ◦ f
for every triple X,Y, Z of objects.

5. The composition law is unital and associative. In other words, if f ∈ HomC(X,Y ), then
1Y ◦ f = f ◦ 1X = f . Moreover, if g ∈ HomC(Y,Z) and h ∈ HomC(Z,W ) for objects Z, Y,W ,
then

h ◦ (g ◦ f) = (h ◦ g) ◦ f ∈ HomC(X,W ).

3
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We shall write f : X → Y to denote an element of HomC(X,Y ). In practice, C will often
be the storehouse for mathematical objects: groups, Lie algebras, rings, etc., in which case these
“morphisms” will just be ordinary functions.

Here is a simple list of examples.

Example 1.2 (Categories of structured sets) 1. C = Sets; the objects are sets, and the
morphisms are functions.

2. C = Grps; the objects are groups, and the morphisms are maps of groups (i.e. homomor-
phisms).

3. C = LieAlg; the objects are Lie algebras, and the morphisms are maps of Lie algebras (i.e.
homomorphisms).1

4. C = Vectk; the objects are vector spaces over a field k, and the morphisms are linear maps.

5. C = Top; the objects are topological spaces, and the morphisms are continuous maps.

6. This example is slightly more subtle. Here the category C has objects consisting of topological
spaces, but the morphisms between two topological spaces X,Y are the homotopy classes of
maps X → Y . Since composition respects homotopy classes, this is well-defined.

In general, the objects of a category do not have to form a set; they can be too large for that.
For instance, the collection of objects in Sets does not form a set.

Definition 1.3 A category is small if the collection of objects is a set.

The standard examples of categories are the ones above: structured sets together with structure-
preserving maps. Nonetheless, one can easily give other examples that are not of this form.

Example 1.4 (Groups as categories) Let G be a finite group. Then we can make a category
BG where the objects just consist of one element ∗ and the maps ∗ → ∗ are the elements g ∈ G.
The identity is the identity of G and composition is multiplication in the group.

In this case, the category does not represent much of a class of objects, but instead we think
of the composition law as the key thing. So a group is a special kind of (small) category.

Example 1.5 (Monoids as categories) A monoid is precisely a category with one object. Re-
call that a monoid is a set together with an associative and unital multiplication (but which need
not have inverses).

Example 1.6 (Posets as categories) Let (P,≤) be a partially ordered (or even preordered) set
(i.e. poset). Then P can be regarded as a (small) category, where the objects are the elements
p ∈ P , and

HomP (p, q) =

{
∗ if p ≤ q
∅ otherwise

There is, however, a major difference between category theory and set theory. There is nothing
in the language of categories that lets one look inside an object. We think of vector spaces having
elements, spaces having points, etc. By contrast, categories treat these kinds of things as invisible.
There is nothing “inside” of an object X ∈ C; the only way to understand X is to understand the
ways one can map into and out of X. Even if one is working with a category of “structured sets,”
the underlying set of an object in this category is not part of the categorical data. However, there
are instances in which the “underlying set” can be recovered as a Hom-set.

1Feel free to omit if the notion of Lie algebra is unfamiliar.
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Example 1.7 In the category Top of topological spaces, one can in fact recover the “underlying
set” of a topological space via the hom-sets. Namely, for each topological space, the points of X
are the same thing as the mappings from a one-point space into X. That is, we have

|X| = HomTop(∗, X),

where ∗ is the one-point space.
Later we will say that the functor assigning to each space its underlying set is corepresentable.

Example 1.8 Let Ab be the category of abelian groups and group-homomorphisms. Again, the
claim is that using only this category, one can recover the underlying set of a given abelian group
A. This is because the elements of A can be canonically identified with morphisms Z→ A (based
on where 1 ∈ Z maps).

Definition 1.9 We say that C is a subcategory of the category D if the collection of objects of
C is a subclass of the collection of objects of D, and if whenever X,Y ∈ C, we have

HomC(X,Y ) ⊂ HomD(X,Y )

with the laws of composition in C induced by that in D.
C is called a full subcategory if HomC(X,Y ) = HomD(X,Y ) whenever X,Y ∈ C.

Example 1.10 The category of abelian groups is a full subcategory of the category of groups.

1.2 The language of commutative diagrams

While the language of categories is, of course, purely algebraic, it will be convenient for psycholog-
ical reasons to visualize categorical arguments through diagrams. We shall introduce this notation
here.

Let C be a category, and let X,Y be objects in C. If f ∈ Hom(X,Y ), we shall sometimes write
f as an arrow

f : X → Y

or

X
f→ Y

as if f were an actual function. If X
f→ Y and Y

g→ Z are morphisms, composition g ◦ f : X → Z
can be visualized by the picture

X
f→ Y

g→ Z.

Finally, when we work with several objects, we shall often draw collections of morphisms into
diagrams, where arrows indicate morphisms between two objects.

Definition 1.11 A diagram will be said to commute if whenever one goes from one object in
the diagram to another by following the arrows in the right order, one obtains the same morphism.
For instance, the commutativity of the diagram

X

f

��

f ′ // W

g

��
Y

g′ // Z

is equivalent to the assertion that

g ◦ f ′ = g′ ◦ f ∈ Hom(X,Z).

5
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As an example, the assertion that the associative law holds in a category C can be stated as
follows. For every quadruple X,Y, Z,W ∈ C, the following diagram (of sets) commutes:

Hom(X,Y )×Hom(Y,Z)×Hom(Z,W ) //

��

Hom(X,Z)×Hom(Z,W )

��
Hom(X,Y )×Hom(Y,W ) // Hom(X,W ).

Here the maps are all given by the composition laws in C. For instance, the downward map
to the left is the product of the identity on Hom(X,Y ) with the composition law Hom(Y,Z) ×
Hom(Z,W )→ Hom(Y,W ).

1.3 Isomorphisms

Classically, one can define an isomorphism of groups as a bijection that preserves the group struc-
ture. This does not generalize well to categories, as we do not have a notion of “bijection,” as there
is no way (in general) to talk about the “underlying set” of an object. Moreover, this definition
does not generalize well to topological spaces: there, an isomorphism should not just be a bijection,
but something which preserves the topology (in a strong sense), i.e. a homeomorphism.

Thus we make:

Definition 1.12 An isomorphism between objects X,Y in a category C is a map f : X → Y
such that there exists g : Y → X with

g ◦ f = 1X , f ◦ g = 1Y .

Such a g is called an inverse to f .

Remark It is easy to check that the inverse g is unique. Indeed, suppose g, g′ both were inverses
to f . Then

g′ = g′ ◦ 1Y = g′ ◦ (f ◦ g) = (g′ ◦ f) ◦ g = 1X ◦ g = g.

This notion is isomorphism is more correct than the idea of being one-to-one and onto. A
bijection of topological spaces is not necessarily a homeomorphism.

Example 1.13 It is easy to check that an isomorphism in the category Grp is an isomorphism
of groups, that an isomorphism in the category Set is a bijection, and so on.

We are supposed to be able to identify isomorphic objects. In the categorical sense, this means
mapping into X should be the same as mapping into Y , if X,Y are isomorphic, via an isomorphism
f : X → Y . Indeed, let Z be another object of C. Then we can define a map

HomC(Z,X)→ HomC(Z, Y )

given by post-composition with f . This is a bijection if f is an isomorphism (the inverse is given
by postcomposition with the inverse to f). Similarly, one can easily see that mapping out of X is
essentially the same as mapping out of Y . Anything in general category theory that is true for X
should be true for Y (as general category theory can only try to understand X in terms of maps
into or out of it!).

Exercise 0.1 The relation “X,Y are isomorphic” is an equivalence relation on the class of objects
of a category C.

6
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Exercise 0.2 Let P be a preordered set, and make P into a category as in Example 1.6. Then
P is a poset if and only if two isomorphic objects are equal.

For the next exercise, we need:

Definition 1.14 A groupoid is a category where every morphism is an isomorphism.

Exercise 0.3 The sets HomC(A,A) are groups if C is a groupoid and A ∈ C. A group is essentially
the same as a groupoid with one object.

