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Introduction

This is a massively collaborative, open source textbook on commutative algebra. The
project is currently in its infancy, and needs contributions!

The latest version of this document, along with its LATEX source code, is available at
http://people.fas.harvard.edu/~amathew/cr.html.

License

Copyright (C) 2010 CRing Project. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License, Version
1.2 or any later version published by the Free Software Foundation; with no Invariant
Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

Prerequisites

This book is intended to be accessible to undergraduates. The prerequisite is a basic
acquaintance with modern algebra. While even the notion of a ring is introduced from
scratch, it is done so rather rapidly, and the reader is advised to consult another source.
In addition, we do not hesitate to use the language of categories, which is developed in
Chapter 0. The book is intended to provide preparation to study textbooks on algebraic
geometry such as [Har77].

The project

This project was started by several undergraduates in an attempt to create a collaborative,
open source textbook on commutative algebra. It started with a collection of class notes
“live-TEXed” by Akhil Mathew taken in a course taught by Jacob Lurie at Harvard in the
fall of 2010. The idea for the present project came from the Stacks project [dJea10].

The main website for this project is http://people.fas.harvard.edu/~amathew/cr.
html. In addition, there is a git repository at http://cring.adeel.ru. The git repository
provides slightly newer versions of the source code and contains a log of revisions.

Discussion of the CRing project can happen at the blog, http://cringproject.

wordpress.com.
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Corrections

Please email corrections to cring.project@gmail.com.

Contributions

The following people have contributed to this work.

Shishir Agrawal
Eva Belmont
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Rankeya Datta
Anton Geraschenko
Sherry Gong
François Greer
Darij Grinberg
Aise Johan de Jong
Adeel Ahmad Khan
Holden Lee
Geoffrey Lee
Akhil Mathew
Ryan Reich
William Wright
Moor Xu

A list of contributions submitted via email is be maintained at http://people.fas.

harvard.edu/~amathew/contrib.html. They will also be accessible in the git logs.

How to contribute

To contribute, email submissions to cring.project@gmail.com. Contributions do not
have to be polished; they can be rough sketches written for any purpose at all—half-
finished homework writeups, term papers, blog posts, and others are all welcome.

Contributions in editing the chapters are also welcome. To do this, simply download
the source, edit the files, and email the modifications to the same address.
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Chapter 0

Categories

The language of categories is not strictly necessary to understand the basics of commuta-
tive algebra. Nonetheless, it is extremely convenient and powerful. It will clarify many of
the constructions made in the future when we can freely use terms like “universal prop-
erty” or “adjoint functor.” As a result, we begin this book with a brief introduction to
category theory. We only scratch the surface; the interested reader can pursue further
study in [ML98] or [KS06].

Nonetheless, the reader is advised not to take the present chapter too seriously; skip-
ping it for the moment to chapter 1 and returning here as a reference could be quite
reasonable.

§1 Introduction

1.1 Definitions

Categories are supposed to be places where mathematical objects live. Intuitively, to any
given type of structure (e.g. groups, rings, etc.), there should be a category of objects
with that structure. These are not, of course, the only type of categories, but they will be
the primary ones of concern to us in this book.

The basic idea of a category is that there should be objects, and that one should be
able to map between objects. These mappings could be functions, and they often are, but
they don’t have to be. Next, one has to be able to compose mappings, and associativity
and unit conditions are required. Nothing else is required.

Definition 1.1 A category C consists of:

1. A collection of objects, ob C.

2. For each pair of objects X,Y ∈ ob C, a set of morphisms HomC(X,Y ) (abbreviated
Hom(X,Y )).

3. For each object X ∈ ob C, there is an identity morphism 1X ∈ HomC(X,X) (often
just abbreviated to 1).

4. There is a composition law ◦ : HomC(X,Y )×HomC(Y,Z)→ HomC(X,Z), (g, f)→
g ◦ f for every triple X,Y, Z of objects.

3



The CRing Project, §0.1.

5. The composition law is unital and associative. In other words, if f ∈ HomC(X,Y ),
then 1Y ◦ f = f ◦ 1X = f . Moreover, if g ∈ HomC(Y, Z) and h ∈ HomC(Z,W ) for
objects Z, Y,W , then

h ◦ (g ◦ f) = (h ◦ g) ◦ f ∈ HomC(X,W ).

We shall write f : X → Y to denote an element of HomC(X,Y ). In practice, C will
often be the storehouse for mathematical objects: groups, Lie algebras, rings, etc., in
which case these “morphisms” will just be ordinary functions.

Here is a simple list of examples.

Example 1.2 (Categories of structured sets) 1. C = Sets; the objects are sets,
and the morphisms are functions.

2. C = Grps; the objects are groups, and the morphisms are maps of groups (i.e.
homomorphisms).

3. C = LieAlg; the objects are Lie algebras, and the morphisms are maps of Lie
algebras (i.e. homomorphisms).1

4. C = Vectk; the objects are vector spaces over a field k, and the morphisms are linear
maps.

5. C = Top; the objects are topological spaces, and the morphisms are continuous
maps.

6. This example is slightly more subtle. Here the category C has objects consisting of
topological spaces, but the morphisms between two topological spaces X,Y are the
homotopy classes of maps X → Y . Since composition respects homotopy classes,
this is well-defined.

In general, the objects of a category do not have to form a set; they can be too large
for that. For instance, the collection of objects in Sets does not form a set.

Definition 1.3 A category is small if the collection of objects is a set.

The standard examples of categories are the ones above: structured sets together with
structure-preserving maps. Nonetheless, one can easily give other examples that are not
of this form.

Example 1.4 (Groups as categories) Let G be a finite group. Then we can make a
category BG where the objects just consist of one element ∗ and the maps ∗ → ∗ are the
elements g ∈ G. The identity is the identity of G and composition is multiplication in the
group.

In this case, the category does not represent much of a class of objects, but instead
we think of the composition law as the key thing. So a group is a special kind of (small)
category.

1Feel free to omit if the notion of Lie algebra is unfamiliar.
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Example 1.5 (Monoids as categories) A monoid is precisely a category with one ob-
ject. Recall that a monoid is a set together with an associative and unital multiplication
(but which need not have inverses).

Example 1.6 (Posets as categories) Let (P,≤) be a partially ordered (or even pre-
ordered) set (i.e. poset). Then P can be regarded as a (small) category, where the objects
are the elements p ∈ P , and

HomP (p, q) =

{
∗ if p ≤ q
∅ otherwise

There is, however, a major difference between category theory and set theory. There
is nothing in the language of categories that lets one look inside an object. We think
of vector spaces having elements, spaces having points, etc. By contrast, categories treat
these kinds of things as invisible. There is nothing “inside” of an object X ∈ C; the only
way to understand X is to understand the ways one can map into and out of X. Even
if one is working with a category of “structured sets,” the underlying set of an object in
this category is not part of the categorical data. However, there are instances in which
the “underlying set” can be recovered as a Hom-set.

Example 1.7 In the category Top of topological spaces, one can in fact recover the
“underlying set” of a topological space via the hom-sets. Namely, for each topological
space, the points of X are the same thing as the mappings from a one-point space into X.
That is, we have

|X| = HomTop(∗, X),

where ∗ is the one-point space.

Later we will say that the functor assigning to each space its underlying set is corep-
resentable.

Example 1.8 Let Ab be the category of abelian groups and group-homomorphisms.
Again, the claim is that using only this category, one can recover the underlying set of a
given abelian group A. This is because the elements of A can be canonically identified
with morphisms Z→ A (based on where 1 ∈ Z maps).

Definition 1.9 We say that C is a subcategory of the category D if the collection of
objects of C is a subclass of the collection of objects of D, and if whenever X,Y ∈ C, we
have

HomC(X,Y ) ⊂ HomD(X,Y )

with the laws of composition in C induced by that in D.

C is called a full subcategory if HomC(X,Y ) = HomD(X,Y ) whenever X,Y ∈ C.

Example 1.10 The category of abelian groups is a full subcategory of the category of
groups.

5
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1.2 The language of commutative diagrams

While the language of categories is, of course, purely algebraic, it will be convenient
for psychological reasons to visualize categorical arguments through diagrams. We shall
introduce this notation here.

Let C be a category, and letX,Y be objects in C. If f ∈ Hom(X,Y ), we shall sometimes
write f as an arrow

f : X → Y

or

X
f→ Y

as if f were an actual function. If X
f→ Y and Y

g→ Z are morphisms, composition
g ◦ f : X → Z can be visualized by the picture

X
f→ Y

g→ Z.

Finally, when we work with several objects, we shall often draw collections of mor-
phisms into diagrams, where arrows indicate morphisms between two objects.

Definition 1.11 A diagram will be said to commute if whenever one goes from one
object in the diagram to another by following the arrows in the right order, one obtains
the same morphism. For instance, the commutativity of the diagram

X

f
��

f ′ //W

g

��
Y

g′ // Z

is equivalent to the assertion that

g ◦ f ′ = g′ ◦ f ∈ Hom(X,Z).

As an example, the assertion that the associative law holds in a category C can be
stated as follows. For every quadruple X,Y, Z,W ∈ C, the following diagram (of sets)
commutes:

Hom(X,Y )×Hom(Y, Z)×Hom(Z,W ) //

��

Hom(X,Z)×Hom(Z,W )

��
Hom(X,Y )×Hom(Y,W ) // Hom(X,W ).

Here the maps are all given by the composition laws in C. For instance, the downward
map to the left is the product of the identity on Hom(X,Y ) with the composition law
Hom(Y,Z)×Hom(Z,W )→ Hom(Y,W ).

6
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1.3 Isomorphisms

Classically, one can define an isomorphism of groups as a bijection that preserves the
group structure. This does not generalize well to categories, as we do not have a notion
of “bijection,” as there is no way (in general) to talk about the “underlying set” of an
object. Moreover, this definition does not generalize well to topological spaces: there, an
isomorphism should not just be a bijection, but something which preserves the topology
(in a strong sense), i.e. a homeomorphism.

Thus we make:

Definition 1.12 An isomorphism between objects X,Y in a category C is a map f :
X → Y such that there exists g : Y → X with

g ◦ f = 1X , f ◦ g = 1Y .

Such a g is called an inverse to f .

Remark It is easy to check that the inverse g is unique. Indeed, suppose g, g′ both were
inverses to f . Then

g′ = g′ ◦ 1Y = g′ ◦ (f ◦ g) = (g′ ◦ f) ◦ g = 1X ◦ g = g.

This notion is isomorphism is more correct than the idea of being one-to-one and onto.
A bijection of topological spaces is not necessarily a homeomorphism.

Example 1.13 It is easy to check that an isomorphism in the category Grp is an iso-
morphism of groups, that an isomorphism in the category Set is a bijection, and so on.

We are supposed to be able to identify isomorphic objects. In the categorical sense,
this means mapping into X should be the same as mapping into Y , if X,Y are isomorphic,
via an isomorphism f : X → Y . Indeed, let Z be another object of C. Then we can define
a map

HomC(Z,X)→ HomC(Z, Y )

given by post-composition with f . This is a bijection if f is an isomorphism (the inverse
is given by postcomposition with the inverse to f). Similarly, one can easily see that
mapping out of X is essentially the same as mapping out of Y . Anything in general
category theory that is true for X should be true for Y (as general category theory can
only try to understand X in terms of maps into or out of it!).

Exercise 0.1 The relation “X,Y are isomorphic” is an equivalence relation on the class
of objects of a category C.

Exercise 0.2 Let P be a preordered set, and make P into a category as in Example 1.6.
Then P is a poset if and only if two isomorphic objects are equal.

For the next exercise, we need:

Definition 1.14 A groupoid is a category where every morphism is an isomorphism.

7
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Exercise 0.3 The sets HomC(A,A) are groups if C is a groupoid and A ∈ C. A group is
essentially the same as a groupoid with one object.

Exercise 0.4 Show that the following is a groupoid. Let X be a topological space, and let
Π1(X) be the category defined as follows: the objects are elements of X, and morphisms
x → y (for x, y ∈ X) are homotopy classes of maps [0, 1] → X (i.e. paths) that send
0 7→ x, 1 7→ y. Composition of maps is given by concatenation of paths. (Check that,
because one is working with homotopy classes of paths, composition is associative.)

Π1(X) is called the fundamental groupoid of X. Note that HomΠ1(X)(x, x) is the
fundamental group π1(X,x).

§2 Functors

A functor is a way of mapping from one category to another: each object is sent to another
object, and each morphism is sent to another morphism. We shall study many functors
in the sequel: localization, the tensor product, Hom, and fancier ones like Tor,Ext, and
local cohomology functors. The main benefit of a functor is that it doesn’t simply send
objects to other objects, but also morphisms to morphisms: this allows one to get new
commutative diagrams from old ones. This will turn out to be a powerful tool.

2.1 Covariant functors

Let C,D be categories. If C,D are categories of structured sets (of possibly different types),
there may be a way to associate objects in D to objects in C. For instance, to every group
G we can associate its group ring Z[G] (which we do not define here); to each topological
space we can associate its singular chain complex, and so on. In many cases, given a map
between objects in C preserving the relevant structure, there will be an induced map on
the corresponding objects in D. It is from here that we define a functor.

Definition 2.1 A functor F : C → D consists of a function F : C → D (that is, a rule
that assigns to each object in C an object of D) and, for each pair X,Y ∈ C, a map
F : HomC(X,Y )→ HomD(FX,FY ), which preserves the identity maps and composition.

In detail, the last two conditions state the following.

1. If X ∈ C, then F (1X) is the identity morphism 1F (X) : F (X)→ F (X).

2. If A
f→ B

g→ C are morphisms in C, then F (g ◦ f) = F (g) ◦ F (f) as morphisms
F (A)→ F (C). Alternatively, we can say that F preserves commutative diagrams.

In the last statement of the definition, note that if

X
h

  AAAAAAA
f // Y

g

��
Z

8
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is a commutative diagram in C, then the diagram obtained by applying the functor F ,
namely

F (X)
F (h)

##HHHHHHHHH

F (f) // F (Y )

F (g)
��

F (Z)

also commutes. It follows that applying F to more complicated commutative diagrams
also yields new commutative diagrams.

Let us give a few examples of functors.

Example 2.2 There is a functor from Sets → AbelianGrp sending a set S to the free
abelian group on the set. (For the definition of a free abelian group, or more generally a
free R-module over a ring R, see Definition 6.1.)

Example 2.3 Let X be a topological space. Then to it we can associate the set π0(X)
of connected components of X.

Recall that the continuous image of a connected set is connected, so if f : X → Y is
a continuous map and X ′ ⊂ X connected, f(X ′) is contained in a connected component
of Y . It follows that π0 is a functor Top→ Sets. In fact, it is a functor on the homotopy
category as well, because homotopic maps induce the same maps on π0.

Example 2.4 Fix n. There is a functor from Top → AbGrp (categories of topological
spaces and abelian groups) sending a space X to its nth homology group Hn(X). We know
that given a map of spaces f : X → Y , we get a map of abelian groups f∗ : Hn(X) →
Hn(Y ). See [Hat02], for instance.

We shall often need to compose functors. For instance, we will want to see, for instance,
that the tensor product (to be defined later, see Section 3) is associative, which is really
a statement about composing functors. The following (mostly self-explanatory) definition
elucidates this.

Definition 2.5 If C,D, E are categories, F : C → D, G : D → E are covariant functors,
then one can define a composite functor

F ◦G : C → E

This sends an object X ∈ C to G(F (X)). Similarly, a morphism f : X → Y is sent to
G(F (f)) : G(F (X))→ G(F (Y )). We leave the reader to check that this is well-defined.

Example 2.6 In fact, because we can compose functors, there is a category of categories.
Let Cat have objects as the small categories, and morphisms as functors. Composition is
defined as in Definition 2.5.

Example 2.7 (Group actions) Fix a group G. Let us understand what a functor BG →
Sets is. Here BG is the category of Example 1.4.

9
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The unique object ∗ of BG goes to some set X. For each element g ∈ G, we get a
map g : ∗ → ∗ and thus a map X → X. This is supposed to preserve the composition law
(which in G is just multiplication), as well as identities.

In particular, we get maps ig : X → X corresponding to each g ∈ G, such that the
following diagram commutes for each g1, g2 ∈ G:

X
ig1 //

ig1g2   BBBBBBBB X

ig2
��
X.

Moreover, if e ∈ G is the identity, then ie = 1X . So a functor BG → Sets is just a left
G-action on a set X.

An important example of functors is given by the following. Let C be a category of
“structured sets.” Then, there is a functor F : C → Sets that sends a structured set to
the underlying set. For instance, there is a functor from groups to sets that forgets the
group structure. More generally, suppose given two categories C,D, such that C can be
regarded as “structured objects in D.” Then there is a functor C → D that forgets the
structure. Such examples are called forgetful functors.

2.2 Contravariant functors

Sometimes what we have described above are called covariant functors. Indeed, we shall
also be interested in similar objects that reverse the arrows, such as duality functors:

Definition 2.8 A contravariant functor C F→ D (between categories C,D) is similar

data as in Definition 2.1 except that now a map X
f→ Y now goes to a map F (Y )

F (f)→
F (X). Composites are required to be preserved, albeit in the other direction. In other

words, if X
f→ Y, Y

g→ Z are morphisms, then we require

F (g ◦ f) = F (f) ◦ F (g) : F (Z)→ F (X).

We shall sometimes say just “functor” for covariant functor. When we are dealing
with a contravariant functor, we will always say the word “contravariant.”

A contravariant functor also preserves commutative diagrams, except that the arrows
have to be reversed. For instance, if F : C → D is contravariant and the diagram

A

��

// C

B

>>~~~~~~~

is commutative in C, then the diagram

F (A) F (C)oo

{{vvvvvvvvv

F (B)

OO

10
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commutes in D.

One can, of course, compose contravariant functors as in Definition 2.5. But the
composition of two contravariant functors will be covariant. So there is no “category of
categories” where the morphisms between categories are contravariant functors.

Similarly as in Example 2.7, we have:

Example 2.9 A contravariant functor from BG (defined as in Example 1.4) to Sets
corresponds to a set with a right G-action.

Example 2.10 (Singular cohomology) In algebraic topology, one encounters contravari-
ant functors on the homotopy category of topological spaces via the singular cohomology
functors X 7→ Hn(X;Z). Given a continuous map f : X → Y , there is a homomorphism
of groups

f∗ : Hn(Y ;Z)→ Hn(X;Z).

Example 2.11 (Duality for vector spaces) On the category Vect of vector spaces
over a field k, we have the contravariant functor

V 7→ V ∨.

sending a vector space to its dual V ∨ = Hom(V, k). Given a map V →W of vector spaces,
there is an induced map

W∨ → V ∨

given by the transpose.

Example 2.12 If we map BG → BG sending ∗ 7→ ∗ and g 7→ g−1, we get a contravariant
functor.

We now give a useful (linguistic) device for translating between covariance and con-
travariance.

Definition 2.13 (The opposite category) Let C be a category. Define the opposite
category Cop of C to have the same objects as C but such that the morphisms between
X,Y in Cop are those between Y and X in C.

There is a contravariant functor C → Cop. In fact, contravariant functors out of C are
the same as covariant functors out of Cop.

As a result, when results are often stated for both covariant and contravariant functors,
for instance, we can often reduce to the covariant case by using the opposite category.

Exercise 0.5 A map that is an isomorphism in C corresponds to an isomorphism in Cop.

11
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2.3 Functors and isomorphisms

Now we want to prove a simple and intuitive fact: if isomorphisms allow one to say that
one object in a category is “essentially the same” as another, functors should be expected
to preserve this.

Proposition 2.14 If f : X → Y is a map in C, and F : C → D is a functor, then
F (f) : FX → FY is an isomorphism.

The proof is quite straightforward, though there is an important point here. Note that
the analogous result holds for contravariant functors too.

Proof. If we have maps f : X → Y and g : Y → X such that the composites both ways
are identities, then we can apply the functor F to this, and we find that since

f ◦ g = 1Y , g ◦ f = 1X ,

it must hold that

F (f) ◦ F (g) = 1F (Y ), F (g) ◦ F (f) = 1F (X).

We have used the fact that functors preserve composition and identities. This implies that
F (f) is an isomorphism, with inverse F (g). N

Categories have a way of making things so general that are trivial. Hence, this material
is called general abstract nonsense. Moreover, there is another philosophical point about
category theory to be made here: often, it is the definitions, and not the proofs, that
matter. For instance, what matters here is not the theorem, but the definition of an
isomorphism. It is a categorical one, and much more general than the usual notion via
injectivity and surjectivity.

Example 2.15 As a simple example, {0, 1} and [0, 1] are not isomorphic in the homotopy
category of topological spaces (i.e. are not homotopy equivalent) because π0([0, 1]) = ∗
while π0({0, 1}) has two elements.

Example 2.16 More generally, the higher homotopy group functors πn (see [Hat02]) can
be used to show that the n-sphere Sn is not homotopy equivalent to a point. For then
πn(Sn, ∗) would be trivial, and it is not.

There is room, nevertheless, for something else. Instead of having something that
sends objects to other objects, one could have something that sends an object to a map.

2.4 Natural transformations

Suppose F,G : C → D are functors.

Definition 2.17 A natural transformation T : F → G consists of the following data.
For each X ∈ C, there is a morphism TX : FX → GX satisfying the following condition.

12
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Whenever f : X → Y is a morphism, the following diagram must commute:

FX

TX
��

F (f) // FY

TY
��

GX
G(f) // GY

.

If TX is an isomorphism for each X, then we shall say that T is a natural isomor-
phism.

It is similarly possible to define the notion of a natural transformation between con-
travariant functors.

When we say that things are “natural” in the future, we will mean that the trans-
formation between functors is natural in this sense. We shall use this language to state
theorems conveniently.

Example 2.18 (The double dual) Here is the canonical example of “naturality.” Let
C be the category of finite-dimensional vector spaces over a given field k. Let us further
restrict the category such that the only morphisms are the isomorphisms of vector spaces.
For each V ∈ C, we know that there is an isomorphism

V ' V ∨ = Homk(V, k),

because both have the same dimension.
Moreover, the maps V 7→ V, V 7→ V ∨ are both covariant functors on C.2 The first is

the identity functor; for the second, if f : V →W is an isomorphism, then there is induced
a transpose map f t : W∨ → V ∨ (defined by sending a map W → k to the precomposition

V
f→W → k), which is an isomorphism; we can take its inverse. So we have two functors

from C to itself, the identity and the dual, and we know that V ' V ∨ for each V (though
we have not chosen any particular set of isomorphisms).

However, the isomorphism V ' V ∨ cannot be made natural. That is, there is no way
of choosing isomorphisms

TV : V ' V ∨

such that, whenever f : V →W is an isomorphism of vector spaces, the following diagram
commutes:

V
f //

TV
��

W

TW
��

V ∨
(f t)−1

//W∨.

Indeed, fix d > 1, and choose V = kd. Identify V ∨ with kd, and so the map TV is a d-by-d
matrix M with coefficients in k. The requirement is that for each invertible d-by-d matrix
N , we have

(N t)−1M = MN,

2Note that the dual ∨ was defined as a contravariant functor in Example 2.11.
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by considering the above diagram with V = W = kd, and f corresponding to the matrix
N . This is impossible unless M = 0, by elementary linear algebra.