Exercise 0.4 Show that the following is a groupoid. Let X be a topological space, and let
Π1(X) be the category defined as follows: the objects are elements of X, and morphisms x → y
(for x, y ∈ X) are homotopy classes of maps [0, 1] → X (i.e. paths) that send 0 7→ x, 1 7→ y.
Composition of maps is given by concatenation of paths. (Check that, because one is working with
homotopy classes of paths, composition is associative.)

Π1(X) is called the fundamental groupoid of X. Note that HomΠ1(X)(x, x) is the funda-
mental group π1(X,x).

§2 Functors

A functor is a way of mapping from one category to another: each object is sent to another
object, and each morphism is sent to another morphism. We shall study many functors in the
sequel: localization, the tensor product, Hom, and fancier ones like Tor,Ext, and local cohomology
functors. The main benefit of a functor is that it doesn’t simply send objects to other objects, but
also morphisms to morphisms: this allows one to get new commutative diagrams from old ones.
This will turn out to be a powerful tool.

2.1 Covariant functors

Let C,D be categories. If C,D are categories of structured sets (of possibly different types), there
may be a way to associate objects in D to objects in C. For instance, to every group G we can
associate its group ring Z[G] (which we do not define here); to each topological space we can
associate its singular chain complex, and so on. In many cases, given a map between objects in
C preserving the relevant structure, there will be an induced map on the corresponding objects in
D. It is from here that we define a functor.

Definition 2.1 A functor F : C → D consists of a function F : C → D (that is, a rule that
assigns to each object in C an object of D) and, for each pair X,Y ∈ C, a map F : HomC(X,Y )→
HomD(FX,FY ), which preserves the identity maps and composition.

In detail, the last two conditions state the following.

1. If X ∈ C, then F (1X) is the identity morphism 1F (X) : F (X)→ F (X).

2. If A
f→ B

g→ C are morphisms in C, then F (g◦f) = F (g)◦F (f) as morphisms F (A)→ F (C).
Alternatively, we can say that F preserves commutative diagrams.

In the last statement of the definition, note that if

X
h

  @@@@@@@
f // Y

g

��
Z

7
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is a commutative diagram in C, then the diagram obtained by applying the functor F , namely

F (X)

F (h)

##GGGGGGGGG
F (f) // F (Y )

F (g)

��
F (Z)

also commutes. It follows that applying F to more complicated commutative diagrams also yields
new commutative diagrams.

Let us give a few examples of functors.

Example 2.2 There is a functor from Sets → AbelianGrp sending a set S to the free abelian
group on the set. (For the definition of a free abelian group, or more generally a free R-module
over a ring R, see ??.)

Example 2.3 Let X be a topological space. Then to it we can associate the set π0(X) of connected
components of X.

Recall that the continuous image of a connected set is connected, so if f : X → Y is a continuous
map and X ′ ⊂ X connected, f(X ′) is contained in a connected component of Y . It follows that
π0 is a functor Top → Sets. In fact, it is a functor on the homotopy category as well, because
homotopic maps induce the same maps on π0.

Example 2.4 Fix n. There is a functor from Top → AbGrp (categories of topological spaces
and abelian groups) sending a space X to its nth homology group Hn(X). We know that given a
map of spaces f : X → Y , we get a map of abelian groups f∗ : Hn(X)→ Hn(Y ). See [Hat02], for
instance.

We shall often need to compose functors. For instance, we will want to see, for instance, that
the tensor product (to be defined later, see ??) is associative, which is really a statement about
composing functors. The following (mostly self-explanatory) definition elucidates this.

Definition 2.5 If C,D, E are categories, F : C → D, G : D → E are covariant functors, then one
can define a composite functor

F ◦G : C → E
This sends an object X ∈ C to G(F (X)). Similarly, a morphism f : X → Y is sent to G(F (f)) :
G(F (X))→ G(F (Y )). We leave the reader to check that this is well-defined.

Example 2.6 In fact, because we can compose functors, there is a category of categories. Let
Cat have objects as the small categories, and morphisms as functors. Composition is defined as
in Definition 2.5.

Example 2.7 (Group actions) Fix a group G. Let us understand what a functor BG → Sets
is. Here BG is the category of Example 1.4.

The unique object ∗ of BG goes to some set X. For each element g ∈ G, we get a map g : ∗ → ∗
and thus a map X → X. This is supposed to preserve the composition law (which in G is just
multiplication), as well as identities.

In particular, we get maps ig : X → X corresponding to each g ∈ G, such that the following
diagram commutes for each g1, g2 ∈ G:

X
ig1 //

ig1g2   BBBBBBBB X

ig2
��
X.

8
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Moreover, if e ∈ G is the identity, then ie = 1X . So a functor BG → Sets is just a left G-action
on a set X.

An important example of functors is given by the following. Let C be a category of “structured
sets.” Then, there is a functor F : C → Sets that sends a structured set to the underlying set. For
instance, there is a functor from groups to sets that forgets the group structure. More generally,
suppose given two categories C,D, such that C can be regarded as “structured objects in D.” Then
there is a functor C → D that forgets the structure. Such examples are called forgetful functors.

2.2 Contravariant functors

Sometimes what we have described above are called covariant functors. Indeed, we shall also be
interested in similar objects that reverse the arrows, such as duality functors:

Definition 2.8 A contravariant functor C F→ D (between categories C,D) is similar data as in

Definition 2.1 except that now a map X
f→ Y now goes to a map F (Y )

F (f)→ F (X). Composites

are required to be preserved, albeit in the other direction. In other words, if X
f→ Y, Y

g→ Z are
morphisms, then we require

F (g ◦ f) = F (f) ◦ F (g) : F (Z)→ F (X).

We shall sometimes say just “functor” for covariant functor. When we are dealing with a
contravariant functor, we will always say the word “contravariant.”

A contravariant functor also preserves commutative diagrams, except that the arrows have to
be reversed. For instance, if F : C → D is contravariant and the diagram

A

��

// C

B

??~~~~~~~

is commutative in C, then the diagram

F (A) F (C)oo

{{wwwwwwwww

F (B)

OO

commutes in D.
One can, of course, compose contravariant functors as in Definition 2.5. But the composition

of two contravariant functors will be covariant. So there is no “category of categories” where the
morphisms between categories are contravariant functors.

Similarly as in Example 2.7, we have:

Example 2.9 A contravariant functor from BG (defined as in Example 1.4) to Sets corresponds
to a set with a right G-action.

Example 2.10 (Singular cohomology) In algebraic topology, one encounters contravariant func-
tors on the homotopy category of topological spaces via the singular cohomology functors X 7→
Hn(X;Z). Given a continuous map f : X → Y , there is a homomorphism of groups

f∗ : Hn(Y ;Z)→ Hn(X;Z).

9
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Example 2.11 (Duality for vector spaces) On the category Vect of vector spaces over a field
k, we have the contravariant functor

V 7→ V ∨.

sending a vector space to its dual V ∨ = Hom(V, k). Given a map V → W of vector spaces, there
is an induced map

W∨ → V ∨

given by the transpose.

Example 2.12 If we map BG → BG sending ∗ 7→ ∗ and g 7→ g−1, we get a contravariant functor.

We now give a useful (linguistic) device for translating between covariance and contravariance.

Definition 2.13 (The opposite category) Let C be a category. Define the opposite category
Cop of C to have the same objects as C but such that the morphisms between X,Y in Cop are those
between Y and X in C.

There is a contravariant functor C → Cop. In fact, contravariant functors out of C are the same
as covariant functors out of Cop.

As a result, when results are often stated for both covariant and contravariant functors, for
instance, we can often reduce to the covariant case by using the opposite category.

Exercise 0.5 A map that is an isomorphism in C corresponds to an isomorphism in Cop.

2.3 Functors and isomorphisms

Now we want to prove a simple and intuitive fact: if isomorphisms allow one to say that one object
in a category is “essentially the same” as another, functors should be expected to preserve this.

Proposition 2.14 If f : X → Y is a map in C, and F : C → D is a functor, then F (f) : FX →
FY is an isomorphism.

The proof is quite straightforward, though there is an important point here. Note that the
analogous result holds for contravariant functors too.

Proof. If we have maps f : X → Y and g : Y → X such that the composites both ways are
identities, then we can apply the functor F to this, and we find that since

f ◦ g = 1Y , g ◦ f = 1X ,

it must hold that
F (f) ◦ F (g) = 1F (Y ), F (g) ◦ F (f) = 1F (X).

We have used the fact that functors preserve composition and identities. This implies that F (f)
is an isomorphism, with inverse F (g). N

Categories have a way of making things so general that are trivial. Hence, this material is
called general abstract nonsense. Moreover, there is another philosophical point about category
theory to be made here: often, it is the definitions, and not the proofs, that matter. For instance,
what matters here is not the theorem, but the definition of an isomorphism. It is a categorical
one, and much more general than the usual notion via injectivity and surjectivity.

Example 2.15 As a simple example, {0, 1} and [0, 1] are not isomorphic in the homotopy category
of topological spaces (i.e. are not homotopy equivalent) because π0([0, 1]) = ∗ while π0({0, 1}) has
two elements.

10
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Example 2.16 More generally, the higher homotopy group functors πn (see [Hat02]) can be used
to show that the n-sphere Sn is not homotopy equivalent to a point. For then πn(Sn, ∗) would be
trivial, and it is not.

There is room, nevertheless, for something else. Instead of having something that sends objects
to other objects, one could have something that sends an object to a map.

2.4 Natural transformations

Suppose F,G : C → D are functors.

Definition 2.17 A natural transformation T : F → G consists of the following data. For
each X ∈ C, there is a morphism TX : FX → GX satisfying the following condition. Whenever
f : X → Y is a morphism, the following diagram must commute:

FX

TX

��

F (f) // FY

TY

��
GX

G(f) // GY

.

If TX is an isomorphism for each X, then we shall say that T is a natural isomorphism.

It is similarly possible to define the notion of a natural transformation between contravariant
functors.

When we say that things are “natural” in the future, we will mean that the transformation
between functors is natural in this sense. We shall use this language to state theorems conveniently.

Example 2.18 (The double dual) Here is the canonical example of “naturality.” Let C be the
category of finite-dimensional vector spaces over a given field k. Let us further restrict the category
such that the only morphisms are the isomorphisms of vector spaces. For each V ∈ C, we know
that there is an isomorphism

V ' V ∨ = Homk(V, k),

because both have the same dimension.
Moreover, the maps V 7→ V, V 7→ V ∨ are both covariant functors on C.2 The first is the identity

functor; for the second, if f : V → W is an isomorphism, then there is induced a transpose map

f t : W∨ → V ∨ (defined by sending a map W → k to the precomposition V
f→ W → k), which is

an isomorphism; we can take its inverse. So we have two functors from C to itself, the identity and
the dual, and we know that V ' V ∨ for each V (though we have not chosen any particular set of
isomorphisms).

However, the isomorphism V ' V ∨ cannot be made natural. That is, there is no way of
choosing isomorphisms

TV : V ' V ∨

such that, whenever f : V → W is an isomorphism of vector spaces, the following diagram
commutes:

V
f //

TV

��

W

TW

��
V ∨

(ft)−1

// W∨.

2Note that the dual ∨ was defined as a contravariant functor in Example 2.11.
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Indeed, fix d > 1, and choose V = kd. Identify V ∨ with kd, and so the map TV is a d-by-d matrix
M with coefficients in k. The requirement is that for each invertible d-by-d matrix N , we have

(N t)−1M = MN,

by considering the above diagram with V = W = kd, and f corresponding to the matrix N . This
is impossible unless M = 0, by elementary linear algebra.

Nonetheless, it is possible to choose a natural isomorphism

V ' V ∨∨.

To do this, given V , recall that V ∨∨ is the collection of maps V ∨ → k. To give a map V → V ∨∨

is thus the same as giving linear functions lv, v ∈ V such that lv : V → k is linear in v. We can do
this by letting lv be “evaluation at v.” That is, lv sends a linear functional ` : V → k to `(v) ∈ k.
We leave it to the reader to check (easily) that this defines a homomorphism V → V ∨∨, and that
everything is natural.

Exercise 0.6 Suppose there are two functors BG → Sets, i.e. G-sets. What is a natural trans-
formation between them?

Natural transformations can be composed. Suppose given functors F,G,H : C → D a natural
transformation T : F → G and a natural transformation U : G → H. Then, for each X ∈ C,
we have maps TX : FX → GX,UX : GX → HY . We can compose U with T to get a natural
transformation U ◦ T : F → H.

In fact, we can thus define a category of functors Fun(C,D) (at least if C,D are small). The
objects of this category are the functors F : C → D. The morphisms are natural transformations
between functors. Composition of morphisms is as above.

2.5 Equivalences of categories

Often we want to say that two categories C,D are “essentially the same.” One way of formulating
this precisely is to say that C,D are isomorphic in the category of categories. Unwinding the
definitions, this means that there exist functors

F : C → D, G : D → C

such that F ◦G = 1D, G ◦ F = 1C . This notion, of isomorphism of categories, is generally far too
restrictive.

For instance, we could consider the category of all finite-dimensional vector spaces over a given
field k, and we could consider the full subcategory of vector spaces of the form kn. Clearly both
categories encode essentially the same mathematics, in some sense, but they are not isomorphic:
one has a countable set of objects, while the other has an uncountable set of objects. Thus, we
need a more refined way of saying that two categories are “essentially the same.”

Definition 2.19 Two categories C,D are called equivalent if there are functors

F : C → D, G : D → C

and natural isomorphisms
FG ' 1D, GF ' 1C .

For instance, the category of all vector spaces of the form kn is equivalent to the category of all
finite-dimensional vector spaces. One functor is the inclusion from vector spaces of the form kn;
the other functor maps a finite-dimensional vector space V to kdimV . Defining the second functor
properly is, however, a little more subtle. The next criterion will be useful.

12
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Definition 2.20 A functor F : C → D is fully faithful if F : HomC(X,Y )→ HomD(FX,FY ) is
a bijection for each pair of objects X,Y ∈ C. F is called essentially surjective if every element
of D is isomorphic to an object in the image of F .

So, for instance, the inclusion of a full subcategory is fully faithful (by definition). The forgetful
functor from groups to sets is not fully faithful, because not all functions between groups are
automatically homomorphisms.

Proposition 2.21 A functor F : C → D induces an equivalence of categories if and only if it is
fully faithful and essentially surjective.

Proof. TO BE ADDED: this proof, and the definitions in the statement. N

§3 Various universal constructions

Now that we have introduced the idea of a category and showed that a functor takes isomorphisms
to isomorphisms, we shall take various steps to characterize objects in terms of maps (the most
complete of which is the Yoneda lemma, Theorem 4.2). In general category theory, this is generally
all we can do, since this is all the data we are given. We shall describe objects satisfying certain
“universal properties” here.

As motivation, we first discuss the concept of the “product” in terms of a universal property.

3.1 Products

Recall that if we have two sets X and Y , the product X × Y is the set of all elements of the
form (x, y) where x ∈ X and y ∈ Y . The product is also equipped with natural projections
p1 : X × Y → X and p2 : X × Y → Y that take (x, y) to x and y respectively. Thus any element
of X × Y is uniquely determined by where they project to on X and Y . In fact, this is the case
more generally; if we have an index set I and a product X =

∏
i∈I Xi, then an element x ∈ X

determined uniquely by where where the projections pi(x) land in Xi.
To get into the categorical spirit, we should speak not of elements but of maps to X. Here

is the general observation: if we have any other set S with maps fi : S → Xi then there is a
unique map S → X =

∏
i∈I Xi given by sending s ∈ S to the element {fi(s)}i∈I . This leads to

the following characterization of a product using only “mapping properties.”

Definition 3.1 Let {Xi}i∈I be a collection of objects in some category C. Then an object P ∈ C
with projections pi : P → Xi is said to be the product

∏
i∈I Xi if the following “universal

property” holds: let S be any other object in C with maps fi : S → Xi. Then there is a unique
morphism f : S → P such that pif = fi.

In other words, to map into X is the same as mapping into all the {Xi} at once. We have thus
given a precise description of how to map into X. Note that, however, the product need not exist!
If it does, however, we can express the above formalism by the following natural isomorphism of
contravariant functors

Hom(·,
∏
I

Xi) '
∏
I

Hom(·, Xi).

This is precisely the meaning of the last part of the definition. Note that this observation shows
that products in the category of sets are really fundamental to the idea of products in any category.