Nonetheless, it is possible to choose a natural isomorphism

V ' V ∨∨.

To do this, given V , recall that V ∨∨ is the collection of maps V ∨ → k. To give a map
V → V ∨∨ is thus the same as giving linear functions lv, v ∈ V such that lv : V → k is
linear in v. We can do this by letting lv be “evaluation at v.” That is, lv sends a linear
functional ` : V → k to `(v) ∈ k. We leave it to the reader to check (easily) that this
defines a homomorphism V → V ∨∨, and that everything is natural.

Exercise 0.6 Suppose there are two functors BG → Sets, i.e. G-sets. What is a natural
transformation between them?

Natural transformations can be composed. Suppose given functors F,G,H : C → D a
natural transformation T : F → G and a natural transformation U : G → H. Then, for
each X ∈ C, we have maps TX : FX → GX,UX : GX → HY . We can compose U with
T to get a natural transformation U ◦ T : F → H.

In fact, we can thus define a category of functors Fun(C,D) (at least if C,D are small).
The objects of this category are the functors F : C → D. The morphisms are natural
transformations between functors. Composition of morphisms is as above.

2.5 Equivalences of categories

Often we want to say that two categories C,D are “essentially the same.” One way of
formulating this precisely is to say that C,D are isomorphic in the category of categories.
Unwinding the definitions, this means that there exist functors

F : C → D, G : D → C

such that F ◦G = 1D, G ◦ F = 1C . This notion, of isomorphism of categories, is generally
far too restrictive.

For instance, we could consider the category of all finite-dimensional vector spaces
over a given field k, and we could consider the full subcategory of vector spaces of the
form kn. Clearly both categories encode essentially the same mathematics, in some sense,
but they are not isomorphic: one has a countable set of objects, while the other has an
uncountable set of objects. Thus, we need a more refined way of saying that two categories
are “essentially the same.”

Definition 2.19 Two categories C,D are called equivalent if there are functors

F : C → D, G : D → C

and natural isomorphisms

FG ' 1D, GF ' 1C .

14
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For instance, the category of all vector spaces of the form kn is equivalent to the
category of all finite-dimensional vector spaces. One functor is the inclusion from vector
spaces of the form kn; the other functor maps a finite-dimensional vector space V to kdimV .
Defining the second functor properly is, however, a little more subtle. The next criterion
will be useful.

Definition 2.20 A functor F : C → D is fully faithful if F : HomC(X,Y )→ HomD(FX,FY )
is a bijection for each pair of objects X,Y ∈ C. F is called essentially surjective if every
element of D is isomorphic to an object in the image of F .

So, for instance, the inclusion of a full subcategory is fully faithful (by definition). The
forgetful functor from groups to sets is not fully faithful, because not all functions between
groups are automatically homomorphisms.

Proposition 2.21 A functor F : C → D induces an equivalence of categories if and only
if it is fully faithful and essentially surjective.

Proof. TO BE ADDED: this proof, and the definitions in the statement. N

§3 Various universal constructions

Now that we have introduced the idea of a category and showed that a functor takes
isomorphisms to isomorphisms, we shall take various steps to characterize objects in terms
of maps (the most complete of which is the Yoneda lemma, Theorem 4.2). In general
category theory, this is generally all we can do, since this is all the data we are given. We
shall describe objects satisfying certain “universal properties” here.

As motivation, we first discuss the concept of the “product” in terms of a universal
property.

3.1 Products

Recall that if we have two sets X and Y , the product X×Y is the set of all elements of the
form (x, y) where x ∈ X and y ∈ Y . The product is also equipped with natural projections
p1 : X × Y → X and p2 : X × Y → Y that take (x, y) to x and y respectively. Thus any
element of X × Y is uniquely determined by where they project to on X and Y . In fact,
this is the case more generally; if we have an index set I and a product X =

∏
i∈I Xi, then

an element x ∈ X determined uniquely by where where the projections pi(x) land in Xi.
To get into the categorical spirit, we should speak not of elements but of maps to X.

Here is the general observation: if we have any other set S with maps fi : S → Xi then
there is a unique map S → X =

∏
i∈I Xi given by sending s ∈ S to the element {fi(s)}i∈I .

This leads to the following characterization of a product using only “mapping properties.”

Definition 3.1 Let {Xi}i∈I be a collection of objects in some category C. Then an object
P ∈ C with projections pi : P → Xi is said to be the product

∏
i∈I Xi if the following

“universal property” holds: let S be any other object in C with maps fi : S → Xi. Then
there is a unique morphism f : S → P such that pif = fi.
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In other words, to map into X is the same as mapping into all the {Xi} at once. We
have thus given a precise description of how to map into X. Note that, however, the
product need not exist! If it does, however, we can express the above formalism by the
following natural isomorphism of contravariant functors

Hom(·,
∏
I

Xi) '
∏
I

Hom(·, Xi).

This is precisely the meaning of the last part of the definition. Note that this observation
shows that products in the category of sets are really fundamental to the idea of products
in any category.

Example 3.2 One of the benefits of this construction is that an actual category is not
specified; thus when we take C to be Sets, we recover the cartesian product notion of sets,
but if we take C to be Grp, we achieve the regular notion of the product of groups (the
reader is invited to check these statements).

The categorical product is not unique, but it is as close to being so as possible.

Proposition 3.3 (Uniqueness of products) Any two products of the collection {Xi}
in C are isomorphic by a unique isomorphism commuting with the projections.

This is a special case of a general “abstract nonsense” type result that we shall see
many more of in the sequel. The precise statement is the following: let X be a product
of the {Xi} with projections pi : X → Xi, and let Y be a product of them too, with
projections qi : Y → Xi. Then the claim is that there is a unique isomorphism

f : X → Y

such that the diagrams below commute for each i ∈ I:

X
pi

!!BBBBBBBB
f // Y

qi

~~||||||||

Xi.

(1)

Proof. This is a “trivial” result, and is part of a general fact that objects with the same
universal property are always canonically isomorphic. Indeed, note that the projections
pi : X → Xi and the fact that mapping into Y is the same as mapping into all the Xi

gives a unique map f : X → Y making the diagrams (1) commute. The same reasoning
(applied to the qi : Y → Xi) gives a map g : Y → X making the diagrams

Y
qi

  AAAAAAA
g // X

pi

~~}}}}}}}}

Xi

(2)
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commute. By piecing the two diagrams together, it follows that the composite g ◦f makes
the diagram

X
pi

  AAAAAAAA
g◦f // X

pi

~~}}}}}}}}

Xi

(3)

commute. But the identity 1X : X → X also would make (3) commute, and the uniqueness
assertion in the definition of the product shows that g ◦ f = 1X . Similarly, f ◦ g = 1Y .
We are done. N

Remark If we reverse the arrows in the above construction, the universal property ob-
tained (known as the “coproduct”) characterizes disjoint unions in the category of sets
and free products in the category of groups. That is, to map out of a coproduct of objects
{Xi} is the same as mapping out of each of these. We shall later study this construction
more generally.

Exercise 0.7 Let P be a poset, and make P into a category as in Example 1.6. Fix
x, y ∈ P . Show that the product of x, y is the greatest lower bound of {x, y} (if it exists).
This claim holds more generally for arbitrary subsets of P .

In particular, consider the poset of subsets of a given set S. Then the “product” in
this category corresponds to the intersection of subsets.

We shall, in this section, investigate this notion of “universality” more thoroughly.

3.2 Initial and terminal objects

We now introduce another example of universality, which is simpler but more abstract
than the products introduced in the previous section.

Definition 3.4 Let C be a category. An initial object in C is an object X ∈ C with the
property that HomC(X,Y ) has one element for all Y ∈ C.

So there is a unique map out of X into each Y ∈ C. Note that this idea is faithful to
the categorical spirit of describing objects in terms of their mapping properties. Initial
objects are very easy to map out of.

Example 3.5 If C is Sets, then the empty set ∅ is an initial object. There is a unique
map from the empty set into any other set; one has to make no decisions about where
elements are to map when constructing a map ∅ → X.

Example 3.6 In the category Grp of groups, the group consisting of one element is an
initial object.

Note that the initial object in Grp is not that in Sets. This should not be too
surprising, because ∅ cannot be a group.
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Example 3.7 Let P be a poset, and make it into a category as in Example 1.6. Then
it is easy to see that an initial object of P is the smallest object in P (if it exists). Note
that this is equivalently the product of all the objects in P . In general, the initial object
of a category is not the product of all objects in C (this does not even make sense for a
large category).

There is a dual notion, called a terminal object, where every object can map into it in
precisely one way.

Definition 3.8 A terminal object in a category C is an object Y ∈ C such that
HomC(X,Y ) = ∗ for each X ∈ C.

Note that an initial object in C is the same as a terminal object in Cop, and vice versa.
As a result, it suffices to prove results about initial objects, and the corresponding results
for terminal objects will follow formally. But there is a fundamental difference between
initial and terminal objects. Initial objects are characterized by how one maps out of
them, while terminal objects are characterized by how one maps into them.

Example 3.9 The one point set is a terminal object in Sets.

The important thing about the next “theorems” is the conceptual framework.

Proposition 3.10 (Uniqueness of the initial (or terminal) object) Any two initial
(resp. terminal) objects in C are isomorphic by a unique isomorphism.

Proof. The proof is easy. We do it for terminal objects. Say Y, Y ′ are terminal ob-
jects. Then Hom(Y, Y ′) and Hom(Y ′, Y ) are one point sets. So there are unique maps
f : Y → Y ′, g : Y ′ → Y , whose composites must be the identities: we know that
Hom(Y, Y ),Hom(Y ′, Y ′) are one-point sets, so the composites have no other choice to
be the identities. This means that the maps f : Y → Y ′, g : Y ′ → Y are isomorphisms. N

There is a philosophical point to be made here. We have characterized an object
uniquely in terms of mapping properties. We have characterized it uniquely up to unique
isomorphism, which is really the best one can do in mathematics. Two sets are not
generally the “same,” but they may be isomorphic up to unique isomorphism. They
are different, but the sets are isomorphic up to unique isomorphism. Note also that the
argument was essentially similar to that of Proposition 3.3.

In fact, we could interpret Proposition 3.3 as a special case of Proposition 3.10. If C
is a category and {Xi}i∈I is a family of objects in C, then we can define a category D as
follows. An object of D is the data of an object Y ∈ C and morphisms fi : Y → Xi for all
i ∈ I. A morphism between objects (Y, {fi : Y → Xi}) and (Z, {gi : Z → Xi}) is a map
Y → Z making the obvious diagrams commute. Then a product

∏
Xi in C is the same

thing as a terminal object in D, as one easily checks from the definitions.

3.3 Push-outs and pull-backs

Let C be a category.

18
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Now we are going to talk about more examples of universal constructions, which can
all be phrased via initial or terminal objects in some category. This, therefore, is the proof
for the uniqueness up to unique isomorphism of everything we will do in this section. Later
we will present these in more generality.

Suppose we have objects A,B,C,X ∈ C.

Definition 3.11 A commutative square

A

��

// B

��
C // X

.

is a pushout square (and X is called the push-out) if, given a commutative diagram

A //

��

B

��
C // Y

there is a unique map X → Y making the following diagram commute:

A

��

// B

��

��0
0000000000000

C //

''PPPPPPPPPPPPPPP X

  AAAAAAAA

Y ′

Sometimes push-outs are also called fibered coproducts. We shall also write X =
C tA B.

In other words, to map out of X = C tA B into some object Y is to give maps
B → Y,C → Y whose restrictions to A are the same.

The next few examples will rely on notions to be introduced later.

Example 3.12 The following is a pushout square in the category of abelian groups:

Z/2 //

��

Z/4

��
Z/6 // Z/12

In the category of groups, the push-out is actually SL2(Z), though we do not prove it.
The point is that the property of a square’s being a push-out is actually dependent on the
category.

In general, to construct a push-out of groups C tA B, one constructs the direct sum
C ⊕B and quotients by the subgroup generated by (a, a) (where a ∈ A is identified with
its image in C⊕B). We shall discuss this later, more thoroughly, for modules over a ring.
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Example 3.13 Let R be a commutative ring and let S and Q be two commutative R-
algebras. In other words, suppose we have two maps of rings s : R → S and q : R → Q.
Then we can fit this information together into a pushout square:

R //

��

S

��
Q // X

It turns out that the pushout in this case is the tensor product of algebras S ⊗R Q (see
Section 3.6 for the construction). This is particularly important in algebraic geometry
as the dual construction will give the correct notion of “products” in the category of
“schemes” over a field.

Proposition 3.14 Let C be any category. If the push-out of the diagram

A

��

// B

C

exists, it is unique up to unique isomorphism.

Proof. We can prove this in two ways. One is to suppose that there were two pushout
squares:

A

��

// B

��
C // X

A

��

// B

��
C // X ′

Then there are unique maps f : X → X ′, g : X ′ → X from the universal property. In
detail, these maps fit into commutative diagrams

A

��

// B

��

��1
11111111111111

C //

''PPPPPPPPPPPPPPP X
f

  BBBBBBBB

X ′

A

��

// B

��

��0
00000000000000

C //

((PPPPPPPPPPPPPPP X ′

g

  BBBBBBBB

X

Then g ◦ f and f ◦ g are the identities of X,X ′ again by uniqueness of the map in the
definition of the push-out.

Alternatively, we can phrase push-outs in terms of initial objects. We could consider
the category of all diagrams as above,

A

��

// B

��
C // D

,
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where A→ B,A→ C are fixed and D varies. The morphisms in this category of diagrams
consist of commutative diagrams. Then the initial object in this category is the push-out,
as one easily checks. N

Often when studying categorical constructions, one can create a kind of “dual”construction
by reversing the direction of the arrows. This is exactly the relationship between the push-
out construction and the pull-back construction to be described below. So suppose we have
two morphisms A→ C and B → C, forming a diagram

B

��
A // C.

Definition 3.15 The pull-back or fibered product of the above diagram is an object
P with two morphisms P → B and P → C such that the following diagram commutes:

P

��

// B

��
A // C

Moreover, the object P is required to be universal in the following sense: given any P ′ and
maps P ′ → A and P ′ → B making the square commute, there is a unique map P ′ → P
making the following diagram commute:

P ′

  AAAAAAA

''PPPPPPPPPPPPPP

��0
0000000000000

P

��

// B

��
A // C

We shall also write P = B ×C A.

Example 3.16 In the category Set of sets, if we have sets A,B,C with maps f : A →
C, g : B → C, then the fibered product A×C B consists of pairs (a, b) ∈ A×B such that
f(a) = g(b).

Example 3.17 (Requires prerequisites not developed yet) The next example may
be omitted without loss of continuity.

As said above, the fact that the tensor product of algebras is a push-out in the category
of commutative R-algebras allows for the correct notion of the “product” of schemes. We
now elaborate on this example: naively one would think that we could pick the underlying
space of the product scheme to just be the topological product of two Zariski topologies.
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However, it is an easy exercise to check that the product of two Zariski topologies in
general is not Zariski! This motivates the need for a different concept.

Suppose we have a field k and two k-algebras A and B and let X = Spec(A)and
Y = Spec(B) be the affine k-schemes corresponding to A and B. Consider the following
pull-back diagram:

X ×Spec(k) Y

��

// X

��
Y // Spec(k)

Now, since Spec is a contravariant functor, the arrows in this pull-back diagram have
been flipped; so in fact, X ×Spec(k) Y is actually Spec(A ⊗k B). This construction is
motivated by the following example: let A = k[x] and B = k[y]. Then Spec(A) and
Spec(B) are both affine lines A1

k so we want a suitable notion of product that makes the
product of Spec(A) and Spec(B) the affine plane. The pull-back construction is the correct
one since Spec(A)×Spec(k) Spec(B) = Spec(A⊗k B) = Spec(k[x, y]) = A2

k.

3.4 Colimits

We now want to generalize the push-out. Instead of a shape with A,B,C, we do something
more general. Start with a small category I: recall that smallness means that the objects
of I form a set. I is to be called the indexing category. One is supposed to picture is
that I is something like the category

∗

��

// ∗

∗
or the category

∗⇒ ∗.
We will formulate the notion of a colimit which will specialize to the push-out when I is
the first case.

So we will look at functors
F : I → C,

which in the case of the three-element category, will just correspond to diagrams

A

��

// B

C

.

We will call a cone on F (this is an ambiguous term) an object X ∈ C equipped with
maps Fi → X,∀i ∈ I such that for all maps i→ i′ ∈ I, the diagram below commutes:

Fi

��

// X

Fi′

>>}}}}}}}}

.
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An example would be a cone on the three-element category above: then this is just a
commutative diagram

A //

��

B

��
C // D

.

Definition 3.18 The colimit of the diagram F : I → C, written as colimF or colimIF
or lim−→I

F , if it exists, is a cone F → X with the property that if F → Y is any other cone,
then there is a unique map X → Y making the diagram

F

  @@@@@@@@
// X

��
Y

commute. (This means that the corresponding diagram with Fi replacing F commutes for
each i ∈ I.)

We could form a category D where the objects are the cones F → X, and the mor-
phisms from F → X and F → Y are the maps X → Y that make all the obvious diagrams
commute. In this case, it is easy to see that a colimit of the diagram is just an initial
object in D.

In any case, we see:

Proposition 3.19 colimF , if it exists, is unique up to unique isomorphism.

Let us go through some examples. We already looked at push-outs.

Example 3.20 Consider the category I visualized as

∗, ∗, ∗, ∗.

So I consists of four objects with no non-identity morphisms. A functor F : I → Sets is
just a list of four sets A,B,C,D. The colimit is just the disjoint union A t B t C t D.
This is the universal property of the disjoint union. To map out of the disjoint union is
the same thing as mapping out of each piece.

Example 3.21 Suppose we had the same category I but the functor F took values in the
category of abelian groups. Then F corresponds, again, to a list of four abelian groups.
The colimit is the direct sum. Again, the direct sum is characterized by the same universal
property.

Example 3.22 Suppose we had the same I (∗, ∗, ∗, ∗) the functor took its value in the
category of groups. Then the colimit is the free product of the four groups.

Example 3.23 Suppose we had the same I and the category C was of commutative rings
with unit. Then the colimit is the tensor product.
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So the idea of a colimit unifies a whole bunch of constructions. Now let us take a
different example.

Example 3.24 Take
I = ∗⇒ ∗.

So a functor I → Sets is a diagram
A⇒ B.

Call the two maps f, g : A → B. To get the colimit, we take B and mod out by the
equivalence relation generated by f(a) ∼ g(a). To hom out of this is the same thing as
homming out of B such that the pullbacks to A are the same.

This is the relation generated as above, not just as above. It can get tricky.

Definition 3.25 When I is just a bunch of points ∗, ∗, ∗, . . . with no non-identity mor-
phisms, then the colimit over I is called the coproduct.

We use the coproduct to mean things like direct sums, disjoint unions, and tensor
products. If {Ai, i ∈ I} is a collection of objects in some category, then we find the
universal property of the coproduct can be stated succinctly:

HomC(
⊔
I

Ai, B) =
∏

HomC(Ai, B).

Definition 3.26 When I is ∗⇒ ∗, the colimit is called the coequalizer.

Theorem 3.27 If C has all coproducts and coequalizers, then it has all colimits.

Proof. Let F : I → C be a functor, where I is a small category. We need to obtain an
object X with morphisms

Fi→ X, i ∈ I

such that for each f : i→ i′, the diagram below commutes:

Fi

��

// Fi′

}}{{{{{{{{

X

and such that X is universal among such diagrams.
To give such a diagram, however, is equivalent to giving a collection of maps

Fi→ X

that satisfy some conditions. So X should be thought of as a quotient of the coproduct
tiFi. Let us consider the coproduct ti∈I,fFi, where f ranges over all morphisms in the
category I that start from i. We construct two maps

tfFi⇒ tfFi,

whose coequalizer will be that of F . The first map is the identity. The second map sends
a factor N
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3.5 Limits

As in the example with pull-backs and push-outs and products and coproducts, one can
define a limit by using the exact same universal property above just with all the arrows
reversed.

Example 3.28 The product is an example of a limit where the indexing category is a
small category I with no morphisms other than the identity. This example shows the
power of universal constructions; by looking at colimits and limits, a whole variety of
seemingly unrelated mathematical constructions are shown to be in the same spirit.

3.6 Filtered colimits

Filtered colimits are colimits over special indexing categories I which look like totally
ordered sets. These have several convenient properties as compared to general colimits.
For instance, in the category of modules over a ring (to be studied in Chapter 1), we shall
see that filtered colimits actually preserve injections and surjections. In fact, they are
exact. This is not true in more general categories which are similarly structured.

Definition 3.29 An indexing category is filtered if the following hold:

1. Given i0, i1 ∈ I, there is a third object i ∈ I such that both i0, i1 map into i. So
there is a diagram

i0

��=======

i

i1

@@�������

.

2. Given any two maps i0 ⇒ i1, there exists i and i1 → i such that the two maps i0 ⇒ i
are equal: intuitively, any two ways of pushing an object into another can be made
into the same eventually.

Example 3.30 If I is the category

∗ → ∗ → ∗ → . . . ,

i.e. the category generated by the poset Z≥0, then that is filtered.

Example 3.31 If G is a torsion-free abelian group, the category I of finitely generated
subgroups of G and inclusion maps is filtered. We don’t actually need the lack of torsion.

Definition 3.32 Colimits over a filtered category are called filtered colimits.

Example 3.33 Any torsion-free abelian group is the filtered colimit of its finitely gener-
ated subgroups, which are free abelian groups.

This gives a simple approach for showing that a torsion-free abelian group is flat.

Proposition 3.34 If I is filtered3 and C = Sets,Abgrp,Grps, etc., and F : I → C is

3Some people say filtering.
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a functor, then colimIF exists and is given by the disjoint union of Fi, i ∈ I modulo the
relation x ∈ Fi is equivalent to x′ ∈ Fi′ if x maps to x′ under Fi → Fi′. This is already
an equivalence relation.

The fact that the relation given above is transitive uses the filtering of the indexing
set. Otherwise, we would need to use the relation generated by it.

Example 3.35 Take Q. This is the filtered colimit of the free submodules Z(1/n).
Alternatively, choose a sequence of numbers m1,m2, . . . , such that for all p, n, we have

pn | mi for i� 0. Then we have a sequence of maps

Z m1→ Z m2→ Z→ . . . .

The colimit of this is Q. There is a quick way of seeing this, which is left to the reader.

When we have a functor F : I → Sets,Grps,Modules taking values in a “nice”
category (e.g. the category of sets, modules, etc.), one can construct the colimit by taking
the union of the Fi, i ∈ I and quotienting by the equivalence relation x ∈ Fi ∼ x′ ∈ Fi′ if
f : i→ i′ sends x into x′. This is already an equivalence relation, as one can check.