Example 3.2 One of the benefits of this construction is that an actual category is not specified;
thus when we take C to be Sets, we recover the cartesian product notion of sets, but if we take C
to be Grp, we achieve the regular notion of the product of groups (the reader is invited to check
these statements).

13
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The categorical product is not unique, but it is as close to being so as possible.

Proposition 3.3 (Uniqueness of products) Any two products of the collection {Xi} in C are
isomorphic by a unique isomorphism commuting with the projections.

This is a special case of a general “abstract nonsense” type result that we shall see many more
of in the sequel. The precise statement is the following: let X be a product of the {Xi} with
projections pi : X → Xi, and let Y be a product of them too, with projections qi : Y → Xi. Then
the claim is that there is a unique isomorphism

f : X → Y

such that the diagrams below commute for each i ∈ I:

X
pi

!!BBBBBBBB
f // Y

qi

~~||||||||

Xi.

(1)

Proof. This is a “trivial” result, and is part of a general fact that objects with the same universal
property are always canonically isomorphic. Indeed, note that the projections pi : X → Xi and
the fact that mapping into Y is the same as mapping into all the Xi gives a unique map f : X → Y
making the diagrams (1) commute. The same reasoning (applied to the qi : Y → Xi) gives a map
g : Y → X making the diagrams

Y
qi

  AAAAAAA
g // X

pi

~~}}}}}}}}

Xi

(2)

commute. By piecing the two diagrams together, it follows that the composite g ◦ f makes the
diagram

X
pi

  AAAAAAAA
g◦f // X

pi

~~}}}}}}}}

Xi

(3)

commute. But the identity 1X : X → X also would make (3) commute, and the uniqueness
assertion in the definition of the product shows that g ◦ f = 1X . Similarly, f ◦ g = 1Y . We are
done. N

Remark If we reverse the arrows in the above construction, the universal property obtained
(known as the “coproduct”) characterizes disjoint unions in the category of sets and free products
in the category of groups. That is, to map out of a coproduct of objects {Xi} is the same as
mapping out of each of these. We shall later study this construction more generally.

Exercise 0.7 Let P be a poset, and make P into a category as in Example 1.6. Fix x, y ∈ P .
Show that the product of x, y is the greatest lower bound of {x, y} (if it exists). This claim holds
more generally for arbitrary subsets of P .

In particular, consider the poset of subsets of a given set S. Then the “product” in this category
corresponds to the intersection of subsets.

We shall, in this section, investigate this notion of “universality” more thoroughly.

14
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3.2 Initial and terminal objects

We now introduce another example of universality, which is simpler but more abstract than the
products introduced in the previous section.

Definition 3.4 Let C be a category. An initial object in C is an object X ∈ C with the property
that HomC(X,Y ) has one element for all Y ∈ C.

So there is a unique map out of X into each Y ∈ C. Note that this idea is faithful to the
categorical spirit of describing objects in terms of their mapping properties. Initial objects are
very easy to map out of.

Example 3.5 If C is Sets, then the empty set ∅ is an initial object. There is a unique map from
the empty set into any other set; one has to make no decisions about where elements are to map
when constructing a map ∅ → X.

Example 3.6 In the category Grp of groups, the group consisting of one element is an initial
object.

Note that the initial object in Grp is not that in Sets. This should not be too surprising,
because ∅ cannot be a group.

Example 3.7 Let P be a poset, and make it into a category as in Example 1.6. Then it is easy to
see that an initial object of P is the smallest object in P (if it exists). Note that this is equivalently
the product of all the objects in P . In general, the initial object of a category is not the product
of all objects in C (this does not even make sense for a large category).

There is a dual notion, called a terminal object, where every object can map into it in precisely
one way.

Definition 3.8 A terminal object in a category C is an object Y ∈ C such that HomC(X,Y ) = ∗
for each X ∈ C.

Note that an initial object in C is the same as a terminal object in Cop, and vice versa. As a
result, it suffices to prove results about initial objects, and the corresponding results for terminal
objects will follow formally. But there is a fundamental difference between initial and terminal
objects. Initial objects are characterized by how one maps out of them, while terminal objects are
characterized by how one maps into them.

Example 3.9 The one point set is a terminal object in Sets.

The important thing about the next “theorems” is the conceptual framework.

Proposition 3.10 (Uniqueness of the initial (or terminal) object) Any two initial (resp.
terminal) objects in C are isomorphic by a unique isomorphism.

Proof. The proof is easy. We do it for terminal objects. Say Y, Y ′ are terminal objects. Then
Hom(Y, Y ′) and Hom(Y ′, Y ) are one point sets. So there are unique maps f : Y → Y ′, g : Y ′ → Y ,
whose composites must be the identities: we know that Hom(Y, Y ),Hom(Y ′, Y ′) are one-point
sets, so the composites have no other choice to be the identities. This means that the maps
f : Y → Y ′, g : Y ′ → Y are isomorphisms. N

There is a philosophical point to be made here. We have characterized an object uniquely in
terms of mapping properties. We have characterized it uniquely up to unique isomorphism, which
is really the best one can do in mathematics. Two sets are not generally the “same,” but they may

15



CRing Project, Chapter 0

be isomorphic up to unique isomorphism. They are different, but the sets are isomorphic up to
unique isomorphism. Note also that the argument was essentially similar to that of Proposition 3.3.

In fact, we could interpret Proposition 3.3 as a special case of Proposition 3.10. If C is a
category and {Xi}i∈I is a family of objects in C, then we can define a category D as follows. An
object of D is the data of an object Y ∈ C and morphisms fi : Y → Xi for all i ∈ I. A morphism
between objects (Y, {fi : Y → Xi}) and (Z, {gi : Z → Xi}) is a map Y → Z making the obvious
diagrams commute. Then a product

∏
Xi in C is the same thing as a terminal object in D, as one

easily checks from the definitions.

3.3 Push-outs and pull-backs

Let C be a category.
Now we are going to talk about more examples of universal constructions, which can all be

phrased via initial or terminal objects in some category. This, therefore, is the proof for the
uniqueness up to unique isomorphism of everything we will do in this section. Later we will
present these in more generality.

Suppose we have objects A,B,C,X ∈ C.

Definition 3.11 A commutative square

A

��

// B

��
C // X

.

is a pushout square (and X is called the push-out) if, given a commutative diagram

A //

��

B

��
C // Y

there is a unique map X → Y making the following diagram commute:

A

��

// B

��

��0
0000000000000

C //

''PPPPPPPPPPPPPP X

  AAAAAAAA

Y ′

Sometimes push-outs are also called fibered coproducts. We shall also write X = C tA B.

In other words, to map out of X = C tA B into some object Y is to give maps B → Y,C → Y
whose restrictions to A are the same.

The next few examples will rely on notions to be introduced later.

Example 3.12 The following is a pushout square in the category of abelian groups:

Z/2 //

��

Z/4

��
Z/6 // Z/12
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In the category of groups, the push-out is actually SL2(Z), though we do not prove it. The point
is that the property of a square’s being a push-out is actually dependent on the category.

In general, to construct a push-out of groups C tAB, one constructs the direct sum C⊕B and
quotients by the subgroup generated by (a, a) (where a ∈ A is identified with its image in C ⊕B).
We shall discuss this later, more thoroughly, for modules over a ring.

Example 3.13 Let R be a commutative ring and let S and Q be two commutative R-algebras.
In other words, suppose we have two maps of rings s : R → S and q : R → Q. Then we can fit
this information together into a pushout square:

R //

��

S

��
Q // X

It turns out that the pushout in this case is the tensor product of algebras S ⊗R Q (see ?? for the
construction). This is particularly important in algebraic geometry as the dual construction will
give the correct notion of “products” in the category of “schemes” over a field.

Proposition 3.14 Let C be any category. If the push-out of the diagram

A

��

// B

C

exists, it is unique up to unique isomorphism.

Proof. We can prove this in two ways. One is to suppose that there were two pushout squares:

A

��

// B

��
C // X

A

��

// B

��
C // X ′

Then there are unique maps f : X → X ′, g : X ′ → X from the universal property. In detail, these
maps fit into commutative diagrams

A

��

// B

��

��1
1111111111111

C //

''PPPPPPPPPPPPPP X
f

  BBBBBBBB

X ′

A

��

// B

��

��0
0000000000000

C //

((PPPPPPPPPPPPPPP X ′

g

  BBBBBBBB

X

Then g ◦ f and f ◦ g are the identities of X,X ′ again by uniqueness of the map in the definition
of the push-out.

Alternatively, we can phrase push-outs in terms of initial objects. We could consider the
category of all diagrams as above,

A

��

// B

��
C // D

,

17



CRing Project, Chapter 0

where A→ B,A→ C are fixed and D varies. The morphisms in this category of diagrams consist
of commutative diagrams. Then the initial object in this category is the push-out, as one easily
checks. N

Often when studying categorical constructions, one can create a kind of “dual”construction
by reversing the direction of the arrows. This is exactly the relationship between the push-out
construction and the pull-back construction to be described below. So suppose we have two
morphisms A→ C and B → C, forming a diagram

B

��
A // C.

Definition 3.15 The pull-back or fibered product of the above diagram is an object P with
two morphisms P → B and P → C such that the following diagram commutes:

P

��

// B

��
A // C

Moreover, the object P is required to be universal in the following sense: given any P ′ and maps
P ′ → A and P ′ → B making the square commute, there is a unique map P ′ → P making the
following diagram commute:

P ′

  AAAAAAA

''PPPPPPPPPPPPPP

��0
0000000000000

P

��

// B

��
A // C

We shall also write P = B ×C A.

Example 3.16 In the category Set of sets, if we have sets A,B,C with maps f : A→ C, g : B →
C, then the fibered product A×C B consists of pairs (a, b) ∈ A×B such that f(a) = g(b).

Example 3.17 (Requires prerequisites not developed yet) The next example may be omit-
ted without loss of continuity.

As said above, the fact that the tensor product of algebras is a push-out in the category
of commutative R-algebras allows for the correct notion of the “product” of schemes. We now
elaborate on this example: naively one would think that we could pick the underlying space of
the product scheme to just be the topological product of two Zariski topologies. However, it is an
easy exercise to check that the product of two Zariski topologies in general is not Zariski! This
motivates the need for a different concept.

Suppose we have a field k and two k-algebras A and B and let X = Spec(A)and Y = Spec(B)
be the affine k-schemes corresponding to A and B. Consider the following pull-back diagram:

X ×Spec(k) Y

��

// X

��
Y // Spec(k)

18
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Now, since Spec is a contravariant functor, the arrows in this pull-back diagram have been
flipped; so in fact, X ×Spec(k) Y is actually Spec(A ⊗k B). This construction is motivated by
the following example: let A = k[x] and B = k[y]. Then Spec(A) and Spec(B) are both affine
lines A1

k so we want a suitable notion of product that makes the product of Spec(A) and Spec(B)
the affine plane. The pull-back construction is the correct one since Spec(A) ×Spec(k) Spec(B) =
Spec(A⊗k B) = Spec(k[x, y]) = A2

k.

3.4 Colimits

We now want to generalize the push-out. Instead of a shape with A,B,C, we do something more
general. Start with a small category I: recall that smallness means that the objects of I form a
set. I is to be called the indexing category. One is supposed to picture is that I is something
like the category

∗

��

// ∗

∗
or the category

∗⇒ ∗.
We will formulate the notion of a colimit which will specialize to the push-out when I is the first
case.

So we will look at functors
F : I → C,

which in the case of the three-element category, will just correspond to diagrams

A

��

// B

C

.

We will call a cone on F (this is an ambiguous term) an object X ∈ C equipped with maps
Fi → X,∀i ∈ I such that for all maps i→ i′ ∈ I, the diagram below commutes:

Fi

��

// X

Fi′

>>}}}}}}}}

.

An example would be a cone on the three-element category above: then this is just a commu-
tative diagram

A //

��

B

��
C // D

.

Definition 3.18 The colimit of the diagram F : I → C, written as colimF or colimIF or lim−→I
F ,

if it exists, is a cone F → X with the property that if F → Y is any other cone, then there is a
unique map X → Y making the diagram

F

  @@@@@@@
// X

��
Y
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commute. (This means that the corresponding diagram with Fi replacing F commutes for each
i ∈ I.)

We could form a category D where the objects are the cones F → X, and the morphisms from
F → X and F → Y are the maps X → Y that make all the obvious diagrams commute. In this
case, it is easy to see that a colimit of the diagram is just an initial object in D.

In any case, we see:

Proposition 3.19 colimF , if it exists, is unique up to unique isomorphism.

Let us go through some examples. We already looked at push-outs.

Example 3.20 Consider the category I visualized as

∗, ∗, ∗, ∗.

So I consists of four objects with no non-identity morphisms. A functor F : I → Sets is just a list
of four sets A,B,C,D. The colimit is just the disjoint union AtB tC tD. This is the universal
property of the disjoint union. To map out of the disjoint union is the same thing as mapping out
of each piece.

Example 3.21 Suppose we had the same category I but the functor F took values in the category
of abelian groups. Then F corresponds, again, to a list of four abelian groups. The colimit is the
direct sum. Again, the direct sum is characterized by the same universal property.

Example 3.22 Suppose we had the same I (∗, ∗, ∗, ∗) the functor took its value in the category
of groups. Then the colimit is the free product of the four groups.

Example 3.23 Suppose we had the same I and the category C was of commutative rings with
unit. Then the colimit is the tensor product.

So the idea of a colimit unifies a whole bunch of constructions. Now let us take a different
example.

Example 3.24 Take
I = ∗⇒ ∗.

So a functor I → Sets is a diagram
A⇒ B.

Call the two maps f, g : A → B. To get the colimit, we take B and mod out by the equivalence
relation generated by f(a) ∼ g(a). To hom out of this is the same thing as homming out of B such
that the pullbacks to A are the same.

This is the relation generated as above, not just as above. It can get tricky.

Definition 3.25 When I is just a bunch of points ∗, ∗, ∗, . . . with no non-identity morphisms,
then the colimit over I is called the coproduct.

We use the coproduct to mean things like direct sums, disjoint unions, and tensor products. If
{Ai, i ∈ I} is a collection of objects in some category, then we find the universal property of the
coproduct can be stated succinctly:

HomC(
⊔
I

Ai, B) =
∏

HomC(Ai, B).

Definition 3.26 When I is ∗⇒ ∗, the colimit is called the coequalizer.
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Theorem 3.27 If C has all coproducts and coequalizers, then it has all colimits.

Proof. Let F : I → C be a functor, where I is a small category. We need to obtain an object X
with morphisms

Fi→ X, i ∈ I

such that for each f : i→ i′, the diagram below commutes:

Fi

��

// Fi′

}}{{{{{{{{

X

and such that X is universal among such diagrams.
To give such a diagram, however, is equivalent to giving a collection of maps

Fi→ X

that satisfy some conditions. So X should be thought of as a quotient of the coproduct tiFi. Let
us consider the coproduct ti∈I,fFi, where f ranges over all morphisms in the category I that start
from i. We construct two maps

tfFi⇒ tfFi,

whose coequalizer will be that of F . The first map is the identity. The second map sends a factorN

3.5 Limits

As in the example with pull-backs and push-outs and products and coproducts, one can define a
limit by using the exact same universal property above just with all the arrows reversed.

Example 3.28 The product is an example of a limit where the indexing category is a small cat-
egory I with no morphisms other than the identity. This example shows the power of universal
constructions; by looking at colimits and limits, a whole variety of seemingly unrelated mathemat-
ical constructions are shown to be in the same spirit.

3.6 Filtered colimits

Filtered colimits are colimits over special indexing categories I which look like totally ordered sets.
These have several convenient properties as compared to general colimits. For instance, in the
category of modules over a ring (to be studied in Chapter 1), we shall see that filtered colimits
actually preserve injections and surjections. In fact, they are exact. This is not true in more
general categories which are similarly structured.

Definition 3.29 An indexing category is filtered if the following hold:

1. Given i0, i1 ∈ I, there is a third object i ∈ I such that both i0, i1 map into i. So there is a
diagram

i0

��>>>>>>>>

i

i1

@@��������

.
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2. Given any two maps i0 ⇒ i1, there exists i and i1 → i such that the two maps i0 ⇒ i are
equal: intuitively, any two ways of pushing an object into another can be made into the same
eventually.