Another way of saying this is that we have the disjoint union of the Fi modulo the
relation that a ∈ Fi and b ∈ Fi′ are equivalent if and only if there is a later i′′ with maps
i→ i′′, i′ → i′′ such that a, b both map to the same thing in Fi′′ .

One of the key properties of filtered colimits is that, in “nice” categories they commute
with finite limits.

Proposition 3.36 In the category of sets, filtered colimits and finite limits commute with
each other.

The reason this result is so important is that, as we shall see, it will imply that in
categories such as the category of R-modules, filtered colimits preserve exactness.

Proof. Let us show that filtered colimits commute with (finite) products in the category of
sets. The case of an equalizer is similar, and finite limits can be generated from products
and equalizers.

So let I be a filtered category, and {Ai}i∈I , {Bi}i∈I be functors from I → Sets. We
want to show that

lim−→
I

(Ai ×Bi) = lim−→
I

Ai × lim−→
I

Bi.

To do this, note first that there is a map in the direction → because of the natural maps
lim−→I

(Ai × Bi) → lim−→I
Ai and lim−→I

(Ai × Bi) → lim−→I
Bi. We want to show that this is an

isomorphism.
Now we can write the left side as the disjoint union

⊔
I(Ai×Bi) modulo the equivalence

relation that (ai, bi) is related to (aj , bj) if there exist morphisms i → k, j → k sending
(ai, bi), (aj , bj) to the same object in Ak × Bk. For the left side, we have to work with
pairs: that is, an element of lim−→I

Ai × lim−→I
Bi consists of a pair (ai1 , bi2) with two pairs

(ai1 , bi2), (aj1 , bj2) equivalent if there exist morphisms i1, j1 → k1 and i2, j2 → k2 such that
both have the same image in Ak1 × Ak2 . It is easy to see that these amount to the same
thing, because of the filtering condition: we can always modify an element of Ai × Bj to
some Ak ×Bk for k receiving maps from i, j. N
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Exercise 0.8 Let A be an abelian group, e : A → A an idempotent operator, i.e. one
such that e2 = e. Show that eA can be obtained as the filtered colimit of

A
e→ A

e→ A . . . .

3.7 The initial object theorem

We now prove a fairly nontrivial result, due to Freyd. This gives a sufficient condition
for the existence of initial objects. We shall use it in proving the adjoint functor theorem
below.

Let C be a category. Then we recall that A ∈ C if for each X ∈ C, there is a unique
A → X. Let us consider the weaker condition that for each X ∈ C, there exists a map
A→ X.

Definition 3.37 Suppose C has equalizers. If A ∈ C is such that HomC(A,X) 6= ∅ for
each X ∈ C, then X is called weakly initial.

We now want to get an initial object from a weakly initial object. To do this, note first
that if A is weakly initial and B is any object with a morphism B → A, then B is weakly
initial too. So we are going to take our initial object to be a very small subobject of A.
It is going to be so small as to guarantee the uniqueness condition of an initial object. To
make it small, we equalize all endomorphisms.

Proposition 3.38 If A is a weakly initial object in C, then the equalizer of all endomor-
phisms A→ A is initial for C.

Proof. Let A′ be this equalizer; it is endowed with a morphism A′ → A. Then let us recall
what this means. For any two endomorphisms A ⇒ A, the two pull-backs A′ ⇒ A are
equal. Moreover, if B → A is a morphism that has this property, then B factors uniquely
through A′.

Now A′ → A is a morphism, so by the remarks above, A′ is weakly initial: to each
X ∈ C, there exists a morphism A′ → X. However, we need to show that it is unique.

So suppose given two maps f, g : A′ ⇒ X. We are going to show that they are equal.
If not, consider their equalizer O. Then we have a morphism O → A′ such that the post-
compositions with f, g are equal. But by weak initialness, there is a map A→ O; thus we
get a composite

A→ O → A′.

We claim that this is a section of the embedding A′ → A. This will prove the result.
Indeed, we will have constructed a section A → A′, and since it factors through O, the
two maps

A→ O → A′ ⇒ X

are equal. Thus, composing each of these with the inclusion A′ → A shows that f, g were
equal in the first place.

Thus we are reduced to proving:
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Lemma 3.39 Let A be an object of a category C. Let A′ be the equalizer of all endomor-
phisms of A. Then any morphism A→ A′ is a section of the inclusion A′ → A.

Proof. Consider the canonical inclusion i : A′ → A. We are given some map s : A → A′;
we must show that si = 1A′ . Indeed, consider the composition

A′
i→ A

s→ A′
i→ A.

Now i equalizes endomorphisms of A; in particular, this composition is the same as

A′
i→ A

id→ A; N

that is, it equals i. So the map si : A′ → A has the property that isi = i as maps A′ → A.
But i being a monomorphism, it follows that si = 1A′ . N

Theorem 3.40 (Freyd) Let C be a category admitting all small limits.4 Then C has an
initial object if and only if the following solution set condition holds: there is a set
{Xi, i ∈ I} of objects in C such that any X ∈ C can be mapped into by one of these.

The idea is that the family {Xi} is somehow weakly universal together.

Proof. If C has an initial object, we may just consider that as the family {Xi}: we can
hom out (uniquely!) from a universal object into anything, or in other words a universal
object is weakly universal.

Suppose we have a “weakly universal family” {Xi}. Then the product
∏
Xi is weakly

universal. Indeed, if X ∈ C, choose some i′ and a morphism Xi′ → X by the hypothesis.
Then this map composed with the projection from the product gives a map

∏
Xi → Xi′ →

X. Proposition 3.38 now implies that C has an initial object. N

3.8 Completeness and cocompleteness

Definition 3.41 A category C is said to be complete if for every functor F : I → C
where I is a small category, the limit limF exists (i.e. C has all small limits). If all
colimits exist, then C is said to be cocomplete.

If a category is complete, various nice properties hold.

Proposition 3.42 If C is a complete category, the following conditions are true:

1. all (finite) products exist

2. all pull-backs exist

3. there is a terminal object

4We shall later call such a category complete.
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Proof. The proof of the first two properties is trivial since they can all be expressed as
limits; for the proof of the existence of a terminal object, consider the empty diagram
F : ∅ → C. Then the terminal object is just limF . N

Of course, if one dualizes everything we get a theorem about cocomplete categories
which is proved in essentially the same manner. More is true however; it turns out that
finite (co)completeness are equivalent to the properties above if one requires the finiteness
condition for the existence of (co)products.

3.9 Continuous and cocontinuous functors

3.10 Monomorphisms and epimorphisms

We now wish to characterize monomorphisms and epimorphisms in a purely categorical
setting. In categories where there is an underlying set the notions of injectivity and
surjectivity makes sense but in category theory, one does not in a sense have “access” to
the internal structure of objects. In this light, we make the following definition.

Definition 3.43 A morphism f : X → Y is a monomorphism if for any two morphisms
g1 : X ′ → X and g2 : X ′ → X, we have that fg1 = fg2 implies g1 = g2. A morphism
f : X → Y is an epimorphism if for any two maps g1 : Y → Y ′ and g2 : Y → Y ′, we
have that g1f = g2f implies g1 = g2.

So f : X → Y is a monomorphism if whenever X ′ is another object in C, the map

HomC(X
′, X)→ HomC(X

′, Y )

is an injection (of sets). Epimorphisms in a category are defined similarly; note that
neither definition makes any reference to surjections of sets.

The reader can easily check:

Proposition 3.44 The composite of two monomorphisms is a monomorphism, as is the
composite of two epimorphisms.

Exercise 0.9 Prove Proposition 3.44.

Exercise 0.10 The notion of “monomorphism” can be detected using only the notions
of fibered product and isomorphism. To see this, suppose i : X → Y is a monomorphism.
Show that the diagonal

X → X ×Y X

is an isomorphism. (The diagonal map is such that the two projections to X both give
the identity.) Conversely, show that if i : X → Y is any morphism such that the above
diagonal map is an isomorphism, then i is a monomorphism.

Deduce the following consequence: if F : C → D is a functor that commutes with
fibered products, then F takes monomorphisms to monomorphisms.
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§4 Yoneda’s lemma

TO BE ADDED: this section is barely fleshed out
Let C be a category. In general, we have said that there is no way to study an object in

a category other than by considering maps into and out of it. We will see that essentially
everything about X ∈ C can be recovered from these hom-sets. We will thus get an
embedding of C into a category of functors.

4.1 The functors hX

We now use the structure of a category to construct hom functors.

Definition 4.1 Let X ∈ C. We define the contravariant functor hX : C → Sets via

hX(Y ) = HomC(Y,X).

This is, indeed, a functor. If g : Y → Y ′, then precomposition gives a map of sets

hX(Y ′)→ hX(Y ), f 7→ f ◦ g

which satisfies all the usual identities.
As a functor, hX encodes all the information about how one can map into X. It turns

out that one can basically recover X from hX , though.

4.2 The Yoneda lemma

Let X
f→ X ′ be a morphism in C. Then for each Y ∈ C, composition gives a map

HomC(Y,X)→ HomC(Y,X
′).

It is easy to see that this induces a natural transformation

hX → hX′ .

Thus we get a map of sets

HomC(X,X
′)→ Hom(hX , hX′),

where hX , hX′ lie in the category of contravariant functors C → Sets. In other words, we
have defined a covariant functor

C → Fun(Cop,Sets).

This is called the Yoneda embedding. The next result states that the embedding is fully
faithful.

Theorem 4.2 (Yoneda’s lemma) If X,X ′ ∈ C, then the map HomC(X,X
′)→ Hom(hX , hX′)

is a bijection. That is, every natural transformation hX → hX′ arises in one and only one
way from a morphism X → X ′.

Theorem 4.3 (Strong Yoneda lemma)
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4.3 Representable functors

We use the same notation of the preceding section: for a category C and X ∈ C, we let
hX be the contravariant functor C → Sets given by Y 7→ HomC(Y,X).

Definition 4.4 A contravariant functor F : C → Sets is representable if it is naturally
isomorphic to some hX .

The point of a representable functor is that it can be realized as maps into a specific
object. In fact, let us look at a specific feature of the functor hX . Consider the object
α ∈ hX(X) that corresponds to the identity. Then any morphism

Y → X

factors uniquely as
Y → X

α→ X

(this is completely trivial!) so that any element of hX(Y ) is a f∗(α) for precisely one
f : Y → X.

Definition 4.5 Let F : C → Sets be a contravariant functor. A universal object for C
is a pair (X,α) where X ∈ C, α ∈ F (X) such that the following condition holds: if Y is
any object and β ∈ F (Y ), then there is a unique f : Y → X such that α pulls back to β
under f .

In other words, β = f∗(α).

So a functor has a universal object if and only if it is representable. Indeed, we just say
that the identity X → X is universal for hX , and conversely if F has a universal object
(X,α), then F is naturally isomorphic to hX (the isomorphism hX ' F being given by
pulling back α appropriately).

The article [Vis08] by Vistoli contains a good introduction to and several examples of
this theory. Here is one of them:

Example 4.6 Consider the contravariant functor F : Sets → Sets that sends any set
S to its power set 2S (i.e. the collection of subsets). This is a contravariant functor: if
f : S → T , there is a morphism

2T → 2S , T ′ 7→ f−1(T ′).

This is a representable functor. Indeed, the universal object can be taken as the pair

({0, 1} , {1}).

To understand this, note that a subset S; of S determines its characteristic function
χS′ : S → {0, 1} that takes the value 1 on S and 0 elsewhere. If we consider χS′ as a
morphism S → {0, 1}, we see that

S′ = χ−1
S′ ({1}).

Moreover, the set of subsets is in natural bijection with the set of characteristic functions,
which in turn are precisely all the maps S → {0, 1}. From this the assertion is clear.
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We shall meet some elementary criteria for the representability of contravariant func-
tors in the next subsection. For now, we note5 that in algebraic topology, one often works
with the homotopy category of pointed CW complexes (where morphisms are pointed con-
tinuous maps modulo homotopy), any contravariant functor that satisfies two relatively
mild conditions (a Mayer-Vietoris condition and a condition on coproducts), is automat-
ically representable by a theorem of Brown. In particular, this implies that the singular
cohomology functors Hn(−, G) (with coefficients in some group G) are representable; the
representing objects are the so-called Eilenberg-MacLane spaces K(G,n). See [Hat02].

4.4 Limits as representable functors

TO BE ADDED:

4.5 Criteria for representability

Let C be a category. We saw in the previous subsection that a representable functor must
send colimits to limits. We shall now see that there is a converse under certain set-theoretic
conditions. For simplicity, we start by stating the result for corepresentable functors.

Theorem 4.7 ((Co)representability theorem) Let C be a complete category, and let
F : C → Sets be a covariant functor. Suppose F preserves limits and satisfies the solution
set condition: there is a set of objects {Yα} such that, for any X ∈ C and x ∈ F (X), there
is a morphism

Yα → X

carrying some element of F (Yα) onto x.

Then F is corepresentable.

Proof. To F , we associate the following category D. An object of D is a pair (x,X) where
x ∈ F (X) and X ∈ C. A morphism between (x,X) and (y, Y ) is a map

f : X → Y

that sends x into y (via F (f) : F (X)→ F (Y )). It is easy to see that F is corepresentable
if and only if there is an initla object in this category; this initial object is the “universal
object.”

We shall apply the initial object theorem, Theorem 3.40. Let us first verify that D is
complete; this follows because C is and F preserves limits. So, for instance, the product of
(x,X) and (y, Y ) is ((x, y), X×Y ); here (x, y) is the element of F (X)×F (Y ) = F (X×Y ).
The solution set condition states that there is a weakly initial family of objects, and the
initial object theorem now implies that there is an initial object. N

5The reader unfamiliar with algebraic topology may omit these remarks.
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§5 Adjoint functors

According to MacLane, “Adjoint functors arise everywhere.” We shall see several examples
of adjoint functors in this book (such as Hom and the tensor product). The fact that a
functor has an adjoint often immediately implies useful properties about it (for instance,
that it commutes with either limits or colimits); this will lead, for instance, to conceptual
arguments behind the right-exactness of the tensor product later on.

5.1 Definition

Suppose C,D are categories, and let F : C → D, G : D → C be (covariant) functors.

Definition 5.1 F,G are adjoint functors if there is a natural isomorphism

HomD(Fc, d) ' HomC(c,Gd)

whenever c ∈ C, d ∈ D. F is said to be the right adjoint, and G is the left adjoint.

Here “natural” means that the two quantities are supposed to be considered as functors
Cop ×D → Set.

Example 5.2 There is a simple pair of adjoint functors between Set and AbGrp. Here
F sends a set A to the free abelian group (see ?? for a discussion of free modules over
arbitrary rings) Z[A], while G is the “forgetful” functor that sends an abelian group to its
underlying set. Then F and G are adjoints. That is, to give a group-homomorphism

Z[A]→ G

for some abelian group G is the same as giving a map of sets

A→ G.

This is precisely the defining property of the free abelian group.

Example 5.3 In fact, most “free” constructions are just left adjoints. For instance, recall
the universal property of the free group F (S) on a set S (see [Lan02]): to give a group-
homomorphism F (S)→ G for G any group is the same as choosing an image in G of each
s ∈ S. That is,

HomGrp(F (S), G) = HomSets(S,G).

This states that the free functor S 7→ F (S) is left adjoint to the forgetful functor from
Grp to Sets.

Example 5.4 The abelianization functor G 7→ Gab = G/[G,G] from Grp → AbGrp is
left adjoint to the inclusion AbGrp → Grp. That is, if G is a group and A an abelian
group, there is a natural correspondence between homomorphisms G→ A and Gab → A.
Note that AbGrp is a subcategory of Grp such that the inclusion admits a left adjoint;
in this situation, the subcategory is called reflective.
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5.2 Adjunctions

The fact that two functors are adjoint is encoded by a simple set of algebraic data between
them. To see this, suppose F : C → D, G : D → C are adjoint functors. For any object
c ∈ C, we know that

HomD(Fc, Fc) ' HomC(c,GFc),

so that the identity morphism Fc → Fc (which is natural in c!) corresponds to a map
c→ GFc that is natural in c, or equivalently a natural transformation

η : 1C → GF.

Similarly, we get a natural transformation

ε : FG→ 1D

where the map FGd → d corresponds to the identity Gd → Gd under the adjoint corre-
spondence. Here η is called the unit, and ε the counit.

These natural transformations η, ε are not simply arbitrary. We are, in fact, going to
show that they determine the isomorphism determine the isomorphism HomD(Fc, d) '
HomC(c,Gd). This will be a little bit of diagram-chasing.

We know that the isomorphism HomD(Fc, d) ' HomC(c,Gd) is natural. In fact, this
is the key point. Let φ : Fc → d be any map. Then there is a morphism (c, Fc) → (c, d)
in the product category Cop × D; by naturality of the adjoint isomorphism, we get a
commutative square of sets

HomD(Fc, Fc)
adj //

φ∗
��

HomC(c,GFc)

G(φ)∗
��

HomD(Fc, d)
adj // HomC(c,Gd)

Here the mark adj indicates that the adjoint isomorphism is used. If we start with the
identity 1Fc and go down and right, we get the map c → Gd that corresponds under the
adjoint correspondence to Fc→ d. However, if we go right and down, we get the natural
unit map η(c) : c→ GFc followed by G(φ).

Thus, we have a recipe for constructing a map c→ Gd given φ : Fc→ d:

Proposition 5.5 (The unit and counit determines everything) Let (F,G) be a pair
of adjoint functors with unit and counit transformations η, ε.

Then given φ : Fc → d, the adjoint map ψ : c → Gd can be constructed simply as
follows. Namely, we start with the unit η(c) : c→ GFc and take

ψ = G(φ) ◦ η(c) : c→ Gd (4)

(here G(φ) : GFc→ Fd).
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In the same way, if we are given ψ : c→ Gd and want to construct a map φ : Fc→ d,
we construct

ε(d) ◦ F (ψ) : Fc→ FGd→ d. (5)

In particular, we have seen that the unit and counit morphisms determine the adjoint
isomorphisms.

Since the adjoint isomorphisms HomD(Fc, d) → HomC(c,Gd) and HomC(c,Gd) →
HomD(Fc, d) are (by definition) inverse to each other, we can determine conditions on the
units and counits.

For instance, the natural transformation F◦η gives a natural transformation F◦η : F →
FGF , while the natural transformation ε ◦ F gives a natural transformation FGF → F .
(These are slightly different forms of composition!)

Lemma 5.6 The composite natural transformation F → F given by (ε ◦ F ) ◦ (F ◦ η) is
the identity. Similarly, the composite natural transformation G → GFG → G given by
(G ◦ ε) ◦ (η ◦G) is the identity.

Proof. We prove the first assertion; the second is similar. Given φ : Fc → d, we know
that we must get back to φ applying the two constructions above. The first step (going
to a map ψ : c → Gd) is by (4) ψ = G(φ) ◦ η(c); the second step sends ψ to ε(d) ◦ F (ψ),
by (5). It follows that

φ = ε(d) ◦ F (G(φ) ◦ η(c)) = ε(d) ◦ F (G(φ)) ◦ F (η(c)).

Now suppose we take d = Fc and φ : Fc→ Fc to be the identity. We find that F (G(φ))
is the identity FGFc→ FGFc, and consequently we find

idF (c) = ε(Fc) ◦ F (η(c)).

This proves the claim. N

Definition 5.7 Let F : C → D, G : D → C be covariant functors. An adjunction is the
data of two natural transformations

η : 1→ GF, ε : FG→ 1,

called the unit and counit, respectively, such that the composites (ε◦F )◦(F ◦ε) : F → F
and (G◦ ε)◦ (η ◦G) are the identity (that is, the identity natural transformations of F,G).

We have seen that a pair of adjoint functors gives rise to an adjunction. Conversely,
an adjunction between F,G ensures that F,G are adjoint, as one may check: one uses the
same formulas (4) and (5) to define the natural isomorphism.

For any set S, let F (S) be the free group on S. So, for instance, the fact that there is
a natural map of sets S → F (S), for any set S, and a natural map of groups F (G) → G
for any group G, determines the adjunction between the free group functor from Sets to
Grp, and the forgetful functor Grp→ Sets.

As another example, we give a criterion for a functor in an adjunction to be fully
faithful.
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Proposition 5.8 Let F,G be a pair of adjoint functors between categories C,D. Then G
is fully faithful if and only if the unit maps η : 1→ GF are isomorphisms.

Proof. We use the recipe (4). Namely, we have a map HomD(Fc, d) → HomC(c,Gd)
given by φ 7→ G(φ) ◦ η(c). This is an isomorphism, since we have an adjunction. As a
result, composition with η is an isomorphism of hom-sets if and only if φ 7→ G(φ) is an
isomorphism. From this the result is easy to deduce. N

Example 5.9 For instance, recall that the inclusion functor from AbGrp to Grp is fully
faithful (clear). This is a right adjoint to the abelianization functor G 7→ Gab. As a result,
we would expect the unit map of the adjunction to be an isomorphism, by Proposition 5.8.

The unit map sends an abelian group to its abelianization: this is obviously an iso-
morphism, as abelianizing an abelian group does nothing.

5.3 Adjoints and (co)limits

One very pleasant property of functors that are left (resp. right) adjoints is that they
preserve all colimits (resp. limits).

Proposition 5.10 A left adjoint F : C → D preserves colimits. A right adjoint G : D → C
preserves limits.

As an example, the free functor from Sets to AbGrp is a left adjoint, so it preserves
colimits. For instance, it preserves coproducts. This corresponds to the fact that if A1, A2

are sets, then Z[A1 tA2] is naturally isomorphic to Z[A1]⊕ Z[A2].

Proof. Indeed, this is mostly formal. Let F : C → D be a left adjoint functor, with right
adjoint G. Let f : I → C be a “diagram” where I is a small category. Suppose colimIf
exists as an object of C. The result states that colimIF ◦ f exists as an object of D
and can be computed as F (colimIf). To see this, we need to show that mapping out
of F (colimIf) is what we want—that is, mapping out of F (colimIf) into some d ∈ D—
amounts to giving compatible F (f(i)) → d for each i ∈ I. In other words, we need to
show that HomD(F (colimIf), d) = limI HomD(F (f(i)), d); this is precisely the defining
property of the colimit.

But we have

HomD(F (colimIf), d) = HomC(colimIf,Gd) = lim
I

HomC(fi,Gd) = lim
I

HomD(F (fi), d),

by using adjointness twice. This verifies the claim we wanted. N

The idea is that one can easily map out of the value of a left adjoint functor, just as
one can map out of a colimit.
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Chapter 1

Foundations

The present foundational chapter will introduce the notion of a ring and, next, that of
a module over a ring. These notions will be the focus of the present book. Most of the
chapter will be definitions.

We begin with a few historical remarks. Fermat’s last theorem states that the equation

xn + yn = zn

has no nontrivial solutions in the integers, for n ≥ 3. We could try to prove this by
factoring the expression on the left hand side. We can write

(x+ y)(x+ ζy)(x+ ζ2y) . . . (x+ ζn−1y) = zn,

where ζ is a primitive nth root of unity. Unfortunately, the factors lie in Z[ζ], not the
integers Z. Though Z[ζ] is still a ring where we have notions of primes and factorization,
just as in Z, we will see that prime factorization is not always unique in Z[ζ]. (If it were
always unique, then we could at least one important case of Fermat’s last theorem rather
easily; see the introductory chapter of [Was97] for an argument.)