Example 3.30 If I is the category

∗ → ∗ → ∗ → . . . ,

i.e. the category generated by the poset Z≥0, then that is filtered.

Example 3.31 If G is a torsion-free abelian group, the category I of finitely generated subgroups
of G and inclusion maps is filtered. We don’t actually need the lack of torsion.

Definition 3.32 Colimits over a filtered category are called filtered colimits.

Example 3.33 Any torsion-free abelian group is the filtered colimit of its finitely generated sub-
groups, which are free abelian groups.

This gives a simple approach for showing that a torsion-free abelian group is flat.

Proposition 3.34 If I is filtered3 and C = Sets,Abgrp,Grps, etc., and F : I → C is a functor,
then colimIF exists and is given by the disjoint union of Fi, i ∈ I modulo the relation x ∈ Fi is
equivalent to x′ ∈ Fi′ if x maps to x′ under Fi → Fi′ . This is already an equivalence relation.

The fact that the relation given above is transitive uses the filtering of the indexing set. Oth-
erwise, we would need to use the relation generated by it.

Example 3.35 Take Q. This is the filtered colimit of the free submodules Z(1/n).
Alternatively, choose a sequence of numbers m1,m2, . . . , such that for all p, n, we have pn | mi

for i� 0. Then we have a sequence of maps

Z m1→ Z m2→ Z→ . . . .

The colimit of this is Q. There is a quick way of seeing this, which is left to the reader.

When we have a functor F : I → Sets,Grps,Modules taking values in a “nice” category
(e.g. the category of sets, modules, etc.), one can construct the colimit by taking the union of the
Fi, i ∈ I and quotienting by the equivalence relation x ∈ Fi ∼ x′ ∈ Fi′ if f : i→ i′ sends x into x′.
This is already an equivalence relation, as one can check.

Another way of saying this is that we have the disjoint union of the Fi modulo the relation
that a ∈ Fi and b ∈ Fi′ are equivalent if and only if there is a later i′′ with maps i → i′′, i′ → i′′

such that a, b both map to the same thing in Fi′′ .
One of the key properties of filtered colimits is that, in “nice” categories they commute with

finite limits.

Proposition 3.36 In the category of sets, filtered colimits and finite limits commute with each
other.

The reason this result is so important is that, as we shall see, it will imply that in categories
such as the category of R-modules, filtered colimits preserve exactness.

3Some people say filtering.
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Proof. Let us show that filtered colimits commute with (finite) products in the category of sets.
The case of an equalizer is similar, and finite limits can be generated from products and equalizers.

So let I be a filtered category, and {Ai}i∈I , {Bi}i∈I be functors from I → Sets. We want to
show that

lim−→
I

(Ai ×Bi) = lim−→
I

Ai × lim−→
I

Bi.

To do this, note first that there is a map in the direction→ because of the natural maps lim−→I
(Ai×

Bi)→ lim−→I
Ai and lim−→I

(Ai ×Bi)→ lim−→I
Bi. We want to show that this is an isomorphism.

Now we can write the left side as the disjoint union
⊔
I(Ai×Bi) modulo the equivalence relation

that (ai, bi) is related to (aj , bj) if there exist morphisms i → k, j → k sending (ai, bi), (aj , bj) to
the same object in Ak × Bk. For the left side, we have to work with pairs: that is, an element of
lim−→I

Ai × lim−→I
Bi consists of a pair (ai1 , bi2) with two pairs (ai1 , bi2), (aj1 , bj2) equivalent if there

exist morphisms i1, j1 → k1 and i2, j2 → k2 such that both have the same image in Ak1 × Ak2 .
It is easy to see that these amount to the same thing, because of the filtering condition: we can
always modify an element of Ai ×Bj to some Ak ×Bk for k receiving maps from i, j. N

Exercise 0.8 Let A be an abelian group, e : A → A an idempotent operator, i.e. one such that
e2 = e. Show that eA can be obtained as the filtered colimit of

A
e→ A

e→ A . . . .

3.7 The initial object theorem

We now prove a fairly nontrivial result, due to Freyd. This gives a sufficient condition for the
existence of initial objects. We shall use it in proving the adjoint functor theorem below.

Let C be a category. Then we recall that A ∈ C if for each X ∈ C, there is a unique A → X.
Let us consider the weaker condition that for each X ∈ C, there exists a map A→ X.

Definition 3.37 Suppose C has equalizers. If A ∈ C is such that HomC(A,X) 6= ∅ for each X ∈ C,
then X is called weakly initial.

We now want to get an initial object from a weakly initial object. To do this, note first that
if A is weakly initial and B is any object with a morphism B → A, then B is weakly initial too.
So we are going to take our initial object to be a very small subobject of A. It is going to be so
small as to guarantee the uniqueness condition of an initial object. To make it small, we equalize
all endomorphisms.

Proposition 3.38 If A is a weakly initial object in C, then the equalizer of all endomorphisms
A→ A is initial for C.

Proof. Let A′ be this equalizer; it is endowed with a morphism A′ → A. Then let us recall what
this means. For any two endomorphisms A⇒ A, the two pull-backs A′ ⇒ A are equal. Moreover,
if B → A is a morphism that has this property, then B factors uniquely through A′.

Now A′ → A is a morphism, so by the remarks above, A′ is weakly initial: to each X ∈ C,
there exists a morphism A′ → X. However, we need to show that it is unique.

So suppose given two maps f, g : A′ ⇒ X. We are going to show that they are equal. If not,
consider their equalizer O. Then we have a morphism O → A′ such that the post-compositions
with f, g are equal. But by weak initialness, there is a map A→ O; thus we get a composite

A→ O → A′.

We claim that this is a section of the embedding A′ → A. This will prove the result. Indeed, we
will have constructed a section A→ A′, and since it factors through O, the two maps

A→ O → A′ ⇒ X
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are equal. Thus, composing each of these with the inclusion A′ → A shows that f, g were equal in
the first place.

Thus we are reduced to proving:

Lemma 3.39 Let A be an object of a category C. Let A′ be the equalizer of all endomorphisms of
A. Then any morphism A→ A′ is a section of the inclusion A′ → A.

Proof. Consider the canonical inclusion i : A′ → A. We are given some map s : A→ A′; we must
show that si = 1A′ . Indeed, consider the composition

A′
i→ A

s→ A′
i→ A.

Now i equalizes endomorphisms of A; in particular, this composition is the same as

A′
i→ A

id→ A; N

that is, it equals i. So the map si : A′ → A has the property that isi = i as maps A′ → A. But i
being a monomorphism, it follows that si = 1A′ . N

Theorem 3.40 (Freyd) Let C be a category admitting all small limits.4 Then C has an initial
object if and only if the following solution set condition holds: there is a set {Xi, i ∈ I} of
objects in C such that any X ∈ C can be mapped into by one of these.

The idea is that the family {Xi} is somehow weakly universal together.

Proof. If C has an initial object, we may just consider that as the family {Xi}: we can hom out
(uniquely!) from a universal object into anything, or in other words a universal object is weakly
universal.

Suppose we have a “weakly universal family” {Xi}. Then the product
∏
Xi is weakly universal.

Indeed, if X ∈ C, choose some i′ and a morphism Xi′ → X by the hypothesis. Then this map
composed with the projection from the product gives a map

∏
Xi → Xi′ → X. Proposition 3.38

now implies that C has an initial object. N

3.8 Completeness and cocompleteness

Definition 3.41 A category C is said to be complete if for every functor F : I → C where I is
a small category, the limit limF exists (i.e. C has all small limits). If all colimits exist, then C is
said to be cocomplete.

If a category is complete, various nice properties hold.

Proposition 3.42 If C is a complete category, the following conditions are true:

1. all (finite) products exist

2. all pull-backs exist

3. there is a terminal object

Proof. The proof of the first two properties is trivial since they can all be expressed as limits; for
the proof of the existence of a terminal object, consider the empty diagram F : ∅ → C. Then the
terminal object is just limF . N

Of course, if one dualizes everything we get a theorem about cocomplete categories which is
proved in essentially the same manner. More is true however; it turns out that finite (co)completeness
are equivalent to the properties above if one requires the finiteness condition for the existence of
(co)products.

4We shall later call such a category complete.
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3.9 Continuous and cocontinuous functors

3.10 Monomorphisms and epimorphisms

We now wish to characterize monomorphisms and epimorphisms in a purely categorical setting. In
categories where there is an underlying set the notions of injectivity and surjectivity makes sense
but in category theory, one does not in a sense have “access” to the internal structure of objects.
In this light, we make the following definition.

Definition 3.43 A morphism f : X → Y is a monomorphism if for any two morphisms g1 :
X ′ → X and g2 : X ′ → X, we have that fg1 = fg2 implies g1 = g2. A morphism f : X → Y is an
epimorphism if for any two maps g1 : Y → Y ′ and g2 : Y → Y ′, we have that g1f = g2f implies
g1 = g2.

So f : X → Y is a monomorphism if whenever X ′ is another object in C, the map

HomC(X
′, X)→ HomC(X

′, Y )

is an injection (of sets). Epimorphisms in a category are defined similarly; note that neither
definition makes any reference to surjections of sets.

The reader can easily check:

Proposition 3.44 The composite of two monomorphisms is a monomorphism, as is the composite
of two epimorphisms.

Exercise 0.9 Prove Proposition 3.44.

Exercise 0.10 The notion of “monomorphism” can be detected using only the notions of fibered
product and isomorphism. To see this, suppose i : X → Y is a monomorphism. Show that the
diagonal

X → X ×Y X

is an isomorphism. (The diagonal map is such that the two projections to X both give the
identity.) Conversely, show that if i : X → Y is any morphism such that the above diagonal map
is an isomorphism, then i is a monomorphism.

Deduce the following consequence: if F : C → D is a functor that commutes with fibered
products, then F takes monomorphisms to monomorphisms.

§4 Yoneda’s lemma

TO BE ADDED: this section is barely fleshed out
Let C be a category. In general, we have said that there is no way to study an object in a

category other than by considering maps into and out of it. We will see that essentially everything
about X ∈ C can be recovered from these hom-sets. We will thus get an embedding of C into a
category of functors.

4.1 The functors hX

We now use the structure of a category to construct hom functors.

Definition 4.1 Let X ∈ C. We define the contravariant functor hX : C → Sets via

hX(Y ) = HomC(Y,X).
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This is, indeed, a functor. If g : Y → Y ′, then precomposition gives a map of sets

hX(Y ′)→ hX(Y ), f 7→ f ◦ g

which satisfies all the usual identities.
As a functor, hX encodes all the information about how one can map into X. It turns out that

one can basically recover X from hX , though.

4.2 The Yoneda lemma

Let X
f→ X ′ be a morphism in C. Then for each Y ∈ C, composition gives a map

HomC(Y,X)→ HomC(Y,X
′).

It is easy to see that this induces a natural transformation

hX → hX′ .

Thus we get a map of sets
HomC(X,X

′)→ Hom(hX , hX′),

where hX , hX′ lie in the category of contravariant functors C → Sets. In other words, we have
defined a covariant functor

C → Fun(Cop,Sets).

This is called the Yoneda embedding. The next result states that the embedding is fully faithful.

Theorem 4.2 (Yoneda’s lemma) If X,X ′ ∈ C, then the map HomC(X,X
′) → Hom(hX , hX′)

is a bijection. That is, every natural transformation hX → hX′ arises in one and only one way
from a morphism X → X ′.

Theorem 4.3 (Strong Yoneda lemma)

4.3 Representable functors

We use the same notation of the preceding section: for a category C and X ∈ C, we let hX be the
contravariant functor C → Sets given by Y 7→ HomC(Y,X).

Definition 4.4 A contravariant functor F : C → Sets is representable if it is naturally isomor-
phic to some hX .

The point of a representable functor is that it can be realized as maps into a specific object.
In fact, let us look at a specific feature of the functor hX . Consider the object α ∈ hX(X) that
corresponds to the identity. Then any morphism

Y → X

factors uniquely as
Y → X

α→ X

(this is completely trivial!) so that any element of hX(Y ) is a f∗(α) for precisely one f : Y → X.

Definition 4.5 Let F : C → Sets be a contravariant functor. A universal object for C is a pair
(X,α) where X ∈ C, α ∈ F (X) such that the following condition holds: if Y is any object and
β ∈ F (Y ), then there is a unique f : Y → X such that α pulls back to β under f .

In other words, β = f∗(α).
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So a functor has a universal object if and only if it is representable. Indeed, we just say
that the identity X → X is universal for hX , and conversely if F has a universal object (X,α),
then F is naturally isomorphic to hX (the isomorphism hX ' F being given by pulling back α
appropriately).

The article [Vis08] by Vistoli contains a good introduction to and several examples of this
theory. Here is one of them:

Example 4.6 Consider the contravariant functor F : Sets → Sets that sends any set S to its
power set 2S (i.e. the collection of subsets). This is a contravariant functor: if f : S → T , there is
a morphism

2T → 2S , T ′ 7→ f−1(T ′).

This is a representable functor. Indeed, the universal object can be taken as the pair

({0, 1} , {1}).

To understand this, note that a subset S; of S determines its characteristic function χS′ : S →
{0, 1} that takes the value 1 on S and 0 elsewhere. If we consider χS′ as a morphism S → {0, 1},
we see that

S′ = χ−1
S′ ({1}).

Moreover, the set of subsets is in natural bijection with the set of characteristic functions, which
in turn are precisely all the maps S → {0, 1}. From this the assertion is clear.

We shall meet some elementary criteria for the representability of contravariant functors in the
next subsection. For now, we note5 that in algebraic topology, one often works with the homotopy
category of pointed CW complexes (where morphisms are pointed continuous maps modulo ho-
motopy), any contravariant functor that satisfies two relatively mild conditions (a Mayer-Vietoris
condition and a condition on coproducts), is automatically representable by a theorem of Brown.
In particular, this implies that the singular cohomology functors Hn(−, G) (with coefficients in
some group G) are representable; the representing objects are the so-called Eilenberg-MacLane
spaces K(G,n). See [Hat02].

4.4 Limits as representable functors

TO BE ADDED:

4.5 Criteria for representability

Let C be a category. We saw in the previous subsection that a representable functor must send
colimits to limits. We shall now see that there is a converse under certain set-theoretic conditions.
For simplicity, we start by stating the result for corepresentable functors.

Theorem 4.7 ((Co)representability theorem) Let C be a complete category, and let F : C →
Sets be a covariant functor. Suppose F preserves limits and satisfies the solution set condition:
there is a set of objects {Yα} such that, for any X ∈ C and x ∈ F (X), there is a morphism

Yα → X

carrying some element of F (Yα) onto x.
Then F is corepresentable.

5The reader unfamiliar with algebraic topology may omit these remarks.
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Proof. To F , we associate the following category D. An object of D is a pair (x,X) where x ∈ F (X)
and X ∈ C. A morphism between (x,X) and (y, Y ) is a map

f : X → Y

that sends x into y (via F (f) : F (X) → F (Y )). It is easy to see that F is corepresentable if and
only if there is an initla object in this category; this initial object is the “universal object.”

We shall apply the initial object theorem, Theorem 3.40. Let us first verify that D is complete;
this follows because C is and F preserves limits. So, for instance, the product of (x,X) and (y, Y ) is
((x, y), X×Y ); here (x, y) is the element of F (X)×F (Y ) = F (X×Y ). The solution set condition
states that there is a weakly initial family of objects, and the initial object theorem now implies
that there is an initial object. N

§5 Adjoint functors

According to MacLane, “Adjoint functors arise everywhere.” We shall see several examples of
adjoint functors in this book (such as Hom and the tensor product). The fact that a functor has
an adjoint often immediately implies useful properties about it (for instance, that it commutes
with either limits or colimits); this will lead, for instance, to conceptual arguments behind the
right-exactness of the tensor product later on.

5.1 Definition

Suppose C,D are categories, and let F : C → D, G : D → C be (covariant) functors.

Definition 5.1 F,G are adjoint functors if there is a natural isomorphism

HomD(Fc, d) ' HomC(c,Gd)

whenever c ∈ C, d ∈ D. F is said to be the right adjoint, and G is the left adjoint.

Here “natural” means that the two quantities are supposed to be considered as functors Cop ×
D → Set.