For instance, consider the ring Z[
√
−5] of complex numbers of the form a + b

√
−5,

where a, b ∈ Z. Then we have the two factorizations

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5).

Both of these are factorizations of 6 into irreducible factors, but they are fundamentally
different.

In part, commutative algebra grew out of the need to understand this failure of unique
factorization more generally. We shall have more to say on factorization in the future, but
here we just focus on the formalism. The basic definition for studying this problem is that
of a ring, which we now introduce.

§1 Commutative rings and their ideals

1.1 Rings

We shall mostly just work with commutative rings in this book, and consequently will just
say “ring” for one such.
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Definition 1.1 A commutative ring is a set R with an addition map + : R × R → R
and a multiplication map × : R×R→ R that satisfy the following conditions.

1. R is a group under addition.

2. The multiplication map is commutative and distributes over addition. This means
that x× (y + z) = x× y + x× z and x× y = y × x.

3. There is a unit (or identity element), denoted by 1, such that 1 × x = x for all
x ∈ R.

We shall typically write xy for x× y.
Given a ring, a subring is a subset that contains the identity element and is closed

under addition and multiplication.

A noncommutative (i.e. not necessarily commutative) ring is one satisfying the above
conditions, except possibly for the commutativity requirement xy = yx. For instance,
there is a noncommutative ring of 2-by-2 matrices over C. We shall not work too much
with noncommutative rings in the sequel, though many of the basic results (e.g. on
modules) do generalize.

Example 1.2 Z is the simplest example of a ring.

Exercise 1.1 Let R be a commutative ring. Show that the set of polynomials in one
variable over R is a commutative ring R[x]. Give a rigorous definition of this.

Example 1.3 For any ring R, we can consider the polynomial ring R[x1, . . . , xn] which
consists of the polynomials in n variables with coefficients in R. This can be defined
inductively as (R[x1, . . . , xn−1])[xn], where the procedure of adjoining a single variable
comes from the previous ?? 1.1.

We shall see a more general form of this procedure in Example 1.9.

Exercise 1.2 If R is a commutative ring, recall that an invertible element (or, some-
what confusingly, a unit) u ∈ R is an element such that there exists v ∈ R with uv = 1.
Prove that v is necessarily unique.

Exercise 1.3 Let X be a set and R a ring. The set RX of functions f : X → R is a ring.

1.2 The category of rings

The class of rings forms a category. Its morphisms are called ring homomorphisms.

Definition 1.4 A ring homomorphism between two rings R and S as a map f : R→ S
that respects addition and multiplication. That is,

1. f(1R) = 1S , where 1R and 1S are the respective identity elements.

2. f(a+ b) = f(a) + f(b) for a, b ∈ R.
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3. f(ab) = f(a)f(b) for a, b ∈ R.

There is thus a category Ring whose objects are commutative rings and whose morphisms
are ring-homomorphisms.

The philosophy of Grothendieck, as expounded in his EGA [GD], is that one should
always do things in a relative context. This means that instead of working with objects,
one should work with morphisms of objects. Motivated by this, we introduce:

Definition 1.5 Given a ring A, an A-algebra is a ring R together with a morphism
of rings (a structure morphism) A → R. There is a category of A-algebras, where a
morphism between A-algebras is a ring-homomorphism that is required to commute with
the structure morphisms.

So if R is an A-algebra, then R is not only a ring, but there is a way to multiply
elements of R by elements of A (namely, to multiply a ∈ A with r ∈ R, take the image of
a in R, and multiply that by r). For instance, any ring is an algebra over any subring.

We can think of an A-algebra as an arrow A → R, and a morphism from A → R to
A→ S as a commutative diagram

R // S

A

__@@@@@@@

??�������

This is a special case of the undercategory construction.
If B is an A-algebra and C a B-algebra, then C is an A-algebra in a natural way.

Namely, by assumption we are given morphisms of rings A→ B and B → C, so composing
them gives the structure morphism A→ C of C as an A-algebra.

Example 1.6 Every ring is a Z-algebra in a natural and unique way. There is a unique
map (of rings) Z→ R for any ring R because a ring-homomorphism is required to preserve
the identity. In fact, Z is the initial object in the category of rings: this is a restatement
of the preceding discussion.

Example 1.7 If R is a ring, the polynomial ring R[x] is an R-algebra in a natural manner.
Each element of R is naturally viewed as a “constant polynomial.”

Example 1.8 C is an R-algebra.

Here is an example that generalizes the case of the polynomial ring.

Example 1.9 If R is a ring and G a commutative monoid,1 then the set R[G] of formal
finite sums

∑
rigi with ri ∈ R, gi ∈ G is a commutative ring, called the moniod ring or

group ring when G is a group. Alternatively, we can think of elements of R[G] as infinite

1That is, there is a commutative multiplication on G with an identity element, but not necessarily with
inverses.
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sums
∑

g∈G rgg with R-coefficients, such that almost all the rg are zero. We can define
the multiplication law such that

(∑
rgg
)(∑

sgg
)

=
∑
h

∑
gg′=h

rgsg′

h.

This process is called convolution. We can think of the multiplication law as extended the
group multiplication law (because the product of the ring-elements corresponding to g, g′

is the ring element corresponding to gg′ ∈ G).
The case of G = Z≥0 is the polynomial ring. In some cases, we can extend this notion

to formal infinite sums, as in the case of the formal power series ring; see Definition 2.5
below.

Exercise 1.4 The ring Z is an initial object in the category of rings. That is, for any
ring R, there is a unique morphism of rings Z→ R. We discussed this briefly earlier; show
more generally that A is the initial object in the category of A-algebras for any ring A.

Exercise 1.5 The ring where 0 = 1 (the zero ring) is a final object in the category of
rings. That is, every ring admits a unique map to the zero ring.

Exercise 1.6 Let C be a category and F : C → Sets a covariant functor. Recall that
F is said to be corepresentable if F is naturally isomorphic to X → HomC(U,X) for
some object U ∈ C. For instance, the functor sending everything to a one-point set is
corepresentable if and only if C admits an initial object.

Prove that the functor Rings → Sets assigning to each ring its underlying set is
representable. (Hint: use a suitable polynomial ring.)

The category of rings is both complete and cocomplete. To show this in full will take
more work, but we can here describe what certain cases (including all limits) look like.
As we saw in ?? 1.6, the forgetful functor Rings → Sets is corepresentable. Thus, if we
want to look for limits in the category of rings, here is the approach we should follow: we
should take the limit first of the underlying sets, and then place a ring structure on it in
some natural way.

Example 1.10 (Products) The product of two rings R1, R2 is the set-theoretic prod-
uct R1 × R2 with the multiplication law (r1, r2)(s1, s2) = (r1s1, r2s2). It is easy to see
that this is a product in the category of rings. More generally, we can easily define the
product of any collection of rings.

To describe the coproduct is more difficult: this will be given by the tensor product to
be developed in the sequel.

Example 1.11 (Equalizers) Let f, g : R ⇒ S be two ring-homomorphisms. Then we
can construct the equalizer of f, g as the subring of R consisting of elements x ∈ R such
that f(x) = g(x). This is clearly a subring, and one sees quickly that it is the equalizer in
the category of rings.
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As a result, we find:

Proposition 1.12 Rings is complete.

As we said, we will not yet show that Rings is cocomplete. But we can describe
filtered colimits. In fact, filtered colimits will be constructed just as in the set-theoretic
fashion. That is, the forgetful functor Rings → Sets commutes with filtered colimits
(though not with general colimits).

Example 1.13 (Filtered colimits) Let I be a filtering category, F : I → Rings a
functor. We can construct lim−→I

F as follows. An object is an element (x, i) for i ∈ I and
x ∈ F (i), modulo equivalence; we say that (x, i) and (y, j) are equivalent if there is a k ∈ I
with maps i→ k, j → k sending x, y to the same thing in the ring F (k).

To multiply (x, i) and (y, j), we find some k ∈ I receiving maps from i, j, and replace
x, y with elements of F (k). Then we multiply those two in F (k). One easily sees that this
is a well-defined multiplication law that induces a ring structure, and that what we have
described is in fact the filtered colimit.

1.3 Ideals

An ideal in a ring is analogous to a normal subgroup of a group. As we shall see, one may
quotient by ideals just as one quotients by normal subgroups. The idea is that one wishes
to have a suitable equivalence relation on a ring R such that the relevant maps (addition
and multiplication) factor through this equivalence relation. It is easy to check that any
such relation arises via an ideal.

Definition 1.14 Let R be a ring. An ideal in R is a subset I ⊂ R that satisfies the
following.

1. 0 ∈ I.

2. If x, y ∈ I, then x+ y ∈ I.

3. If x ∈ I and y ∈ R, then xy ∈ I.

There is a simple way of obtaining ideals, which we now describe. Given elements
x1, . . . , xn ∈ R, we denote by (x1, . . . , xn) ⊂ R the subset of linear combinations

∑
rixi,

where ri ∈ R. This is clearly an ideal, and in fact the smallest one containing all xi. It
is called the ideal generated by x1, . . . , xn. A principal ideal (x) is one generated by a
single x ∈ R.

Example 1.15 Ideals generalize the notion of divisibility. Note that in Z, the set of
elements divisible by n ∈ Z forms the ideal I = nZ = (n). We shall see that every ideal
in Z is of this form: Z is a principal ideal domain.

Indeed, one can think of an ideal as axiomatizing the notions that “divisibility” ought
to satisfy. Clearly, if two elements are divisible by something, then their sum and product
should also be divisible by it. More generally, if an element is divisible by something, then
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the product of that element with anything else should also be divisible. In general, we
will extend (in the chapter on Dedekind domains) much of the ordinary arithmetic with
Z to arithmetic with ideals (e.g. unique factorization).

Example 1.16 We saw in ?? 1.3 that if X is a set and R a ring, then the set RX of
functions X → R is naturally a ring. If Y ⊂ X is a subset, then the subset of functions
vanishing on Y is an ideal.

Exercise 1.7 Show that the ideal (2, 1 +
√
−5) ⊂ Z[

√
−5] is not principal.

1.4 Operations on ideals

There are a number of simple operations that one may do with ideals, which we now
describe.

Definition 1.17 The sum I + J of two ideals I, J ⊂ R is defined as the set of sums

{x+ y : x ∈ I, y ∈ J} .

Definition 1.18 The product IJ of two ideals I, J ⊂ R is defined as the smallest ideal
containing the products xy for all x ∈ I, y ∈ J . This is just the set{∑

xiyi : xi ∈ I, yi ∈ J
}
.

We leave the basic verification of properties as an exercise:

Exercise 1.8 Given ideals I, J ⊂ R, verify the following.

1. I + J is the smallest ideal containing I and J .

2. IJ is contained in I and J .

3. I ∩ J is an ideal.

Example 1.19 In Z, we have the following for any m,n.

1. (m) + (n) = (gcd{m,n}),

2. (m)(n) = (mn),

3. (m) ∩ (n) = (lcm{m,n}).

Proposition 1.20 For ideals I, J,K ⊂ R, we have the following.

1. Distributivity: I(J +K) = IJ + IK.

2. I ∩ (J +K) = I ∩ J + I ∩K if I ⊃ J or I ⊃ K.

3. If I + J = R, I ∩ J = IJ .
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Proof. 1 and 2 are clear. For 3, note that (I+J)(I ∩J) = I(I ∩J) +J(I ∩J) ⊂ IJ . Since
IJ ⊂ I ∩ J , the result follows. N

Exercise 1.9 There is a contravariant functor Rings→ Sets that sends each ring to its
set of ideals. Given a map f : R→ S and an ideal I ⊂ S, we define an ideal f−1(I) ⊂ R;
this defines the functoriality. This functor is not representable, as it does not send the
initial object in Rings to the one-element set. We will later use a subfunctor of this
functor, the Spec construction, when we replace ideals with “prime” ideals.

1.5 Quotient rings

We next describe a procedure for producing new rings from old ones. If R is a ring and
I ⊂ R an ideal, then the quotient group R/I is a ring in its own right. If a+ I, b+ I are
two cosets, then the multiplication is (a+ I)(b+ I) = ab+ I. It is easy to check that this
does not depend on the coset representatives a, b. In other words, as mentioned earlier,
the arithmetic operations on R factor through the equivalence relation defined by I.

As one easily checks, this becomes to a multiplication

R/I ×R/I → R/I

which is commutative and associative, and whose identity element is 1 + I. In particular,
R/I is a ring, under multiplication (a+ I)(b+ I) = ab+ I.

Definition 1.21 R/I is called the quotient ring by the ideal I.

The process is analogous to quotienting a group by a normal subgroup: again, the
point is that the equivalence relation induced on the algebraic structure—either the group
or the ring—by the subgroup (or ideal)—is compatible with the algebraic structure, which
thus descends to the quotient.

The reduction map φ : R → R/I is a ring-homomorphism with a universal property.
Namely, for any ring B, there is a map

Hom(R/I,B)→ Hom(R,B)

on the hom-sets by composing with the ring-homomorphism φ; this map is injective and
the image consists of all homomorphisms R→ B which vanish on I. Stated alternatively,
to map out of R/I (into some ring B) is the same thing as mapping out of R while killing
the ideal I ⊂ R.

This is best thought out for oneself, but here is the detailed justification. The reason
is that any map R/I → B pulls back to a map R → R/I → B which annihilates I since
R→ R/I annihilates I. Conversely, if we have a map

f : R→ B

killing I, then we can define R/I → B by sending a + I to f(a); this is uniquely defined
since f annihilates I.
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Exercise 1.10 If R is a commutative ring, an element e ∈ R is said to be idempotent
if e2 = e. Define a covariant functor Rings → Sets sending a ring to its idempotents.
Prove that it is corepresentable. (Answer: the corepresenting object is Z[X]/(X −X2).)

Exercise 1.11 Show that the functor assigning to each ring the set of elements annihi-
lated by 2 is corepresentable.

Exercise 1.12 If I ⊂ J ⊂ R, then J/I is an ideal of R/I, and there is a canonical
isomorphism

(R/I)/(J/I) ' R/J.

1.6 Zerodivisors

Let R be a commutative ring.

Definition 1.22 If r ∈ R, then r is called a zerodivisor if there is s ∈ R, s 6= 0 with
sr = 0. Otherwise r is called a nonzerodivisor.

As an example, we prove a basic result on the zerodivisors in a polynomial ring.

Proposition 1.23 Let A = R[x]. Let f = anx
n + · · · + a0 ∈ A. If there is a non-zero

polynomial g ∈ A such that fg = 0, then there exists r ∈ Rr {0} such that f · r = 0.

So all the coefficients are zerodivisors.

Proof. Choose g to be of minimal degree, with leading coefficient bxd. We may assume
that d > 0. Then f · b 6= 0, lest we contradict minimality of g. We must have aig 6= 0 for
some i. To see this, assume that ai ·g = 0, then aib = 0 for all i and then fb = 0. Now pick
j to be the largest integer such that ajg 6= 0. Then 0 = fg = (a0 + a1x+ · · · ajxj)g, and
looking at the leading coefficient, we get ajb = 0. So deg(ajg) < d. But then f · (ajg) = 0,
contradicting minimality of g. N

Exercise 1.13 The product of two nonzerodivisors is a nonzerodivisor, and the product
of two zerodivisors is a zerodivisor. It is, however, not necessarily true that the sum of
two zerodivisors is a zerodivisor.

§2 Further examples

We now illustrate a few important examples of commutative rings. The section is in large
measure an advertisement for why one might care about commutative algebra; nonetheless,
the reader is encouraged at least to skim this section.

2.1 Rings of holomorphic functions

The following subsection may be omitted without impairing understanding.
There is a fruitful analogy in number theory between the rings Z and C[t], the latter

being the polynomial ring over C in one variable (?? 1.1). Why are they analogous? Both
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of these rings have a theory of unique factorization: that is, factorization into primes
or irreducible polynomials. (In the latter, the irreducible polynomials have degree one.)
Indeed we know:

1. Any nonzero integer factors as a product of primes (possibly times −1).

2. Any nonzero polynomial factors as a product of an element of C∗ = C − {0} and
polynomials of the form t− a, a ∈ C.

There is another way of thinking of C[t] in terms of complex analysis. This is equal to
the ring of holomorphic functions on C which are meromorphic at infinity. Alternatively,
consider the Riemann sphere C∪{∞}; then the ring C[t] consists of meromorphic functions
on the sphere whose poles (if any) are at ∞.

This description admits generalizations. Let X be a Riemann surface. (Example: take
the complex numbers modulo a lattice, i.e. an elliptic curve.) Suppose that x ∈ X. Define
Rx to be the ring of meromorphic functions on X which are allowed poles only at x (so
are everywhere else holomorphic).

Example 2.1 Fix the notations of the previous discussion. Fix y 6= x ∈ X. Let Rx be
the ring of meromorphic functions on the Riemann surface X which are holomorphic on
X−{x}, as before. Then the collection of functions that vanish at y forms an ideal in Rx.

There are lots of other ideals. For instance, fix two points y0, y1 6= x; we look at the
ideal of Rx that vanish at both y0, y1.

For any Riemann surface X, the conclusion of Dedekind’s theorem (??) ap-
plies. In other words, the ring Rx as defined in the example admits unique factorization
of ideals. We shall call such rings Dedekind domains in the future.

Example 2.2 Keep the preceding notation.
Let f ∈ Rx, nonzero. By definition, f may have a pole at x, but no poles elsewhere.

f vanishes at finitely many points y1, . . . , ym. When X was the Riemann sphere, knowing
the zeros of f told us something about f . Indeed, in this case f is just a polynomial, and
we have a nice factorization of f into functions in Rx that vanish only at one point. In
general Riemann surfaces, this is not generally possible. This failure turns out to be very
interesting.

Let X = C/Λ be an elliptic curve (for Λ ⊂ C2 a lattice), and suppose x = 0. Suppose
we are given y1, y2, . . . , ym ∈ X that are nonzero; we ask whether there exists a function
f ∈ Rx having simple zeros at y1, . . . , ym and nowhere else. The answer is interesting, and
turns out to recover the group structure on the lattice.

Proposition 2.3 A function f ∈ Rx with simple zeros only at the {yi} exists if and only
if y1 + y2 + · · ·+ yn = 0 (modulo Λ).

So this problem of finding a function with specified zeros is equivalent to checking that
the specific zeros add up to zero with the group structure.

In any case, there might not be such a nice function, but we have at least an ideal I
of functions that have zeros (not necessarily simple) at y1, . . . , yn. This ideal has unique
factorization into the ideals of functions vanishing at y1, functions vanishing at y2, so on.
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2.2 Ideals and varieties

We saw in the previous subsection that ideals can be thought of as the vanishing of
functions. This, like divisibility, is another interpretation, which is particularly interesting
in algebraic geometry.

Recall the ring C[t] of complex polynomials discussed in the last subsection. More
generally, if R is a ring, we saw in ?? 1.1 that the set R[t] of polynomials with coefficients
in R is a ring. This is a construction that can be iterated to get a polynomial ring in
several variables over R.

Example 2.4 Consider the polynomial ring C[x1, . . . , xn]. Recall that before we thought
of the ring C[t] as a ring of meromorphic functions. Similarly each element of the polyno-
mial ring C[x1, . . . , xn] gives a function Cn → C; we can think of the polynomial ring as
sitting inside the ring of all functions Cn → C.

A question you might ask: What are the ideals in this ring? One way to get an
ideal is to pick a point x = (x1, . . . , xn) ∈ Cn; consider the collection of all functions
f ∈ C[x1, . . . , xn] which vanish on x; by the usual argument, this is an ideal.

There are, of course, other ideals. More generally, if Y ⊂ Cn, consider the collection
of polynomial functions f : Cn → C such that f ≡ 0 on Y . This is easily seen to be an
ideal in the polynomial ring. We thus have a way of taking a subset of Cn and producing
an ideal. Let IY be the ideal corresponding to Y .

This construction is not injective. One can have Y 6= Y ′ but IY = IY ′ . For instance,
if Y is dense in Cn, then IY = (0), because the only way a continuous function on Cn can
vanish on Y is for it to be zero.

There is a much closer connection in the other direction. You might ask whether all
ideals can arise in this way. The quick answer is no—not even when n = 1. The ideal
(x2) ⊂ C[x] cannot be obtained in this way. It is easy to see that the only way we could
get this as IY is for Y = {0}, but IY in this case is just (x), not (x2). What’s going wrong
in this example is that (x2) is not a radical ideal.

Definition 2.5 An ideal I ⊂ R is radical if whenever x2 ∈ I, then x ∈ I.

The ideals IY in the polynomial ring are all radical. This is obvious. You might now
ask whether this is the only obstruction. We now state a theorem that we will prove later.

Theorem 2.6 (Hilbert’s Nullstellensatz) If I ⊂ C[x1, . . . , xn] is a radical ideal, then
I = IY for some Y ⊂ Cn. In fact, the canonical choice of Y is the set of points where all
the functions in Y vanish.2

This will be one of the highlights of the present course. But before we can get to it,
there is much to do.

Exercise 1.14 Assuming the Nullstellensatz, show that any maximal ideal in the poly-
nomial ring C[x1, . . . , xn] is of the form (x1− a1, . . . , xn− an) for a1, . . . , an ∈ C. An ideal
of a ring is called maximal if the only ideal that contains it is the whole ring (and it itself
is not the whole ring).

2Such a subset is called an algebraic variety.
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As a corollary, deduce that if I ⊂ C[x1, . . . , xn] is a proper ideal (an ideal is called
proper if it is not equal to the entire ring), then there exists (x1, . . . , xn) ∈ Cn such
that every polynomial in I vanishes on the point (x1, . . . , xn). This is called the weak
Nullstellensatz.

§3 Modules over a commutative ring

We will now establish some basic terminology about modules.

3.1 Definitions

Suppose R is a commutative ring.

Definition 3.1 An R-module M is an abelian group M with a map R × M → M
(written (a,m)→ am) such that

M 1 (ab)m = a(bm) for a, b ∈ R,m ∈M , i.e. there is an associative law.

M 2 1m = m; the unit acts as the identity.

M 3 There are distributive laws on both sides: (a+b)m = am+bm and a(m+n) = am+an
for a, b ∈ R, m, n ∈M .

Another definition can be given as follows.

Definition 3.2 If M is an abelian group, End(M) is the set of homomorphisms f : M →
M . This can be made into a (noncommutative) ring.3 Addition is defined pointwise, and
multiplication is by composition. The identity element is the identity function 1M .

We made the following definition earlier for commutative rings, but for clarity we
re-state it:

Definition 3.3 If R,R′ are rings (possibly noncommutative) then a function f : R→ R′

is a ring-homomorphism or morphism if it is compatible with the ring structures, i.e

1. f(x+ y) = f(x) + f(y)

2. f(xy) = f(x)f(y)

3. f(1) = 1.

The last condition is not redundant because otherwise the zero map would automati-
cally be a homomorphism. The alternative definition of a module is left to the reader in
the following exercise.

Exercise 1.15 If R is a ring and R→ End(M) a homomorphism, then M is made into
an R-module, and vice versa.

3A noncommutative ring is one satisfying all the usual axioms of a ring except that multiplication is
not required to be commutative.
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Example 3.4 If R is a ring, then R is an R-module by multiplication on the left.

Example 3.5 A Z-module is the same thing as an abelian group.

Definition 3.6 IfM is an R-module, a subsetM0 ⊂M is a submodule if it is a subgroup
(closed under addition and inversion) and is closed under multiplication by elements of
R, i.e. aM0 ⊂ M0 for a ∈ R. A submodule is a module in its own right. If M0 ⊂ M is a
submodule, there is a commutative diagram:

R×M0

��

//M0

��
R×M //M

.

Here the horizontal maps are multiplication.

Example 3.7 Let R be a (commutative) ring; then an ideal in R is the same thing as
a submodule of R.

Example 3.8 If A is a ring, an A-algebra is an A-module in an obvious way. More
generally, if A is a ring and R is an A-algebra, any R-module becomes an A-module by
pulling back the multiplication map via A→ R.

Dual to submodules is the notion of a quotient module, which we define next:

Definition 3.9 Suppose M is an R-module and M0 a submodule. Then the abelian group
M/M0 (of cosets) is an R-module, called the quotient module by M0.

Multiplication is as follows. If one has a coset x+M0 ∈M/M0, one multiplies this by
a ∈ R to get the coset ax+M0. This does not depend on the coset representative.

3.2 The categorical structure on modules

So far, we have talked about modules, but we have not discussed morphisms between
modules, and have yet to make the class of modules over a given ring into a category.
This we do next.

Let us thus introduce a few more basic notions.

Definition 3.10 Let R be a ring. Suppose M,N are R-modules. A map f : M → N is a
module-homomorphism if it preserves all the relevant structures. Namely, it must be
a homomorphism of abelian groups, f(x+ y) = f(x) + f(y), and second it must preserve
multiplication:

f(ax) = af(x)

for a ∈ R, x ∈M .

A simple way of getting plenty of module-homomorphisms is simply to consider mul-
tiplication by a fixed element of the ring.
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Example 3.11 If a ∈ R, then multiplication by a is a module-homomorphism M
a→ M

for any R-module M .4 Such homomorphisms are called homotheties.

If M
f→ N and N

g→ P are module-homomorphisms, their composite M
g◦f→ P

clearly is too. Thus, for any commutative ring R, the class of R-modules and module-
homomorphisms forms a category.

Exercise 1.16 The initial object in this category is the zero module, and this is also the
final object.

In general, a category where the initial object and final object are the same (that is,
isomorphic) is called a pointed category. The common object is called the zero object. In
a pointed category C, there is a morphism X → Y for any two objects X,Y ∈ C: if ∗ is
the zero object, then we can take X → ∗ → Y . This is well-defined and is called the zero
morphism. One can easily show that the composition (on the left or the right) of a zero
morphism is a zero morphism (between a possibly different set of objects).

In the case of the category of modules, the zero object is clearly the zero module, and
the zero morphism M → N sends m 7→ 0 for each m ∈M .

Definition 3.12 Let f : M → N be a module homomorphism. In this case, the kernel
ker f of f is the set of elements m ∈ M with f(m) = 0. This is a submodule of M , as is
easy to see.

The image Im f of f (the set-theoretic image, i.e. the collection of all f(x), x ∈ M)
is also a submodule of N .

The cokernel of f is defined by N/ Im(f).

Exercise 1.17 The universal property of the kernel is as follows. Let M
f→ N be a

morphism with kernel K ⊂ M . Let T → M be a map. Then T → M factors through
the kernel K → M if and only if its composition with f (a morphism T → N) is zero.
That is, an arrow T → K exists in the diagram (where the dotted arrow indicates we are
looking for a map that need not exist)

T

~~|
|

|
|

��
K //M

f // N

if and only if the composite T → N is zero. In particular, if we think of the hom-sets as
abelian groups (i.e. Z-modules)

HomR(T,K) = ker (HomR(T,M)→ HomR(T,N)) .

In other words, one may think of the kernel as follows. If X
f→ Y is a morphism, then

the kernel ker(f) is the equalizer of f and the zero morphism X
0→ Y .

Exercise 1.18 What is the universal property of the cokernel?

4When one considers modules over noncommutative rings, this is no longer true.
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Exercise 1.19 On the category of modules, the functor assigning to each module M its
underlying set is corepresentable (cf. ?? 1.6). What is the corepresenting object?

We shall now introduce the notions of direct sum and direct product. Let I be a set,
and suppose that for each i ∈ I, we are given an R-module Mi.

Definition 3.13 The direct product
∏
Mi is set-theoretically the cartesian product.

It is given the structure of an R-module by addition and multiplication pointwise on each
factor.

Definition 3.14 The direct sum
⊕

IMi is the set of elements in the direct product such
that all but finitely many entries are zero. The direct sum is a submodule of the direct
product.

Example 3.15 The direct product is a product in the category of modules, and the direct
sum is a coproduct. This is easy to verify: given maps fi : M → Mi, then we get get a
unique map f : M →

∏
Mi by taking the product in the category of sets. The case of a

coproduct is dual: given maps gi : Mi → N , then we get a map
⊕
Mi → N by taking the

sum g of the gi: on a family (mi) ∈
⊕
Mi, we take g(mi) =

∑
I gi(mi); this is well-defined

as almost all the mi are zero.

Example 3.15 shows that the category of modules over a fixed commutative ring has
products and coproducts. In fact, the category of modules is both complete and cocomplete
(see Definition 3.41 for the definition). To see this, it suffices to show that (by Theorem 3.27
and its dual) that this category admits equalizers and coequalizers.

The equalizer of two maps

M
f,g

⇒ N

is easily checked to be the submodule of M consisting of m ∈M such that f(m) = g(m),
or, in other words, the kernel of f − g. The coequalizer of these two maps is the quotient
module of N by the submodule {f(m)− g(m),m ∈M}, or, in other words, the cokernel
of f − g.

Thus:

Proposition 3.16 If R is a ring, the category of R-modules is complete and cocomplete.

Example 3.17 Note that limits in the category of R-modules are calculated in the same
way as they are for sets, but colimits are not. That is, the functor from R-modules to
Sets, the forgetful functor, preserves limits but not colimits. Indeed, we will see that the
forgetful functor is a right adjoint (Proposition 6.3), which implies it preserves limits (by
Proposition 5.10).

3.3 Exactness

Finally, we introduce the notion of exactness.
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Definition 3.18 Let f : M → N be a morphism of R-modules. Suppose g : N → P is
another morphism of R-modules.

The pair of maps is a complex if g ◦ f = 0 : M → N → P . This is equivalent to the
condition that Im(f) ⊂ ker(g).

This complex is exact (or exact at N) if Im(f) = ker(g). In other words, anything
that is killed when mapped to P actually comes from something in M .

We shall often write pairs of maps as sequences

A
f→ B

g→ C

and say that the sequence is exact if the pair of maps is, as in Definition 3.18. A longer
(possibly infinite) sequence of modules

A0 → A1 → A2 → . . .

will be called a complex if each set of three consecutive terms is a complex, and exact
if it is exact at each step.

Example 3.19 The sequence 0 → A
f→ B is exact if and only if the map f is injective.

Similarly, A
f→ B → 0 is exact if and only if f is surjective. Thus, 0 → A

f→ B → 0 is
exact if and only if f is an isomorphism.

One typically sees this definition applied to sequences of the form

0→M ′
f→M

g→M ′′ → 0,

which, if exact, is called a short exact sequence. Exactness here means that f is
injective, g is surjective, and f maps onto the kernel of g. So M ′′ can be thought of as
the quotient M/M ′.

Example 3.20 Conversely, if M is a module and M ′ ⊂ M a submodule, then there is a
short exact sequence

0→M ′ →M →M/M ′ → 0.

So every short exact sequence is of this form.

Suppose F is a functor from the category of R-modules to the category of S-modules,
where R,S are rings. Then:

Definition 3.21 1. F is called additive if F preserves direct sums.

2. F is called exact if F is additive and preserves exact sequences.

3. F is called left exact if F is additive and preserves exact sequences of the form
0→M ′ →M →M ′′. Equivalently, F preserves kernels.

4. F is right exact if F is additive and F preserves exact sequences of the form
M ′ →M →M ′′ → 0, i.e. F preserves cokernels.
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The reader should note that much of homological algebra can be developed using
the more general setting of an abelian category, which axiomatizes much of the standard
properties of the category of modules over a ring. Such a generalization turns out to be
necessary when many natural categories, such as the category of chain complexes or the
category of sheaves on a topological space, are not naturally categories of modules. We
do not go into this here, cf. [ML98].

A functor F is exact if and only if it is both left and right exact. This actually requires
proof, though it is not hard. Namely, right-exactness implies that F preserves cokernels.
Left-exactness implies that F preserves kernels. F thus preserves images, as the image of
a morphism is the kernel of its cokernel. So if

A→ B → C

is a short exact sequence, then the kernel of the second map is equal to the image of the
first; we have just seen that this is preserved under F .

From this, one can check that left-exactness is equivalent to requiring that F preserve
finite limits (as an additive functor, F automatically preserves products, and we have just
seen that F is left-exact iff it preserves kernels). Similarly, right-exactness is equivalent
to requiring that F preserve finite colimits. So, in any category with finite limits and
colimits, we can talk about right or left exactness of a functor, but the notion is used most
often for categories with an additive structure (e.g. categories of modules over a ring).

Exercise 1.20 Suppose whenever 0 → A′ → A → A′′ → 0 is short exact, then FA′ →
FA→ FA′′ → 0 is exact. Prove that F is right-exact. So we get a slightly weaker criterion
for right-exactness.

Do the same for left-exact functors.

3.4 Split exact sequences

Let f : A → B be a map of sets which is injective. Then there is a map g : A → B such

that the composite g ◦ f : A
f→ B

g→ A is the identity. Namely, we define g to be the
inverse of f on f(A) and arbitrarily on B − f(A). Conversely, if f : A → B admits an
element g : B → A such that g ◦ f = 1A, then f is injective. This is easy to see, as any
a ∈ A can be “recovered” from f(a) (by applying g).

In general, however, this observation does not generalize to arbitrary categories.

Definition 3.22 Let C be a category. A morphism A
f→ B is called a split injection if

there is g : B → A with g ◦ f = 1A.

Exercise 1.21 (General nonsense) Suppose f : A→ B is a split injection. Show that
f is a categorical monomorphism. (Idea: the map Hom(C,A) → Hom(C,B) becomes a
split injection of sets thanks to g.)

TO BE ADDED: what is a categorical monomorphism? Maybe omit the exercise
In the category of sets, we have seen above that any monomorphism is a split injection.

This is not true in other categories, in general.
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Exercise 1.22 Consider the morphism Z → Z given by multiplication by 2. Show that
this is not a split injection: no left inverse g can exist.

We are most interested in the case of modules over a ring.

Proposition 3.23 A morphism f : A→ B in the category of R-modules is a split injec-
tion if and only if:

1. f is injective.

2. f(A) is a direct summand in B.

The second condition means that there is a submodule B′ ⊂ B such that B = B′ ⊕ f(A)
(internal direct sum). In other words, B = B′ + f(A) and B′ ∩ f(A) = {0}.

Proof. Suppose the two conditions hold, and we have a module B′ which is a complement
to f(A). Then we define a left inverse

B
g→ A

by letting g|f(A) = f−1 (note that f becomes an isomorphism A → f(A)) and g|B′ = 0.
It is easy to see that this is indeed a left inverse, though in general not a right inverse, as
g is likely to be non-injective.

Conversely, suppose f : A→ B admits a left inverse g : B → A. The usual argument
(as for sets) shows that f is injective. The essentially new observation is that f(A) is a
direct summand in B. To define the complement, we take ker(g) ⊂ B. It is easy to see
(as g ◦ f = 1A) that ker(g) ∩ f(A) = {0}. Moreover, ker(g) + f(A) fills B: given b ∈ B, it
is easy to check that

b− f(g(b)) ∈ ker(g).

Thus we find that the two conditions are satisfied. N

TO BE ADDED: further explanation, exactness of filtered colimits

3.5 The five lemma

The five lemma will be a useful tool for us in proving that maps are isomorphisms. Often
this argument is used in inductive proofs. Namely, we will see that often “long exact
sequences” (extending infinitely in one or both directions) arise from short exact sequences
in a natural way. In such events, the five lemma will allow us to prove that certain
morphisms are isomorphisms by induction on the dimension.

Theorem 3.24 Suppose given a commutative diagram

A

��

// B

��

// C

��

// D

��

// E

��
A′ // B′ // C ′ // D′ // E′

such that the rows are exact and the four vertical maps A→ A′, B → B′, D → D′, E → E′

are isomorphisms. Then C → C ′ is an isomorphism.
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This is the type of proof that goes by the name of “diagram-chasing,” and is best
thought out visually for oneself, even though we give a complete proof.

Proof. We have the diagram

A
k //

a

��

B
l //

b
��

C
m //

g

��

D
n //

d
��

E

e

��
F p

// G q
// H r

// I s
// J N

where the rows are exact at B,C,D,G,H, I and the squares commute. In addition,
suppose that a, b, d, e are isomorphisms. We will show that g is an isomorphism.

We show that g is surjective:

Suppose that h ∈ H. Since d is surjective, there exists an element d ∈ D such that
r(h) = d(d) ∈ I. By the commutativity of the rightmost square, s(r(h)) = e(n(d)). The
exactness at I means that Im r = ker s, so hence e(n(d)) = s(r(h)) = 0. Because e is
injective, n(d) = 0. Then d ∈ ker(n) = Im(m) by exactness at D. Therefore, there is
some c ∈ C such that m(c) = d. Now, d(m(c)) = d(d) = r(h) and by the commutativity
of squares, d(m(c)) = r(g(c)), so therefore r(g(c)) = r(h). Since r is a homomorphism,
r(g(c)− h) = 0. Hence g(c)− h ∈ ker r = Im q by exactness at H.

Therefore, there exists g ∈ G such that q(g) = g(c) − h. b is surjective, so there is
some b ∈ B such that b(b) = g and hence q(b(b)) = g(c) − h. By the commutativity of
squares, q(b(b)) = g(l(b)) = g(c)− h. Hence h = g(c)− g(l(b)) = g(c− l(b)), and therefore
g is surjective.

So far, we’ve used that b and g are surjective, e is injective, and exactness at D, H, I.

We show that g is injective:

Suppose that c ∈ C and g(c) = 0. Then r(g(c)) = 0, and by the commutativity of
squares, d(m(c)) = 0. Since d is injective, m(c) = 0, so c ∈ kerm = Im l by exactness
at C. Therefore, there is b ∈ B such that l(b) = c. Then g(l(b)) = g(c) = 0, and by the
commutativity of squares, q(b(b)) = 0. Therefore, b(b) ∈ ker q, and by exactness at G,
b(b) ∈ ker q = Im p.

There is now f ∈ F such that p(f) = b(b). Since a is surjective, this means that
there is a ∈ A such that f = a(a), so then b(b) = p(a(a)). By commutativity of squares,
b(b) = p(a(a)) = b(k(a)), and hence b(k(a) − b) = 0. Since b is injective, we have
k(a)− b = 0, so k(a) = b. Hence b ∈ Im k = ker l by commutativity of squares, so l(b) = 0.
However, we defined b to satisfy l(b) = c, so therefore c = 0 and hence g is injective.

Here, we used that a is surjective, b, d are injective, and exactness at B,C,G.

Putting the two statements together, we see that g is both surjective and injective, so
g is an isomorphism. We only used that b, d are isomorphisms and that a is surjective, e
is injective, so we can slightly weaken the hypotheses; injectivity of a and surjectivity of
e were unnecessary.
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§4 Ideals

The notion of an ideal has already been defined. Now we will introduce additional termi-
nology related to the theory of ideals.

4.1 Prime and maximal ideals

Recall that the notion of an ideal generalizes that of divisibility. In elementary number
theory, though, one finds that questions of divisibility basically reduce to questions about
primes. The notion of a “prime ideal” is intended to generalize the familiar idea of a prime
number.

Definition 4.1 An ideal I ⊂ R is said to be prime if

P 1 1 /∈ I (by convention, 1 is not a prime number)

P 2 If xy ∈ I, either x ∈ I or y ∈ I.

Example 4.2 If R = Z and p ∈ R, then (p) ⊂ Z is a prime ideal iff p or −p is a prime
number in N or if p is zero.

If R is any commutative ring, there are two obvious ideals. These obvious ones are the
zero ideal (0) consisting only of the zero element, and the unit element (1) consisting of
all of R.

Definition 4.3 An ideal I ⊂ R is called maximal5 if

M 1 1 /∈ I

M 2 Any larger ideal contains 1 (i.e., is all of R).

So a maximal ideal is a maximal element in the partially ordered set of proper ideals
(an ideal is proper if it does not contain 1).

Exercise 1.23 Find the maximal ideals in C[t].

Proposition 4.4 A maximal ideal is prime.

Proof. First, a maximal ideal does not contain 1.
Let I ⊂ R be a maximal ideal. We need to show that if xy ∈ I, then one of x, y ∈ I.

If x /∈ I, then (I, x) = I + (x) (the ideal generated by I and x) strictly contains I, so by
maximality contains 1. In particular, 1 ∈ I + (x), so we can write

1 = a+ xb

where a ∈ I, b ∈ R. Multiply both sides by y:

y = ay + bxy. N

Both terms on the right here are in I (a ∈ I and xy ∈ I), so we find that y ∈ I.

5Maximal with respect to not being the unit ideal.
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Given a ring R, what can we say about the collection of ideals in R? There are two
obvious ideals in R, namely (0) and (1). These are the same if and only if 0 = 1, i.e. R is
the zero ring. So for any nonzero commutative ring, we have at least two distinct ideals.

Next, we show that maximal ideals always do exist, except in the case of the zero ring.

Proposition 4.5 Let R be a commutative ring. Let I ⊂ R be a proper ideal. Then I is
contained in a maximal ideal.

Proof. This requires the axiom of choice in the form of Zorn’s lemma. Let P be the
collection of all ideals J ⊂ R such that I ⊂ J and J 6= R. Then P is a poset with respect
to inclusion. P is nonempty because it contains I. Note that given a (nonempty) linearly
ordered collection of ideals Jα ∈ P , the union

⋃
Jα ⊂ R is an ideal: this is easily seen in

view of the linear ordering (if x, y ∈
⋃
Jα, then both x, y belong to some Jγ , so x+y ∈ Jγ ;

multiplicative closure is even easier). The union is not all of R because it does not contain
1.

This implies that P has a maximal element by Zorn’s lemma. This maximal element
may be called M; it’s a proper element containing I. I claim that M is a maximal ideal,
because if it were contained in a larger ideal, that would be in P (which cannot happen
by maximality) unless it were all of R. N

Corollary 4.6 Let R be a nonzero commutative ring. Then R has a maximal ideal.

Proof. Apply the lemma to the zero ideal. N

Corollary 4.7 Let R be a nonzero commutative ring. Then x ∈ R is invertible if and
only if it belongs to no maximal ideal m ⊂ R.

Proof. Indeed, x is invertible if and only if (x) = 1. That is, if and only if (x) is not a
proper ideal; now Proposition 4.5 finishes the argument. N

4.2 Fields and integral domains

Recall:

Definition 4.8 A commutative ring R is called a field if 1 6= 0 and for every x ∈ R−{0}
there exists an inverse x−1 ∈ R such that xx−1 = 1.

This condition has an obvious interpretation in terms of ideals.

Proposition 4.9 A commutative ring with 1 6= 0 is a field iff it has only the two ideals
(1), (0).

Alternatively, a ring is a field if and only if (0) is a maximal ideal.

Proof. Assume R is a field. Suppose I ⊂ R. If I 6= (0), then there is a nonzero x ∈ I.
Then there is an inverse x−1. We have x−1x = 1 ∈ I, so I = (1). In a field, there is thus
no room for ideals other than (0) and (1).

To prove the converse, assume every ideal of R is (0) or (1). Then for each x ∈ R,
(x) = (0) or (1). If x 6= 0, the first cannot happen, so that means that the ideal generated
by x is the unit ideal. So 1 is a multiple of x, implying that x has a multiplicative inverse.N

56



The CRing Project, §1.4.

So fields also have an uninteresting ideal structure.

Corollary 4.10 If R is a ring and I ⊂ R is an ideal, then I is maximal if and only if
R/I is a field.

Proof. The basic point here is that there is a bijection between the ideals of R/I and
ideals of R containing I.

Denote by φ : R→ R/I the reduction map. There is a construction mapping ideals of
R/I to ideals of R. This sends an ideal in R/I to its inverse image. This is easily seen to
map to ideals of R containing I. The map from ideals of R/I to ideals of R containing I
is a bijection, as one checks easily.

It follows that R/I is a field precisely if R/I has precisely two ideals, i.e. precisely if
there are precisely two ideals in R containing I. These ideals must be (1) and I, so this
holds if and only if I is maximal. N

There is a similar characterization of prime ideals.

Definition 4.11 A commutative ring R is an integral domain if for all x, y ∈ R, x 6= 0
and y 6= 0 imply xy 6= 0.

Proposition 4.12 An ideal I ⊂ R is prime iff R/I is a domain.

Exercise 1.24 Prove Proposition 4.12.

Any field is an integral domain. This is because in a field, nonzero elements are invert-
ible, and the product of two invertible elements is invertible. This statement translates in
ring theory to the statement that a maximal ideal is prime.

Finally, we include an example that describes what some of the prime ideals in a
polynomial ring look like.

Example 4.13 Let R be a ring and P a prime ideal. We claim that PR[x] ⊂ R[x] is a
prime ideal.

Consider the map φ̃ : R[x]→ (R/P )[x] with φ̃(a0 + · · ·+anx
n) = (a0 +P )+ · · ·+(an+

P )xn. This is clearly a homomorphism because φ : R → R/P is, and its kernel consists
of those polynomials a0 + · · · + anx

n with a0, . . . , an ∈ P , which is precisely P [x]. Thus
R[x]/P [x] ' (R/P )[x], which is an integral domain because R/P is an integral domain.
Thus P [x] is a prime ideal.

However, if P is a maximal ideal, then P [x] is never a maximal ideal because the
ideal P [x] + (x) (the polynomials with constant term in P ) always strictly contains P [x]
(because if x ∈ P [x] then 1 ∈ P , which is impossible). Note that P [x] + (x) is the kernel
of the composition of φ̃ with evaluation at 0, i.e (ev0 ◦ φ̃) : R[x]→ R/P , and this map is
a surjection and R/P is a field, so that P [x] + (x) is the maximal ideal in R[x] containing
P [x].