Example 5.2 There is a simple pair of adjoint functors between Set and AbGrp. Here F sends
a set A to the free abelian group (see ?? for a discussion of free modules over arbitrary rings) Z[A],
while G is the “forgetful” functor that sends an abelian group to its underlying set. Then F and
G are adjoints. That is, to give a group-homomorphism

Z[A]→ G

for some abelian group G is the same as giving a map of sets

A→ G.

This is precisely the defining property of the free abelian group.

Example 5.3 In fact, most “free” constructions are just left adjoints. For instance, recall the
universal property of the free group F (S) on a set S (see [Lan02]): to give a group-homomorphism
F (S)→ G for G any group is the same as choosing an image in G of each s ∈ S. That is,

HomGrp(F (S), G) = HomSets(S,G).

This states that the free functor S 7→ F (S) is left adjoint to the forgetful functor from Grp to
Sets.
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Example 5.4 The abelianization functor G 7→ Gab = G/[G,G] from Grp → AbGrp is left
adjoint to the inclusion AbGrp→ Grp. That is, if G is a group and A an abelian group, there is
a natural correspondence between homomorphisms G→ A and Gab → A. Note that AbGrp is a
subcategory of Grp such that the inclusion admits a left adjoint; in this situation, the subcategory
is called reflective.

5.2 Adjunctions

The fact that two functors are adjoint is encoded by a simple set of algebraic data between them.
To see this, suppose F : C → D, G : D → C are adjoint functors. For any object c ∈ C, we know
that

HomD(Fc, Fc) ' HomC(c,GFc),

so that the identity morphism Fc → Fc (which is natural in c!) corresponds to a map c → GFc
that is natural in c, or equivalently a natural transformation

η : 1C → GF.

Similarly, we get a natural transformation

ε : FG→ 1D

where the map FGd→ d corresponds to the identity Gd→ Gd under the adjoint correspondence.
Here η is called the unit, and ε the counit.

These natural transformations η, ε are not simply arbitrary. We are, in fact, going to show that
they determine the isomorphism determine the isomorphism HomD(Fc, d) ' HomC(c,Gd). This
will be a little bit of diagram-chasing.

We know that the isomorphism HomD(Fc, d) ' HomC(c,Gd) is natural. In fact, this is the key
point. Let φ : Fc → d be any map. Then there is a morphism (c, Fc) → (c, d) in the product
category Cop ×D; by naturality of the adjoint isomorphism, we get a commutative square of sets

HomD(Fc, Fc)
adj //

φ∗

��

HomC(c,GFc)

G(φ)∗

��
HomD(Fc, d)

adj // HomC(c,Gd)

Here the mark adj indicates that the adjoint isomorphism is used. If we start with the identity 1Fc
and go down and right, we get the map c→ Gd that corresponds under the adjoint correspondence
to Fc→ d. However, if we go right and down, we get the natural unit map η(c) : c→ GFc followed
by G(φ).

Thus, we have a recipe for constructing a map c→ Gd given φ : Fc→ d:

Proposition 5.5 (The unit and counit determines everything) Let (F,G) be a pair of ad-
joint functors with unit and counit transformations η, ε.

Then given φ : Fc → d, the adjoint map ψ : c → Gd can be constructed simply as follows.
Namely, we start with the unit η(c) : c→ GFc and take

ψ = G(φ) ◦ η(c) : c→ Gd (4)

(here G(φ) : GFc→ Fd).
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In the same way, if we are given ψ : c → Gd and want to construct a map φ : Fc → d, we
construct

ε(d) ◦ F (ψ) : Fc→ FGd→ d. (5)

In particular, we have seen that the unit and counit morphisms determine the adjoint isomorphisms.
Since the adjoint isomorphisms HomD(Fc, d)→ HomC(c,Gd) and HomC(c,Gd)→ HomD(Fc, d)

are (by definition) inverse to each other, we can determine conditions on the units and counits.
For instance, the natural transformation F ◦η gives a natural transformation F ◦η : F → FGF ,

while the natural transformation ε◦F gives a natural transformation FGF → F . (These are slightly
different forms of composition!)

Lemma 5.6 The composite natural transformation F → F given by (ε◦F )◦(F ◦η) is the identity.
Similarly, the composite natural transformation G → GFG → G given by (G ◦ ε) ◦ (η ◦ G) is the
identity.

Proof. We prove the first assertion; the second is similar. Given φ : Fc→ d, we know that we must
get back to φ applying the two constructions above. The first step (going to a map ψ : c → Gd)
is by (4) ψ = G(φ) ◦ η(c); the second step sends ψ to ε(d) ◦ F (ψ), by (5). It follows that

φ = ε(d) ◦ F (G(φ) ◦ η(c)) = ε(d) ◦ F (G(φ)) ◦ F (η(c)).

Now suppose we take d = Fc and φ : Fc → Fc to be the identity. We find that F (G(φ)) is the
identity FGFc→ FGFc, and consequently we find

idF (c) = ε(Fc) ◦ F (η(c)).

This proves the claim. N

Definition 5.7 Let F : C → D, G : D → C be covariant functors. An adjunction is the data of
two natural transformations

η : 1→ GF, ε : FG→ 1,

called the unit and counit, respectively, such that the composites (ε ◦ F ) ◦ (F ◦ ε) : F → F and
(G ◦ ε) ◦ (η ◦G) are the identity (that is, the identity natural transformations of F,G).

We have seen that a pair of adjoint functors gives rise to an adjunction. Conversely, an adjunc-
tion between F,G ensures that F,G are adjoint, as one may check: one uses the same formulas (4)
and (5) to define the natural isomorphism.

For any set S, let F (S) be the free group on S. So, for instance, the fact that there is a natural
map of sets S → F (S), for any set S, and a natural map of groups F (G) → G for any group G,
determines the adjunction between the free group functor from Sets to Grp, and the forgetful
functor Grp→ Sets.

As another example, we give a criterion for a functor in an adjunction to be fully faithful.

Proposition 5.8 Let F,G be a pair of adjoint functors between categories C,D. Then G is fully
faithful if and only if the unit maps η : 1→ GF are isomorphisms.

Proof. We use the recipe (4). Namely, we have a map HomD(Fc, d) → HomC(c,Gd) given by
φ 7→ G(φ) ◦ η(c). This is an isomorphism, since we have an adjunction. As a result, composition
with η is an isomorphism of hom-sets if and only if φ 7→ G(φ) is an isomorphism. From this the
result is easy to deduce. N

Example 5.9 For instance, recall that the inclusion functor from AbGrp to Grp is fully faithful
(clear). This is a right adjoint to the abelianization functor G 7→ Gab. As a result, we would
expect the unit map of the adjunction to be an isomorphism, by Proposition 5.8.

The unit map sends an abelian group to its abelianization: this is obviously an isomorphism,
as abelianizing an abelian group does nothing.
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5.3 Adjoints and (co)limits

One very pleasant property of functors that are left (resp. right) adjoints is that they preserve all
colimits (resp. limits).

Proposition 5.10 A left adjoint F : C → D preserves colimits. A right adjoint G : D → C
preserves limits.

As an example, the free functor from Sets to AbGrp is a left adjoint, so it preserves colimits.
For instance, it preserves coproducts. This corresponds to the fact that if A1, A2 are sets, then
Z[A1 tA2] is naturally isomorphic to Z[A1]⊕ Z[A2].

Proof. Indeed, this is mostly formal. Let F : C → D be a left adjoint functor, with right adjoint
G. Let f : I → C be a “diagram” where I is a small category. Suppose colimIf exists as an
object of C. The result states that colimIF ◦ f exists as an object of D and can be computed as
F (colimIf). To see this, we need to show that mapping out of F (colimIf) is what we want—that
is, mapping out of F (colimIf) into some d ∈ D—amounts to giving compatible F (f(i)) → d for
each i ∈ I. In other words, we need to show that HomD(F (colimIf), d) = limI HomD(F (f(i)), d);
this is precisely the defining property of the colimit.

But we have

HomD(F (colimIf), d) = HomC(colimIf,Gd) = lim
I

HomC(fi,Gd) = lim
I

HomD(F (fi), d),

by using adjointness twice. This verifies the claim we wanted. N

The idea is that one can easily map out of the value of a left adjoint functor, just as one can
map out of a colimit.
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