Exercise 1.25 Let R be a domain. Consider the set of formal quotients a/b, a, b ∈ R
with b 6= 0. Define addition and multiplication using usual rules. Show that the resulting
object K(R) is a ring, and in fact a field. The natural map R → K(R), r → r/1, has a

57



The CRing Project, §1.4.

universal property. If R ↪→ L is an injection of R into a field L, then there is a unique
morphism K(R) → L of fields extending R → L. This construction will be generalized
when we consider localization. This construction is called the quotient field.

Note that a non-injective map R→ L will not factor through the quotient field!

Exercise 1.26 Let R be a commutative ring. Then the Jacobson radical of R is the
intersection

⋂
m of all maximal ideals m ⊂ R. Prove that an element x is in the Jacobson

radical if and only if 1− yx is invertible for all y ∈ R.

4.3 Prime avoidance

The following fact will come in handy occasionally. We will, for instance, use it much later
to show that an ideal consisting of zerodivisors on a module M is contained in associated
prime.

Theorem 4.14 (Prime avoidance) Let I1, . . . , In ⊂ R be ideals. Let A ⊂ R be a subset
which is closed under addition and multiplication. Assume that at least n− 2 of the ideals
are prime. If A ⊂ I1 ∪ · · · ∪ In, then A ⊂ Ij for some j.

The result is frequently used in the following specific case: if an ideal I is contained in
a finite union

⋃
pi of primes, then I ⊂ pi for some i.

Proof. Induct on n. If n = 1, the result is trivial. The case n = 2 is an easy argument: if
a1 ∈ Ar I1 and a2 ∈ Ar I2, then a1 + a2 ∈ Ar (I1 ∪ I2).

Now assume n ≥ 3. We may assume that for each j, A 6⊂ I1 ∪ · · · ∪ Îj ∪ · · · In.6 Fix
an element aj ∈ A r (I1 ∪ · · · ∪ Îj ∪ · · · In). Then this aj must be contained in Ij since
A ⊂

⋃
Ij . Since n ≥ 3, one of the Ij must be prime. We may assume that I1 is prime.

Define x = a1 + a2a3 · · · an, which is an element of A. Let’s show that x avoids all of the
Ij . If x ∈ I1, then a2a3 · · · an ∈ I1, which contradicts the fact that ai 6∈ Ij for i 6= j and
that I1 is prime. If x ∈ Ij for j ≥ 2. Then a1 ∈ Ij , which contradicts ai 6∈ Ij for i 6= j. N

4.4 The Chinese remainder theorem

Let m,n be relatively prime integers. Suppose a, b ∈ Z; then one can show that the two
congruences x ≡ a mod m and x ≡ b mod n can be solved simultaneously in x ∈ Z. The
solution is unique, moreover, modulo mn. The Chinese remainder theorem generalizes
this fact:

Theorem 4.15 (Chinese remainder theorem) Let I1, . . . In be ideals in a ring R which
satisfy Ii + Ij = R for i 6= j. Then we have I1 ∩ · · · ∩ In = I1 . . . In and the morphism of
rings

R→
⊕

R/Ii

is an epimorphism with kernel I1 ∩ · · · ∩ In.

6The hat means omit Ij .
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Proof. First, note that for any two ideals I1 and I2, we have I1I2 ⊂ I1 ∩ I2 and (I1 +
I2)(I1 ∩ I2) ⊂ I1I2 (because any element of I1 + I2 multiplied by any element of I1 ∩ I2

will clearly be a sum of products of elements from both I1 and I2). Thus, if I1 and I2 are
coprime, i.e. I1 + I2 = (1) = R, then (1)(I1 ∩ I2) = (I1 ∩ I2) ⊂ I1I2 ⊂ I1 ∩ I2, so that
I1 ∩ I2 = I1I2. This establishes the result for n = 2.

If the ideals I1, . . . , In are pairwise coprime and the result holds for n− 1, then

n−1⋂
i=1

Ii =
n−1∏
i=1

Ii.

Because In + Ii = (1) for each 1 ≤ i ≤ n− 1, there must be xi ∈ In and yi ∈ Ii such that
xi + yi = 1. Thus, zn =

∏n−1
i=1 yi =

∏n−1
i=1 (1− xi) ∈

∏n−1
i=1 Ii, and clearly zn + In = 1 + In

since each xi ∈ In. Thus In +
∏n−1
i=1 Ii = In +

⋂n−1
i=1 Ii = (1), and we can now apply the

n = 2 case to conclude that
⋂n
i=1 Ii =

∏n
i=1 Ii.

Note that for any i, we can construct a zi with zi ∈ Ij for j 6= i and zi + Ii = 1 + Ii
via the same procedure.

Define φ : R →
⊕
R/Ii by φ(a) = (a + I1, . . . , a + In). The kernel of φ is

⋂n
i=1 Ii,

because a+ Ii = 0 + Ii iff a ∈ Ii, so that φ(a) = (0 + I1, . . . , 0 + In) iff a ∈ Ii for all i, that
is, a ∈

⋂n
i=1 Ii. Combined with our previous result, the kernel of φ is

∏n
i=1 Ii.

Finally, recall that we constructed zi ∈ R such that zi+ Ii = 1 + Ii, and z+ Ij = 0 + Ij
for all j 6= i, so that φ(zi) = (0 + I1, . . . , 1 + Ii, . . . , 0 + In). Thus, φ(a1z1 + · · ·+ anzn) =
(a1 + I1, . . . , an + In) for all ai ∈ R, so that φ is onto. By the first isomorphism theorem,
we have that R/I1 · · · In '

⊕n
i=1R/Ii.

§5 Some special classes of domains

5.1 Principal ideal domains

Definition 5.1 A ring R is a principal ideal domain or PID if R 6= 0, R is not a field,
R is a domain, and every ideal of R is principal.

These have the next simplest theory of ideals. Each ideal is very simple—it’s principal—
though there might be a lot of ideals.

Example 5.2 Z is a PID. The only nontrivial fact to check here is that:

Proposition 5.3 Any nonzero ideal I ⊂ Z is principal.

Proof. If I = (0), then this is obvious. Else there is n ∈ I − {0}; we can assume n > 0.
Choose n ∈ I as small as possible and positive. Then I claim that the ideal I is generated
by (n). Indeed, we have (n) ⊂ I obviously. If m ∈ I is another integer, then divide m by
n, to find m = nb+ r for r ∈ [0, n). We find that r ∈ I and 0 ≤ r < n, so r = 0, and m is
divisible by n. And I ⊂ (n).

So I = (n). N
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A module M is said to be finitely generated if there exist elements x1, . . . , xn ∈ M
such that any element of M is a linear combination (with coefficients in R) of the xi. (We
shall define this more formally below.) One reason that PIDs are so convenient is:

Theorem 5.4 (Structure theorem) If M is a finitely generated module over a princi-
pal ideal domain R, then M is isomorphic to a direct sum

M '
n⊕
i=1

R/ai,

for various ai ∈ R (possibly zero).

TO BE ADDED: at some point, the proof should be added. This is important!

5.2 Unique factorization domains

The integers Z are especially nice because of the fundamental theorem of arithmetic, which
states that every integer has a unique factorization into primes. This is not true for every
integral domain.

Definition 5.5 An element of a domain R is irreducible if it cannot be written as the
product of two non-unit elements of R.

Example 5.6 Consider the integral domain Z[
√
−5]. We saw earlier that

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5),

which means that 6 was written as the product of two non-unit elements in different ways.
Z[
√
−5] does not have unique factorization.

Definition 5.7 A domain R is a unique factorization domain or UFD if every non-
unit x ∈ R satisfies

1. x can be written as a product x = p1p2 · · · pn of irreducible elements pi ∈ R

2. if x = q1q2 · · · qm where qi ∈ R are irreducible then the pi and qi are the same up to
order and multiplication by units.

Example 5.8 Z is a UFD, while Z[
√
−5] is not. In fact, many of our favorite domains

have unique factorization. We will prove that all PIDs are UFDs. In particular, in ?? 1.27
and ?? 1.28, we saw that Z[i] and F [t] are PIDs, so they also have unique factorization.

Theorem 5.9 Every principal ideal domain is a unique factorization domain.

Proof. Suppose that R is a principal ideal domain and x is an element of R. We first
demonstrate that x can be factored into irreducibles. If x is a unit or an irreducible, then
we are done. Therefore, we can assume that x is reducible, which means that x = x1x2 for
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non-units x1, x2 ∈ R. If there are irreducible, then we are again done, so we assume that
they are reducible and repeat this process. We need to show that this process terminates.

Suppose that this process continued infinitely. Then we have an infinite ascending chain
of ideals, where all of the inclusions are proper: (x) ⊂ (x1) ⊂ (x11) ⊂ · · · ⊂ R. We will
show that this is impossible because any infinite ascending chain of ideals I1 ⊂ I2 ⊂ · · · ⊂ R
of a principal ideal domain eventually becomes stationary, i.e. for some n, Ik = In for
k ≥ n. Indeed, let I =

⋃∞
i=1 Ii. This is an ideal, so it is principally generated as I = (a)

for some a. Since a ∈ I, we must have a ∈ IN for some N , which means that the chain
stabilizes after IN .

It remains to prove that this factorization of x is unique. We induct on the number of
irreducible factors n of x. If n = 0, then x is a unit, which has unique factorization up to
units. Now, suppose that x = p1 · · · pn = q1 · · · qm for some m ≥ n. Since p1 divides x, it
must divide the product q1 · · · qm and by irreducibility, one of the factors qi. Reorder the
qi so that p1 divides q1. However, q1 is irreducible, so this means that p1 and q1 are the
same up to multiplication by a unit u. Canceling p1 from each of the two factorizations, we
see that p2 · · · pn = uq2 · · · qm = q′2 · · · qm. By induction, this shows that the factorization
of x is unique up to order and multiplication by units. N

5.3 Euclidean domains

A euclidean domain is a special type of principal ideal domain. In practice, it will often
happen that one has an explicit proof that a given domain is euclidean, while it might not
be so trivial to prove that it is a UFD without the general implication below.

Definition 5.10 An integral domain R is a euclidean domain if there is a function
| · | : R→ Z≥0 (called the norm) such that the following hold.

1. |a| = 0 iff a = 0.

2. For any nonzero a, b ∈ R there exist q, r ∈ R such that b = aq + r and |r| < |a|.

In other words, the norm is compatible with division with remainder.

Theorem 5.11 A euclidean domain is a principal ideal domain.

Proof. Let R be an euclidean domain, I ⊂ R and ideal, and b be the nonzero element of
smallest norm in I. Suppose a ∈ I. Then we can write a = qb + r with 0 ≤ r < |b|, but
since b has minimal nonzero absolute value, r = 0 and b|a. Thus I = (b) is principal. N

As we will see, this implies that any euclidean domain admits unique factorization.

Proposition 5.12 Let F be a field. Then the polynomial ring F [t] is a euclidean domain.
In particular, it is a PID.

Proof. We define TO BE ADDED: N

Exercise 1.27 Prove that Z[i] is principal. (Define the norm as N(a+ ib) = a2 + b2.)
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Exercise 1.28 Prove that the polynomial ring F [t] for F a field is principal.

It is not true that a PID is necessarily euclidean. Nevertheless, it was shown in [Gre97]
that the converse is “almost” true. Namely, [Gre97] defines the notion of an almost
euclidean domain. A domain R is almost euclidean if there is a function d : R → Z≥0

such that

1. d(a) = 0 iff a = 0.

2. d(ab) ≥ d(a) if b 6= 0.

3. If a, b ∈ R− {0}, then either b | a or there is r ∈ (a, b) with d(r) < d(b).

It is easy to see by the same argument that an almost euclidean domain is a PID.
(Indeed, let R be an almost euclidean domain, and I ⊂ R a nonzero ideal. Then choose
x ∈ I − {0} such that d(x) is minimal among elements in I. Then if y ∈ I − {0}, either
x | y or (x, y) ⊂ I contains an element with smaller d. The latter cannot happen, so the
former does.) However, in fact:

Proposition 5.13 ([Gre97]) A domain is a PID if and only if it is almost euclidean.

Proof. Indeed, let R be a PID. Then R is a UFD (Theorem 5.9), so for any x ∈ R, there
is a factorization into prime elements, unique up to units. If x factors into n elements, we
define d(x) = n; we set d(0) = 0. The first two conditions for an almost euclidean domain
are then evident.

Let x = p1 . . . pm and y = q1 . . . qn be two elements of R, factored into irreducibles.
Suppose x - y. Choose a generator b of the (principal) ideal (x, y); then obviously y | b
so d(y) ≤ d(b). But if d(y) = d(b), then the number of factors of y and b is the same, so
y | b would imply that y and b are associates. This is a contradiction, and implies that
d(y) < d(b).

Remark We have thus seen that a euclidean domain is a PID, and a PID is a UFD. Both
converses, however, fail. By Gauss’s lemma (??), the polynomial ring Z[X] has unique
factorization, though the ideal (2, X) is not principal.

In [Cam88], it is shown that the ring Z[1+
√
−19

2 ] is a PID but not euclidean (i.e. there
is no euclidean norm on it).

According to [Cla11], sec. 8.3, Proposition 5.13 actually goes back to Hasse (and these
norms are sometimes called “Dedekind-Hasse norms”).

§6 Basic properties of modules

6.1 Free modules

We now describe a simple way of constructing modules over a ring, and an important class
of modules.
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Definition 6.1 A module M is free if it is isomorphic to
⊕

I R for some index set I.
The cardinality of I is called the rank.

Example 6.2 R is the simplest example of a free module.

Free modules have a universal property. Namely, recall that if M is an R-module, then
to give a homomorphism

R→M

is equivalent to giving an element m ∈ M (the image of 1). By the universal product of
the direct sum (which is the coproduct in the category of modules), it follows that to give
a map ⊕

I

→M

is the same as giving a map of sets I →M . In particular:

Proposition 6.3 The functor I 7→
⊕

I R from Sets to R-modules is the left adjoint to
the forgetful functor from R-modules to Sets.

The claim now is that the notion of “rank” is well-defined for a free module. To see
this, we will have to use the notion of a maximal ideal (Definition 4.3) and Corollary 4.10.
Indeed, suppose

⊕
I R and

⊕
J R are isomorphic; we must show that I and J have the same

cardinality. Choose a maximal ideal m ⊂ R. Then, by applying the functor M →M/mM ,
we find that the R/m-vector spaces⊕

I

R/m,
⊕
J

R/m

are isomorphic. By linear algebra, I and J have the same cardinality.
Free modules have a bunch of nice properties. The first is that it is very easy to map

out of a free module.

Example 6.4 Let I be an indexing set, and M an R-module. Then to give a morphism⊕
I

R→M

is equivalent to picking an element of M for each i ∈ I. Indeed, given such a collection of
elements {mi}, we send the generator of

⊕
I R with a 1 in the ith spot and zero elsewhere

to mi.

Example 6.5 In a domain, every principal ideal (other than zero) is a free module of
rank one.

Another way of saying this is that the free module
⊕

I R represents the functor on
modules sending M to the set M I . We have already seen a special case of this for I a
one-element set (?? 1.19).

The next claim is that free modules form a reasonably large class of the category of
R-modules.
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Proposition 6.6 Given an R-module M , there is a free module F and a surjection

F �M.

Proof. We let F to be the free R-module on the elements em, one for each m ∈ M . We
define the map

F →M

by describing the image of each of the generators em: we just send each em to m ∈M . It
is clear that this map is surjective. N

We close by making a few remarks on matrices. Let M be a free module of rank n,
and fix an isomorphism M ' Rn. Then we can do linear algebra with M , even though we
are working over a ring and not necessarily a field, at least to some extent. For instance,
we can talk about n-by-n matrices over the ring R, and then each of them induces a
transformation, i.e. a module-homomorphism, M → M ; it is easy to see that every
module-homomorphism between free modules is of this form. Moreover, multiplication of
matrices corresponds to composition of homomorphisms, as usual.

Example 6.7 Let us consider the question of when the transformation induced by an
n-by-n matrix is invertible. The answer is similar to the familiar one from linear algebra
in the case of a field. Namely, the condition is that the determinant be invertible.

Suppose that an n × n matrix A over a ring R is invertible. This means that there
exists A−1 so that AA−1 = I, so hence 1 = det I = det(AA−1) = (detA)(detA−1), and
therefore, detA must be a unit in R.

Suppose instead that an n× n matrix A over a ring R has an invertible determinant.
Then, using Cramer’s rule, we can actually construct the inverse of A.

We next show that if R is a commutative ring, the category of modules over R con-
tains enough information to reconstruct R. This is a small part of the story of Morita
equivalence, which we shall not enter into here.

Example 6.8 Suppose R is a commutative ring, and let C be the category of R-modules.
The claim is that C, as an abstract category, determines R. Indeed, the claim is that R is
canonically the ring of endomorphisms of the identity functor 1C .

Such an endomorphism is given by a natural transformation φ : 1C → 1C . In other
words, one requires for each R-module M , a homomorphism of R-modules φM : M →M
such that if f : M → N is any homomorphism of modules, then there is a commutative
square

M

f

��

φM //M

��
N

φN // N.

Here is a simple way of obtaining such endomorphisms. Given r ∈ R, we consider the
map r : M → m which just multiplies each element by r. This is a homomorphism, and
it is clear that it is natural in the above sense. There is thus a map R → End(1C) (note
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that multiplication corresponds to composition of natural transformations). This map is
clearly injective; different r, s ∈ R lead to different natural transformations (e.g. on the
R-module R).

The claim is that any natural transformation of 1C is obtained in this way. Namely,
let φ : 1C → 1C be such a natural transformation. On the R-module R, φ must be
multiplication by some element r ∈ R (because HomR(R,R) is given by such homotheties).
Consequently, one sees by drawing commutative diagrams that φ : R⊕S → R⊕S is of this
form for any set S. So φ is multiplication by r on any free R-module. Since any module
M is a quotient of a free module F , we can draw a diagram

F

��

φF // F

��
M

φM //M.

Since the vertical arrows are surjective, we find that φF must be given by multiplication
by r too.

6.2 Finitely generated modules

The notion of a “finitely generated” module is analogous to that of a finite-dimensional
vector space.

Definition 6.9 An R-module M is finitely generated if there exists a surjection Rn →
M for some n. In other words, it has a finite number of elements whose “span” contains
M .

The basic properties of finitely generated modules follow from the fact that they are
stable under extensions and quotients.

Proposition 6.10 Let 0 → M ′ → M → M ′′ → 0 be an exact sequence. If M ′,M ′′ are
finitely generated, so is M .

Proof. Suppose 0 → M ′
f→ M

g→ M ′′ → 0 is exact. Then g is surjective, f is injective,
and ker(g) = im(f). Now suppose M ′ is finitely generated, say by {a1, . . . , as}, and M ′′ is
finitely generated, say by {b1, . . . , bt}. Because g is surjective, each g−1(bi) is non-empty.
Thus, we can fix some ci ∈ g−1(bi) for each i.

For any m ∈M , we have g(m) = r1b1 + · · ·+ rtbt for some ri ∈ R because g(m) ∈M ′′
and M ′′ is generated by the bi. Thus g(m) = r1g(ci)+ · · · rtg(ct) = g(r1c1 + · · ·+rtct), and
because g is a homomorphism we have m− (r1c1 + · · ·+ rtct) ∈ ker(g) = im(f). But M ′ is
generated by the ai, so the submodule im(f) ⊂M is finitely generated by the di = f(ai).

Thus, any m ∈M has m−(r1c1+· · ·+rtct) = rt+1d1+· · ·+rt+sds for some r1, . . . , rt+s,
thus M is finitely generated by c1, . . . , ct, d1, . . . , ds.

The converse is false. It is possible for finitely generated modules to have submodules
which are not finitely generated. As we shall see in Chapter 5, this does not happen over
noetherian rings.
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Example 6.11 Consider the ring R = C[X1, X2, . . . , ] and the ideal (X1, X2, . . . ). This
ideal is a submodule of the finitely generated R-module R, but it is not finitely generated.

Exercise 1.29 Show that a quotient of a finitely generated module is finitely generated.

Exercise 1.30 Consider a split exact sequence 0 → M ′ → M → M ′′ → 0. In this case,
show that if M is finitely generated, so is M ′.

6.3 Finitely presented modules

Over messy rings, the notion of a finitely presented module is often a good substitute for
that of a finitely generated one. In fact, we are going to see (??), that there is a general
method of reducing questions about finitely presented modules over arbitrary rings to
finitely generated modules over finitely generated Z-algebras.

Throughout, fix a ring R.

Definition 6.12 An R-module M is finitely presented if there is an exact sequence

Rm → Rn →M → 0.

The point of this definition is that M is the quotient of a free module Rn by the
“relations” given by the images of the vectors in Rm. Since Rm is finitely generated, M
can be represented via finitely many generators and finitely many relations.

The reader should compare this with the definition of a finitely generated module;
there we only require an exact sequence

Rn →M → 0.

As usual, we establish the usual properties of finitely presented modules.
We start by showing that if a finitely presented module M is generated by finitely many

elements, the “module of relations” among these generators is finitely generated itself. The
condition of finite presentation only states that there is one such set of generators such
that the module of generators is finitely generated.

Proposition 6.13 Suppose M is finitely presented. Then if Rm �M is a surjection, the
kernel is finitely generated.

Proof. Let K be the kernel of Rm �M . Consider an exact sequence

F ′ → F →M → 0

where F ′, F are finitely generated and free, which we can do as M is finitely presented.
Draw a commutative and exact diagram

F ′ // F //

���
�
� M //

��

0

0 // K // Rm //M // 0
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The dotted arrow F → Rm exists as F is projective. There is induced a map F ′ → K.
We get a commutative and exact diagram

F ′ //

f

��

F //

g

��

M //

��

0

0 // K // Rm //M // 0

,

to which we can apply the snake lemma. There is an exact sequence

0→ Coker(f)→ Coker(g)→ 0,

which gives an isomorphism Coker(f) ' Coker(g). However, Coker(g) is finitely generated,
as a quotient of Rm. Thus Coker(f) is too. Since we have an exact sequence

0→ Im(f)→ K → Coker(f)→ 0,

and Im(f) is finitely generated (as the image of a finitely generated object, F ′), we find
by Proposition 6.10 that Coker(f) is finitely generated. N

Proposition 6.14 Given an exact sequence

0→M ′ →M →M ′′ → 0,

if M ′,M ′′ are finitely presented, so is M .

In general, it is not true that if M is finitely presented, then M ′ and M ′′ are. For
instance, it is possible that a submodule of the free, finitely generated module R (i.e. an
ideal), might fail to be finitely generated. We shall see in Chapter 5 that this does not
happen over a noetherian ring.

Proof. Indeed, suppose we have exact sequences

F ′1 → F ′0 →M ′ → 0

and
F ′′1 → F ′′0 →M ′′ → 0

where the F ’s are finitely generated and free. We need to get a similar sequence for M .
Let us stack these into a diagram

F ′1

��

F ′′1

��
F ′0

��

F ′′0

��
0 //M ′ //M //M ′′ // 0

However, now, using general facts about projective modules (??), we can splice these
presentations into a resolution

F ′1 ⊕ F ′′1 → F ′0 ⊕ F ′′0 →M → 0,

which proves the assertion. N
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Corollary 6.15 The (finite) direct sum of finitely presented modules is finitely presented.

Proof. Immediate from Proposition 6.14 N

6.4 Modules of finite length

A much stronger condition on modules that of finite generation is that of finite length.
Here, basically any operation one does will eventually terminate.

Let R be a commutative ring, M an R-module.

Definition 6.16 M is simple if M 6= 0 and M has no nontrivial submodules.

Exercise 1.31 A torsion-free abelian group is never a simple Z-module.

Proposition 6.17 M is simple if and only if it is isomorphic to R/m for m ⊂ R a
maximal ideal.

Proof. Let M be simple. Then M must contain a cyclic submodule Rx generated by some
x ∈ M − {0}. So it must contain a submodule isomorphic to R/I for some ideal I, and
simplicity implies that M ' R/I for some I. If I is not maximal, say properly contained
in J , then we will get a nontrivial submodule J/I of R/I ' M . Conversely, it is easy to
see that R/m is simple for m maximal. N

Exercise 1.32 (Schur’s lemma) Let f : M → N be a module-homomorphism, where
M,N are both simple. Then either f = 0 or f is an isomorphism.

Definition 6.18 M is of finite length if there is a finite filtration 0 ⊂ M0 ⊂ · · · ⊂
Mn = M where each M i/M i−1 is simple.

Exercise 1.33 Modules of finite length are closed under extensions (that is, if 0→M ′ →
M →M ′′ → 0 is an exact sequence, then if M ′,M ′′ are of finite length, so is M).

In the next result (which will not be used in this chapter), we shall use the notions of a
noetherian and an artinian module. These notions will be developed at length in ??, and
we refer the reader there for more explanation. A module is noetherian if every ascending
chain M1 ⊂M2 ⊂ . . . of submodules stabilizes, and it is artinian if every descending chain
stabilizes.

Proposition 6.19 M is finite length iff M is both noetherian and artinian.

Proof. Any simple module is obviously both noetherian and artinian: there are two sub-
modules. So if M is finite length, then the finite filtration with simple quotients implies
that M is noetherian and artinian, since these two properties are stable under extensions
(Proposition 1.5 and Proposition 4.3 of Chapter 5).

Suppose M 6= 0 is noetherian and artinian. Let M1 ⊂ M be a minimal nonzero
submodule, which exists as M is artinian. This is necessarily simple. Then we have a
filtration

0 = M0 ⊂M1.
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If M1 = M , then the filtration goes up to M , and we have that M is of finite length. If
not, find a submodule M2 that contains M1 and is minimal among submodules containing
M1; then the quotient M2/M1 is simple. We have the filtration

0 = M0 ⊂M1 ⊂M2,

which we can keep continuing until at some point we reach M . Note that since M is
noetherian, we cannot continue this strictly ascending chain forever. N

Exercise 1.34 In particular, any submodule or quotient module of a finite length module
is of finite length. Note that the analog is not true for finitely generated modules unless
the ring in question is noetherian.

Our next goal is to show that the length of a filtration of a module with simple quotients
is well-defined. For this, we need:

Lemma 6.20 Let 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M be a filtration of M with simple
quotients. Let N ⊂ M . Then the filtration 0 = M0 ∩N ⊂ M1 ∩N ⊂ · · · ⊂ N has simple
or zero quotients.

Proof. Indeed, for each i, (N ∩Mi)/(N ∩Mi−1) is a submodule of Mi/Mi−1, so is either
zero or simple. N

Theorem 6.21 (Jordan-Hölder) Let M be a module of finite length. In this case, any
two filtrations on M with simple quotients have the same length.

Definition 6.22 This number is called the length of M and is denoted `(M).

Proof (Proof of Theorem 6.21). Let us introduce a temporary definition: l(M) is the
length of the minimal filtration on M . We will show that any filtration of M (with
simple quotients) is of length l(M). This is the proposition in another form.

The proof of this claim is by induction on l(M). Suppose we have a filtration

0 = M0 ⊂M1 ⊂ · · · ⊂Mn = M

with simple quotients. We would like to show that n = l(M). By definition of l(M), there
is another filtration

0 = N0 ⊂ · · · ⊂ Nl(M) = M.

If l(M) = 0, 1, then M is zero or simple, which will necessarily imply that n = 0, 1
respectively. So we can assume l(M) ≥ 2. We can also assume that the result is known
for strictly smaller submodules of M .

There are two cases:

1. Mn−1 = Nl(M)−1. Then Mn−1 = Nl(M)−1 has l at most l(M) − 1. Thus by the
inductive hypothesis any two filtrations on Mn−1 have the same length, so n− 1 =
l(M)− 1, implying what we want.
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2. We have Mn−1 ∩Nl(M)−1 (Mn−1, Nl(M)−1. Call this intersection K.

Now we have two filtrations of these modules Mn−1, Nl(M)−1 whose quotients are
simple. We can replace them such that the next term before them is K. To do this,
consider the filtrations

0 = M0 ∩K ⊂M1 ⊂ K ⊂ . . .Mn−1 ∩K = K ⊂Mn−1

and
0 = N0 ∩K ⊂M1 ⊂ K ⊂ . . . Nl(M)−1 ∩K = K ⊂ Nl(M)−1.

These filtrations have simple or zero quotients by Lemma 6.20, and since Mn−1/K =
Mn−1/Mn−1 ∩Nl(M)−1 = M/Mn−1 is simple, and similarly for Nl(M)−1/K. We can
throw out redundancies to eliminate the zero terms. So we get two new filtrations
of Mn−1 and Nl(M)−1 whose second-to-last term is K.

By the inductive hypothesis any two filtrations on either of these proper submodules
Mn−1, Nl(M)−1 have the same length. Thus the lengths of the two new filtrations are
n− 1 and l(M)− 1, respectively. So we find that n− 1 = l(K) + 1 and l(M)− 1 =
l(K) + 1 by the inductive hypothesis. This implies what we want. N

Exercise 1.35 Prove that the successive quotients Mi/Mi−1 are also determined (up to
permutation).
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Chapter 2

Fields and Extensions

In this chapter, we shall discuss the theory of fields. Recall that a field is an integral
domain for which all non-zero elements are invertible; equivalently, the only two ideals of
a field are (0) and (1) since any nonzero element is a unit. Consequently fields will be the
simplest cases of much of the theory developed later.

The theory of field extensions has a different feel from standard commutative algebra
since, for instance, any morphism of fields is injective. Nonetheless, it turns out that
questions involving rings can often be reduced to questions about fields. For instance, any
integral domain can be embedded in a field (its quotient field), and any local ring (that
is, a ring with a unique maximal ideal; we have not defined this term yet) has associated
to it its residue field (that is, its quotient by the maximal ideal). A knowledge of field
extensions will thus be useful.

§1 Introduction

Recall once again that:

Definition 1.1 A field is an integral domain where every non-zero element is invertible.
Alternatively, it is a set k, endowed with binary operations of addition and multiplication,
which satisfy the usual axioms of commutativity, associativity, distributivity, 1 and 0 (and
1 6= 0!), and additive and multiplicative inverses.

A subfield is a subset closed under these operations: equivalently, it is a subring that
is itself a field.

For a field k, we write k∗ for the subset k \ {0}. (This generalizes the usual notation
?? R∗ that refers to the group of invertible elements in a ring R.)

1.1 Examples

To get started, let us begin by providing several examples of fields. The reader should
recall (Corollary 4.10) that if R is a ring and I ⊂ R an ideal, then R/I is a field precisely
when I is maximal.

Example 1.2 One of the most familiar examples of a field is the rational numbers Q.
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Example 1.3 If p is a prime number, then Z/(p) is a field, denoted Fp. Indeed, (p) is a
maximal ideal in Z. Thus, fields may be finite: Fp contains p elements.

Example 1.4 (Quotients of the polynomial ring) In a principal ideal domain, every
prime ideal is principal. Now, by Proposition 5.12, if k is a field, then the polynomial
ring k[x] is a PID. It follows that if P ∈ k[x] is an irreducible polynomial (that is, a
nonconstant polynomial that does not admit a factorization into terms of smaller degrees),
then k[x]/(P ) is a field. It contains a copy of k in a natural way.

This is a very general way of constructing fields. For instance, the complex numbers
C can be constructed as R[x]/(x2 + 1).

Exercise 2.1 What is C[x]/(x2 + 1)?

Example 1.5 (Quotient fields) Recall from ?? 1.25 that, given an integral domain A,
there is an imbedding A ↪→ K(A) into a field K(A) formally constructed as quotients
a/b, a, b ∈ A (and b 6= 0) modulo an evident equivalence relation. This is called the
quotient field. The quotient field has the following universal property: given an injection
φ : A ↪→ K for a field K, there is a unique map ψ : K(A) → K making the diagram
commutative (i.e. a map of A-algebras). Indeed, it is clear how to define such a map: we
set

ψ(a/b) = φ(a)/φ(b),

where injectivity of φ assures that φ(b) 6= 0 if b 6= 0.
If the map is not injective, then such a factorization may not exist. Consider the

imbedding Z → Q into its quotient field, and consider the map Z → Fp: this last map
goes from Z into a field, but it does not factor through Q (as p is invertible in Q and zero
in Fp!).

Example 1.6 (Rational function field) If k is a field, then we can consider the field
k(x) of rational functions over k. This is the quotient field of the polynomial ring k[x];
in other words, it is the set of quotients F/G for F,G ∈ k[x] with the obvious equivalence
relation.

Here is a fancier example of a field.

Example 1.7 Let X be a Riemann surface.1 Let C(X) denote the set of meromorphic
functions on X; clearly C(X) is a ring under multiplication and addition of functions.
It turns out that in fact C(X) is a field; this is because if a nonzero function f(z) is
meromorphic, so is 1/f(z). For example, let S2 be the Riemann sphere; then we know
from complex analysis that the ring of meromorphic functions C(S2) is the field of rational
functions C(z).

One reason fields are so nice from the point of view of most other chapters in this book
is that the theory of k-modules (i.e. vector spaces), for k a field, is very simple. Namely:

Proposition 1.8 If k is a field, then every k-module is free.

1Readers not familiar with Riemann surfaces may ignore this example.
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Proof. Indeed, by linear algebra we know that a k-module (i.e. vector space) V has a basis
B ⊂ V , which defines an isomorphism from the free vector space on B to V . N

Corollary 1.9 Every exact sequence of modules over a field splits.

Proof. This follows from ?? and Proposition 1.8, as every vector space is projective. N

This is another reason why much of the theory in future chapters will not say very much
about fields, since modules behave in such a simple manner. Note that Corollary 1.9 is a
statement about the category of k-modules (for k a field), because the notion of exactness
is inherently arrow-theoretic (i.e. makes use of purely categorical notions, and can in fact
be phrased within a so-called abelian category).

Henceforth, since the study of modules over a field is linear algebra, and since the ideal
theory of fields is not very interesting, we shall study what this chapter is really about:
extensions of fields.

1.2 The characteristic of a field

In the category of rings, there is an initial object Z: any ring R has a map from Z into
it in precisely one way. For fields, there is no such initial object. Nonetheless, there is a
family of objects such that every field can be mapped into in exactly one way by exactly
one of them, and in no way by the others.

Let F be a field. As Z is the initial object of the category of rings, there is a ring map
f : Z→ F , see ?? 1.4. The image of this ring map is an integral domain (as a subring of
a field) hence the kernel of f is a prime ideal in Z, see Proposition 4.12. Hence the kernel
of f is either (0) or (p) for some prime number p, see Example 4.2.

In the first case we see that f is injective, and in this case we think of Z as a subring
of F . Moreover, since every nonzero element of F is invertible we see that it makes sense
to talk about p/q ∈ F for p, q ∈ Z with q 6= 0. Hence in this case we may and we do think
of Q as a subring of F . One can easily see that this is the smallest subfield of F in this
case.

In the second case, i.e., when Ker(f) = (p) we see that Z/(p) = Fp is a subring of F .
Clearly it is the smallest subfield of F .

Arguing in this way we see that every field contains a smallest subfield which is either
Q or finite equal to Fp for some prime number p.

Definition 1.10 The characteristic of a field F is 0 if Z ⊂ F , or is a prime p if p = 0
in F . The prime subfield of F is the smallest subfield of F which is either Q ⊂ F if the
characteristic is zero, or Fp ⊂ F if the characteristic is p > 0.

It is easy to see that if E is a field containing k, then the characteristic of E is the
same as the characteristic of k.

Example 1.11 The characteristic of Z/p is p, and that of Q is 0. This is obvious from
the definitions.
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§2 Field extensions

2.1 Preliminaries

In general, though, we are interested not so much in fields by themselves but in field
extensions. This is perhaps analogous to studying not rings but algebras over a fixed ring.
The nice thing for fields is that the notion of a “field over another field” just recovers the
notion of a field extension, by the next result.

Proposition 2.1 If F is a field and R is any ring, then any ring homomorphism f : F →
R is either injective or the zero map (in which case R = 0).

Proof. Indeed, ker(f) is an ideal in F . But there are only two ideals in F , namely (0) and
(1). If f is identically zero, then 1 = f(1) = 0 in R, so R = 0 too. N

Definition 2.2 If F is a field contained in a field G, then G is said to be a field extension
of F . We shall write G/F to indicate that G is an extension of F .

So if F, F ′ are fields, and F → F ′ is any ring-homomorphism, we see by Proposition 2.1
that it is injective,2 and F ′ can be regarded as an extension of F , by a slight abuse of
notation. Alternatively, a field extension of F is just an F -algebra that happens to be
a field. This is completely different than the situation for general rings, since a ring
homomorphism is not necessarily injective.

Let k be a field. There is a category of field extensions of k. An object of this category
is an extension E/k, that is a (necessarily injective) morphism of fields

k → E,

while a morphism between extensions E/k,E′/k is a k-algebra morphism E → E′; alter-
natively, it is a commutative diagram

E // E′

k

??~~~~~~~~

__>>>>>>>>

.

Definition 2.3 A tower of field extensions E′/E/k consists of an extension E/k and an
extension E′/E.

It is easy to see that any morphism E → E′ in the category of k-extensions gives a
tower.

Let us give a few examples of field extensions.

Example 2.4 Let k be a field, and P ∈ k[x] an irreducible polynomial. We have seen
that k[x]/(P ) is a field (Example 1.6). Since it is also a k-algebra in the obvious way, it
is an extension of k.

2The zero ring is not a field!
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Example 2.5 If X is a Riemann surface, then the field of meromorphic functions C(X)
(see Example 1.7) is an extension field of C, because any element of C induces a meromorphic—
indeed, holomorphic—constant function on X.

Let F/k be a field extension. Let S ⊂ F be any subset. Then there is a smallest
subextension of F (that is, a subfield of F containing k) that contains S. To see this,
consider the family of subfields of F containing S and k, and take their intersection; one
easily checks that this is a field. It is easy to see, in fact, that this is the set of elements of
F that can be obtained via a finite number of elementary algebraic operations (addition,
multiplication, subtraction, and division) involving elements of k and S.

Definition 2.6 If F/k is an extension and S ⊂ F , we write k(S) for the smallest subex-
tension of F containing S. We will say that S generates the extension k(S)/k.

For instance, C is generated by i over R.

Exercise 2.2 Show that C does not have a countable set of generators over Q.

Let us now classify extensions generated by one element.

Proposition 2.7 (Simple extensions of a field) If an extension F/k is generated by
one element, then it is F is k-isomorphic either to the rational function field k(t)/k or to
one of the extensions k[t]/(P ) for P ∈ k[t] irreducible.

We will see that many of the most important cases of field extensions are generated
by one element, so this is actually useful.

Proof. Let α ∈ F be such that F = k(α); by assumption, such an α exists. There is a
morphism of rings

k[t]→ F

sending the indeterminate t to α. The image is a domain, so the kernel is a prime ideal.
Thus, it is either (0) or (P ) for P ∈ k[t] irreducible.

If the kernel is (P ) for P ∈ k[t] irreducible, then the map factors through k[t]/(P ),
and induces a morphism of fields k[t]/(P )→ F . Since the image contains α, we see easily
that the map is surjective, hence an isomorphism. In this case, k[t]/(P ) ' F .

If the kernel is trivial, then we have an injection k[t] → F . One may thus define a
morphism of the quotient field k(t) into F ; given a quotient R(t)/Q(t) with R(t), Q(t) ∈
k[t], we map this to R(α)/Q(α). The hypothesis that k[t] → F is injective implies that
Q(α) 6= 0 unless Q is the zero polynomial. The quotient field of k[t] is the rational function
field k(t), so we get a morphism k(t) → F whose image contains α. It is thus surjective,
hence an isomorphism. N

2.2 Finite extensions

If F/E is a field extension, then evidently F is also a vector space over E (the scalar
action is just multiplication in F ).
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Definition 2.8 The dimension of F considered as an E-vector space is called the degree
of the extension and is denoted [F : E]. If [F : E] < ∞ then F is said to be a finite
extension.

Example 2.9 C is obviously a finite extension of R (of degree 2).

Let us now consider the degree in the most important special example, that given by
Proposition 2.7, in the next two examples.

Example 2.10 (Degree of a simple transcendental extension) If k is any field, then
the rational function field k(t) is not a finite extension. The elements {tn, n ∈ Z} are lin-
early independent over k.

In fact, if k is uncountable, then k(t) is uncountably dimensional as a k-vector space.
To show this, we claim that the family of elements {1/(t− α), α ∈ k} ⊂ k(t) is linearly
independent over k. A nontrivial relation between them would lead to a contradiction:
for instance, if one works over C, then this follows because 1

t−α , when considered as a
meromorphic function on C, has a pole at α and nowhere else. Consequently any sum∑
ci

1
t−αi for the ci ∈ k∗, and αi ∈ k distinct, would have poles at each of the αi. In

particular, it could not be zero.
(Amusingly, this leads to a quick if suboptimal proof of the Hilbert Nullstellensatz; see

??.)

Example 2.11 (Degree of a simple algebraic extension) Consider a monogenic field
extension E/k of the form in Example 1.6, say E = k[t]/(P ) for P ∈ k[t] an irreducible
polynomial. Then the degree [E : k] is just the degree degP . Indeed, without loss of
generality, we can assume P monic, say

P = tn + a1t
n−1 + · · ·+ a0. (2.1)

It is then easy to see that the images of 1, t, . . . , tn−1 in k[t]/(P ) are linearly independent
over k, because any relation involving them would have degree strictly smaller than that
of P , and P is the element of smallest degree in the ideal (P ).

Conversely, the set S =
{

1, t, . . . , tn−1
}

(or more properly their images) spans k[t]/(P )
as a vector space. Indeed, we have by (2.1) that tn lies in the span of S. Similarly, the
relation tP (t) = 0 shows that the image of tn+1 lies in the span of {1, t, . . . , tn}—by what
was just shown, thus in the span of S. Working upward inductively, we find that the
image of tM for M ≥ n lies in the span of S.

This confirms the observation that [C : R] = 2, for instance. More generally, if k is a
field, and α ∈ k is not a square, then the irreducible polynomial x2 − α ∈ k[x] allows one
to construct an extension k[x]/(x2−α) of degree two. We shall write this as k(

√
α). Such

extensions will be called quadratic, for obvious reasons.
The basic fact about the degree is that it is multiplicative in towers.

Proposition 2.12 (Multiplicativity) Suppose given a tower F/E/k. Then

[F : k] = [F : E][E : k].
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Proof. Let α1, . . . , αn ∈ F be an E-basis for F . Let β1, . . . , βm ∈ E be a k-basis for E.
Then the claim is that the set of products {αiβj , 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a k-basis for F .
Indeed, let us check first that they span F over k.

By assumption, the {αi} span F over E. So if f ∈ F , there are ai ∈ E with

f =
∑

aiαi,

and, for each i, we can write ai =
∑
bijβj for some bij ∈ k. Putting these together, we

find
f =

∑
i,j

bijαiβj ,

proving that the {αiβj} span F over k.
Suppose now that there existed a nontrivial relation∑

i,j

cijαiβj = 0

for the cij ∈ k. In that case, we would have

∑
i

αi

∑
j

cijβj

 = 0,

and the inner terms lie in E as the βj do. Now E-linear independence of the {αi} shows
that the inner sums are all zero. Then k-linear independence of the {βj} shows that the
cij all vanish. N

We sidetrack to a slightly tangential definition:

Definition 2.13 A field extensions K of Q is said to be a number field if it is a finite
extension of Q.

Number fields are the basic objects in algebraic number theory. We shall see later that, for
the analog of the integers Z in a number field, something kind of like unique factorization
still holds (though strict unique factorization generally does not!).

2.3 Algebraic extensions

Consider a field extension F/E.

Definition 2.14 An element α ∈ F is said to be algebraic over E if α is the root of
some polynomial with coefficients in E. If all elements of F are algebraic then F is said
to be an algebraic extension.

By Proposition 2.7, the subextension E(α) is isomorphic either to the rational function
field E(t) or to a quotient ring E[t]/(P ) for P ∈ E[t] an irreducible polynomial. In the
latter case, α is algebraic over E (in fact, it satisfies the polynomial P !); in the former
case, it is not.
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Example 2.15 C is algebraic over R.

Example 2.16 Let X be a compact Riemann surface, and f ∈ C(X)−C any nonconstant
meromorphic function on X (see Example 1.7). Then it is known that C(X) is algebraic
over the subextension C(f) generated by f . We shall not prove this.

We now show that there is a deep connection between finiteness and being algebraic.

Proposition 2.17 A finite extension is algebraic. In fact, an extension E/k is algebraic
if and only if every subextension k(α)/k generated by some α ∈ E is finite.

In general, it is very false that an algebraic extension is finite.

Proof. Let E/k be finite, say of degree n. Choose α ∈ E. Then the elements {1, α, . . . , αn}
are linearly dependent over E, or we would necessarily have [E : k] > n. A relation of
linear dependence now gives the desired polynomial that α must satisfy.

For the last assertion, note that a monogenic extension k(α)/k is finite if and only α
is algebraic over k, by Example 2.10 and Example 2.11. So if E/k is algebraic, then each
k(α)/k, α ∈ E, is a finite extension, and conversely. N

We can extract a corollary of the last proof (really of Example 2.10 and Example 2.11):
a monogenic extension is finite if and only if it is algebraic. We shall use this observation
in the next result.

Corollary 2.18 Let k be a field, and let α1, α2, . . . , αn be elements of some extension field
such that each αi is finite over k. Then the extension k(α1, . . . , αn)/k is finite. That is,
a finitely generated algebraic extension is finite.

Proof. Indeed, each k(α1, . . . , αi+1)/k(α1, . . . , αi) is monogenic and algebraic, hence fi-
nite. N

The set of complex numbers that are algebraic over Q are simply called the algebraic
numbers. For instance,

√
2 is algebraic, i is algebraic, but π is not. It is a basic fact

that the algebraic numbers form a field, although it is not obvious how to prove this from
the definition that a number is algebraic precisely when it satisfies a nonzero polynomial
equation with rational coefficients (e.g. by polynomial equations).

Corollary 2.19 Let E/k be a field extension. Then the elements of E algebraic over k
form a field.

Proof. Let α, β ∈ E be algebraic over k. Then k(α, β)/k is a finite extension by Corol-
lary 2.18. It follows that k(α+β) ⊂ k(α, β) is a finite extension, which implies that α+β
is algebraic by Proposition 2.17. N

Many nice properties of field extensions, like those of rings, will have the property that
they will be preserved by towers and composita.

Proposition 2.20 (Towers) Let E/k and F/E be algebraic. Then F/k is algebraic.
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Proof. Choose α ∈ F . Then α is algebraic over E. The key observation is that α is
algebraic over a finitely generated subextension of k. That is, there is a finite set S ⊂ E
such that α is algebraic over k(S): this is clear because being algebraic means that a
certain polynomial in E[x] that α satisfies exists, and as S we can take the coefficients of
this polynomial.

It follows that α is algebraic over k(S). In particular, k(S, α)/k(S) is finite. Since S is
a finite set, and k(S)/k is algebraic, Corollary 2.18 shows that k(S)/k is finite. Together
we find that k(S, α)/k is finite, so α is algebraic over k. N

The method of proof in the previous argument—that being algebraic over E was a
property that descended to a finitely generated subextension of E—is an idea that recurs
throughout algebra, and will be put to use more generality in ??.

2.4 Minimal polynomials

Let E/k be a field extension, and let α ∈ E be algebraic over k. Then α satisfies a
(nontrivial) polynomial equation in k[x]. Consider the set of polynomials P (x) ∈ k[x]
such that P (α) = 0; by hypothesis, this set does not just contain the zero polynomial. It
is easy to see that this set is an ideal. Indeed, it is the kernel of the map

k[x]→ E, x 7→ α.

Since k[x] is a PID, there is a generator m(x) ∈ k[x] of this ideal. If we assume m monic,
without loss of generality, then m is uniquely determined.

Definition 2.21 m(x) as above is called the minimal polynomial of α over k.

The minimal polynomial has the following characterization: it is the monic polynomial,
of smallest degree, that annihilates α. (Any nonconstant multiple of m(x) will have larger
degree, and only multiples of m(x) can annihilate α.) This explains the name minimal.

Clearly the minimal polynomial is irreducible. This is equivalent to the assertion that
the ideal in k[x] consisting of polynomials annihilating α is prime. But this follows from
the fact that the map k[x]→ E, x 7→ α is a map into a domain (even a field), so the kernel
is a prime ideal.

Proposition 2.22 The degree of the minimal polynomial is [k(α) : k].

Proof. This is just a restatement of the argument in ??: the observation is that if m(x)
is the minimal polynomial of α, then the map

k[x]/(m(x))→ k(α), x 7→ α

is an isomorphism as in the aforementioned proof, and we have counted the degree of such
an extension (see Example 2.11). N

So the observation of the above proof is that if α ∈ E is algebraic, then k(α) ⊂ E is
isomorphic to k[x]/(m(x)).
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2.5 Algebraic closure

Now we want to define a “universal” algebraic extension of a field. Actually, we should
be careful: the algebraic closure is not a universal object. That is, the algebraic closure
is not unique up to unique isomorphism: it is only unique up to isomorphism. But still,
it will be very handy, if not functorial.

Definition 2.23 Let F be a field. An algebraic closure of F is a field F containing F
such that:

AC 1 F is algebraic over F .

AC 2 F is algebraically closed (that is, every non-constant polynomial in F [X] has a
root in F ).

The “fundamental theorem of algebra” states that C is algebraically closed. While the
easiest proof of this result uses Liouville’s theorem in complex analysis, we shall give a
mostly algebraic proof below (??).

We now prove the basic existence result.

Theorem 2.24 Every field has an algebraic closure.

The proof will mostly be a red herring to the rest of the chapter. However, we will
want to know that it is possible to embed a field inside an algebraically closed field, and
we will often assume it done.

Proof. Let K be a field and Σ be the set of all monic irreducibles in K[x]. Let A = K[{xf :
f ∈ Σ}] be the polynomial ring generated by indeterminates xf , one for each f ∈ Σ. Then
let a be the ideal of A generated by polynomials of the form f(xf ) for each f ∈ Σ.

Claim 1. a is a proper ideal.

Proof of claim 1. Suppose a = (1), so there exist finitely many polynomials fi ∈ Σ
and gi ∈ A such that 1 = f1(xf1)g1 + · · ·+ fk(xfk)gk. Each gi uses some finite collection
of indeterminates Vi{xfi1 , . . . , xfiki }. This notation is ridiculous, so we simplify it.

We can take the union of all the Vi, together with the indeterminates xf1 , . . . , xfk
to get a larger but still finite set of indeterminates V = {xf1 , . . . , xfn} for some n ≥ k
(ordered so that the original xf1 , . . . , xfk agree the first k elements of V ). Now we can
regard each gi as a polynomial in this new set of indeterminates V . Then, we can write
1 = f1(xf1)g1 + · · ·+ fn(xfn)gn where for each i > k, we let gi = 0 (so that we’ve adjoined
a few zeroes to the right hand side of the equality). Finally, we define xi = xfi , so that
we have 1 = f1(x1)g1(x1, . . . , xn) + · · ·+ fn(xn)gn(x1, . . . , xn).

Suppose n is the minimal integer such that there exists an expression of this form, so
that

b = (f1(x1), . . . , fn−1(xn−1))

is a proper ideal of B = K[x1, . . . , xn−1], but

(f1(x1), . . . , fn(xn))
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is the unit ideal in B[xn]. Let B̂ = B/b (observe that this ring is nonzero). We have a
composition of maps

B[xn]→ B̂[xn]→ B̂[xn]/(f̂n(xn))

where the first map is reduction of coefficients modulo b, and the second map is the

quotient by the principal ideal generated by the image f̂n(xn) of fn(xn) in B̂[xn]. We

know B̂ is a nonzero ring, so since fn is monic, the top coefficient of f̂n(xn) is still
1 ∈ B̂. In particular, the top coefficient cannot be nilpotent. Furthermore, since fn
was irreducible, it is not a constant polynomial, so by the characterization of units in

polynomial rings, f̂n(xn) is not a unit, so it does not generate the unit ideal. Thus the

quotient B̂[xn]/(f̂n(xn)) should not be the zero ring.
On the other hand, observe that each fi(xi) is in the kernel of this composition, so in

fact the entire ideal (f1(x1), . . . , fn(xn)) is contained in the kernel. But this ideal is the
unit ideal, so all of B[xn] is in the kernel of this composition. In particular, 1 ∈ B[xn] is

in the kernel, and since ring maps preserve identity, this forces 1 = 0 in B̂[xn]/(f̂n(xn)),
which makes this the the zero ring. This contradicts our previous observation, and proves
the claim that a is a proper ideal.

Now, given claim 1, there exists a maximal ideal m of A containing a. Let K1 = A/m.
This is an extension field of K via the inclusion given by

K → A→ A/m

(this map is automatically injective as it is a map between fields). Furthermore every
f ∈ Σ has a root in K1. Specifically, the coset xf + m in A/m = K1 is a root of f since

f(xf + m) = f(xf ) + m = 0.

Inductively, given Kn for some n ≥ 1, repeat the construction with Kn in place of K
to get an extension field Kn+1 of Kn in which every irreducible f ∈ Kn[x] has a root. Let
L =

⋃∞
n=1Kn.

Claim 2. Every f ∈ L[x] splits completely into linear factors in L.
Proof of claim 2. We induct on the degree of f . In the base case, when f itself is

linear, there is nothing to prove. Inductively, suppose every polynomial in L[x] of degree
less than n splits completely into linear factors, and suppose

f = a0 + a1x+ · · ·+ anx
n ∈ L[x]

has degree n. Then each ai ∈ Kni for some ni, so let n = maxni and regard f as a
polynomial in Kn[x]. If f is reducible in Kn[x], then we have a factorization f = gh
with the degree of g, h strictly less than n. Therefore, inductively, they both split into
linear factors in L[x], so f must also. On the other hand, if f is irreducible, then by our
construction, it has a root a ∈ Kn+1, so we have f = (x − a)g for some g ∈ Kn+1[x] of
degree n− 1. Again inductively, we can split g into linear factors in L, so clearly we can
do the same with f also. This completes the proof of claim 2.

Let K̄ be the set of algebraic elements in L. Clearly K̄ is an algebraic extension of K.
If f ∈ K̄[x], then we have a factorization of f in L[x] into linear factors

f = b(x− a1)(x− a2) · · · (x− an). N
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for b ∈ K̄ and, a priori, ai ∈ L. But each ai is a root of f , which means it is algebraic over
K̄, which is an algebraic extension of K; so by transitivity of ”being algebraic,” each ai
is algebraic over K. So in fact we conclude that ai ∈ K̄ already, since K̄ consisted of all
elements algebraic over K. Therefore, since K̄ is an algebraic extension of K such that
every f ∈ K̄[x] splits into linear factors in K̄, K̄ is the algebraic closure of K.

TO BE ADDED: two algebraic closures are isomorphic
Let K be an algebraically closed field. Then the ring K[x] has a very simple ideal

structure. Since every polynomial P ∈ K[x] has a root, it follows that there is always a
decomposition (by dividing repeatedly)

P = c(x− α1) . . . (x− αn),

where c is the constant term and the {αi} ⊂ k are the roots of P . In particular:

Proposition 2.25 For K algebraically closed, the only irreducible polynomials in K[x]
are the linear polynomials c(x− α), c, α ∈ K (and c 6= 0).

In particular, two polynomials in K[x] are relatively prime (i.e., generate the unit
ideal) if and only if they have no common roots. This follows because the maximal ideals
of K[x] are of the form (x − α), α ∈ K. So if F,G ∈ K[x] have no common root, then
(F,G) cannot be contained in any (x−α) (as then they would have a common root at α).

If k is not algebraically closed, then this still gives information about when two poly-
nomials in k[x] generate the unit ideal.

Definition 2.26 If k is any field, we say that two polynomials in k[x] are relatively
prime if they generate the unit ideal in k[x].

Proposition 2.27 Two polynomials in k[x] are relatively prime precisely when they have
no common roots in an algebraic closure k of k.

Proof. The claim is that any two polynomials P,Q generate (1) in k[x] if and only if
they generate (1) in k[x]. This is a piece of linear algebra: a system of linear equations
with coefficients in k has a solution if and only if it has a solution in any extension of k.
Consequently, we can reduce to the case of an algebraically closed field, in which case the
result is clear from what we have already proved. N

§3 Separability and normality

3.1 Separable extensions

Throughout, F ⊂ K is a finite field extension. We fix once and for all an algebraic closure
F for F and an embedding of F in M .

Definition 3.1 For an element α ∈ K with minimal polynomial q ∈ F [x], we say q and
α are separable if q has distinct roots (in some algebraic closure F !), and we say K is
separable if this holds for all α ∈ K.
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By Proposition 2.27, separability of a polynomial P ∈ F [x] is equivalent to (P, P ′) = 1
in F [x]. Indeed, this follows from the fact that P has no multiple roots if and only if P, P ′

have no common roots.

Lemma 3.2 q(x) ∈ F [x] is separable if and only if gcd(q, q′) = 1, where q′ is the formal
derivative of q.

3.2 Purely inseparable extensions

Definition 3.3 For an element α ∈ K with minimal polynomial q, we say α is purely
inseparable if q has only one root. We say K is splitting if each q splits in K.

Definition 3.4 If K = F (α) for some α with minimal polynomial q(x) ∈ F [x], then by

Lemma 4.3, q(x) = r(xp
d
), where p = charF (or 1 if charF = 0) and r is separable; in

this case we also denote degs(K/F ) = deg(r), degi(K/F ) = pd.

§4 Galois theory

4.1 Definitions

Throughout, F ⊂ K is a finite field extension. We fix once and for all an algebraic closure
M for both and an embedding of F in M . When necessary, we write K = F (α1, . . . , αn),
and K0 = F,Ki = F (α1, . . . , αi), qi the minimal polynomial of αi over Fi−1, Qi that over
F .

Definition 4.1 Aut(K/F ) denotes the group of automorphisms of K which fix F (point-
wise!). Emb(K/F ) denotes the set of embeddings of K into M respecting the chosen
embedding of F .

Definition 4.2 By deg(K/F ) we mean the dimension of K as an F -vector space. We
denote Ks/F the set of elements of K whose minimal polynomials over F have distinct
roots; by Corollary 4.13 this is a subfield, and deg(Ks/F ) = degs(K/F ) and deg(K/Ks) =
degi(K/F ) by definition.

4.2 Theorems

Lemma 4.3 If charF = 0 then Ks = K. If charF = p > 0, then for any irreducible
q(x) ∈ K[x], there is some d ≥ 0 and polynomial r(x) ∈ K[x] such that q(x) = r(xp

d
),

and r is separable and irreducible.

Proof. By formal differentiation, q′(x) has positive degree unless each exponent is a multi-
ple of p; in characteristic zero this never occurs. If this is not the case, since q is irreducible,
it can have no factor in common with q′ and therefore has distinct roots by Lemma 3.2.

If p > 0, let d be the largest integer such that each exponent of q is a multiple of pd,
and define r by the above equation. Then by construction, r has at least one exponent
which is not a multiple of p, and therefore has distinct roots. N
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Corollary 4.4 In the statement of Lemma 4.3, q and r have the same number of roots.

Proof. α is a root of q if and only if αp
d

is a root of r; i.e. the roots of q are the roots of
xp

d−β, where β is a root of r. But if α is one such root, then (x−α)p
d

= xp
d−αpd = xp

d−β
since charK = p, and therefore α is the only root of xp

d − β. N

Lemma 4.5 The correspondence which to each g ∈ Emb(K/F ) assigns the n-tuple (g(α1), . . . , g(αn))
of elements of M is a bijection from Emb(K/F ) to the set of tuples of βi ∈M , such that
βi is a root of qi over K(β1, . . . , βi−1).

Proof. First take K = F (α) = F [x]/(q), in which case the maps g : K → M over F are
identified with the elements β ∈M such that q(β) = 0 (where g(α) = β).

Now, considering the tower K = Kn/Kn−1/ . . . /K0 = F , each extension of which is
primitive, and a given embedding g, we define recursively g1 ∈ Emb(K1/F ) by restriction
and subsequent gi by identifying Ki−1 with its image and restricting g to Ki. By the
above paragraph each gi corresponds to the image βi = gi(αi), each of which is a root of
qi. Conversely, given such a set of roots of the qi, we define g recursively by this formula.N

Corollary 4.6 |Emb(K/F )| =
∏n
i=1 degs(qi).

Proof. This follows immediately by induction from Lemma 4.5 by Corollary 4.4. N

Lemma 4.7 For any f ∈ Emb(K/F ), the map Aut(K/F ) → Emb(K/F ) given by σ 7→
f ◦ σ is injective.

Proof. This is immediate from the injectivity of f . N

Corollary 4.8 Aut(K/F ) is finite.

Proof. By Lemma 4.7, Aut(K/F ) injects into Emb(K/F ), which by Corollary 4.6 is fi-
nite. N

Proposition 4.9 The inequality

|Aut(K/F )| ≤ |Emb(K/F )|

is an equality if and only if the qi all split in K.

Proof. The inequality follows from Lemma 4.7 and from Corollary 4.8. Since both sets
are finite, equality holds if and only if the injection of Lemma 4.7 is surjective (for fixed
f ∈ Emb(K/F )).

If surjectivity holds, let β1, . . . , βn be arbitrary roots of q1, . . . , qn in the sense of
Lemma 4.5, and extract an embedding g : K → M with g(αi) = βi. Since the corre-
spondence f 7→ f ◦ σ (σ ∈ Aut(K/F )) is a bijection, there is some σ such that g = f ◦ σ,
and therefore f and g have the same image. Therefore the image of K in M is canonical,
and contains β1, . . . , βn for any choice thereof.

If the qi all split, let g ∈ Emb(K/F ) be arbitrary, so the g(αi) are roots of qi in M as
in Lemma 4.5. But the qi have all their roots in K, hence in the image f(K), so f and g
again have the same image, and f−1 ◦ g ∈ Aut(K/F ). Thus g = f ◦ (f−1 ◦ g) shows that
the map of Lemma 4.7 is surjective. N
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Corollary 4.10 Define

D(K/F ) =
n∏
i=1

degs(Ki/Ki−1).

Then the chain of equalities and inequalities

|Aut(K/F )| ≤ |Emb(K/F )| = D(K/F ) ≤ deg(K/F )

holds; the first inequality is an equality if and only if each qi splits in K, and the second
if and only if each qi is separable.

Proof. The statements concerning the first inequality are just Proposition 4.9; the interior
equality is just Corollary 4.6; the latter inequality is obvious from the multiplicativity of
the degrees of field extensions; and the deduction for equality follows from the definition
of degs. N

Corollary 4.11 The qi respectively split and are separable in K if and only if the Qi do
and are.

Proof. The ordering of the αi is irrelevant, so we may take each i = 1 in turn. Then Q1 =
q1 and if either of the equalities in Corollary 4.10 holds then so does the corresponding
statement here. Conversely, clearly each qi divides Qi, so splitting or separability for the
latter implies that for the former. N

Corollary 4.12 Let α ∈ K have minimal polynomial q; if the Qi are respectively split,
separable, and purely inseparable over F then q is as well.

Proof. We may take α as the first element of an alternative generating set for K/F . The
numerical statement of Corollary 4.10 does not depend on the particular generating set,
hence the conditions given hold of the set containing α if and only if they hold of the
canonical set α1, . . . , αn.

For purely inseparable, if the Qi all have only one root then |Emb(K/F )| = 1 by
Corollary 4.10, and taking α as the first element of a generating set as above shows that
q must have only one root as well for this to hold. N

Corollary 4.13 Ks is a field and deg(Ks/F ) = D(K/F ).

Proof. Assume charF = p > 0, for otherwise Ks = K. Using Lemma 4.3, write each

Qi = Ri(x
pdi ), and let βi = αp

di

i . Then the βi have Ri as minimal polynomials and the αi
satisfy si = xp

di −βi over K ′ = F (β1, . . . , βn). Therefore the αi have minimal polynomials
over K ′ dividing the si and hence those polynomials have but one distinct root.

By Corollary 4.12, the elements of K ′ are separable, and those of K ′ purely inseparable
over K ′. In particular, since these minimal polynomials divide those over F , none of these
elements is separable, so K ′ = Ks.

The numerical statement follows by computation:

deg(K/K ′) =

n∏
i=1

pdi =

n∏
i=1

deg(Ki/Ki−1)

degs(Ki/Ki−1)
=

deg(K/F )

D(K/F )
. N
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Theorem 4.14 The following inequality holds:

|Aut(K/F )| ≤ |Emb(K/F )| = degs(K/F ) ≤ deg(K/F ).

Equality holds on the left if and only if K/F is splitting; it holds on the right if and only
if K/F is separable.

Proof. The numerical statement combines Corollary 4.10 and Corollary 4.13. The deduc-
tions combine Corollary 4.11 and Corollary 4.12. N

4.3 Definitions

Throughout, we will denote as before K/F a finite field extension, and G = Aut(K/F ),
H a subgroup of G. L/F is a subextension of K/F .

Definition 4.15 When K/F is separable and splitting, we say it is Galois and write
G = Gal(K/F ), the Galois group of K over F .

Definition 4.16 The fixed field of H is the field KH of elements fixed by the action of
H on K. Conversely, GL is the fixing subgroup of L, the subgroup of G whose elements
fix L.

4.4 Theorems

Lemma 4.17 A polynomial q(x) ∈ K[x] which splits in K lies in KH [x] if and only if its
roots are permuted by the action of H. In this case, the sets of roots of the irreducible fac-
tors of q over KH are the orbits of the action of H on the roots of q (counting multiplicity).

Proof. Since H acts by automorphisms, we have σq(x) = q(σx) as a functional equation
on K, so σ permutes the roots of q. Conversely, since the coefficients of σ are the elemen-
tary symmetric polynomials in its roots, H permuting the roots implies that it fixes the
coefficients.

Clearly q is the product of the polynomials qi whose roots are the orbits of the action of
H on the roots of q, counting multiplicities, so it suffices to show that these polynomials are
defined over KH and are irreducible. Since H acts on the roots of the qi by construction,
the former is satisfied. If some qi factored over KH , its factors would admit an action of H
on their roots by the previous paragraph. The roots of qi are distinct by construction, so
its factors do not share roots; hence the action on the roots of qi would not be transitive,
a contradiction. N

Corollary 4.18 Let q(x) ∈ K[x]; if it is irreducible, then H acts transitively on its roots;
conversely, if q is separable and H acts transitively on its roots, then q(x) ∈ KH [x] is
irreducible.

Proof. Immediate from Lemma 4.17. N
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Lemma 4.19 If K/F is Galois, so is K/L, and Gal(K/L) = GL..

Proof. K/F Galois means that the minimal polynomial over F of every element of K
is separable and splits in K; the minimal polynomials over L = KH divide those over
F , and therefore this is true of K/L as well; hence K/L is likewise a Galois extension.
Gal(K/L) = Aut(K/L) consists of those automorphisms σ of K which fix L; since F ⊂ L
we have a fortiori that σ fixes F , hence Gal(K/L) ⊂ G and consists of the subgroup which
fixes L; i.e. GL. N

Corollary 4.20 If K/F and L/F are Galois, then the action of G on elements of L
defines a surjection of G onto Gal(L/F ). Thus GL is normal in G and Gal(L/F ) ∼= G/GL.
Conversely, if N ⊂ G is normal, then KN/F is Galois.

Proof. L/F is splitting, so by Lemma 4.17 the elements of G act as endomorphisms (hence
automorphisms) of L/F , and the kernel of this action is GL. By Lemma 4.19, we have
GL = Gal(K/L), so |GL| = |Gal(K/L)| = [K : L] = [K : F ]/[L : F ], or rearranging
and using that K/F is Galois, we get |G|/|GL| = [L : F ] = |Gal(L/F )|. Thus the
map G → Gal(L/F ) is surjective and thus the induced map G/GL → Gal(L/F ) is an
isomorphism.

Conversely, let N be normal and take α ∈ KN . For any conjugate β of α, we have
β = g(α) for some g ∈ G; let n ∈ N . Then n(β) = (ng)(α) = g(g−1ng)(α) = g(α) = β,
since g−1ng ∈ N by normality of N . Thus β ∈ KN , so KN is splitting, i.e., Galois. N

Proposition 4.21 If K/F is Galois and H = GL, then KH = L.

Proof. By Lemma 4.19, K/L and K/KH are both Galois. By definition, Gal(K/L) =
GL = H; since H fixes KH we certainly have H < Gal(K/KH), but since L ⊂ KH we
have a fortiori that Gal(K/KH) < Gal(K/L) = H, so Gal(K/KH) = H as well. It
follows from Theorem 4.14 that deg(K/L) = |H| = deg(K/KH), so that KH = L. N

Lemma 4.22 If K is a finite field, then K∗ is cyclic.

Proof. K is then a finite extension of Fp for p = charK, hence has order pn, n =
deg(K/Fp). Thus αp

n
= α for all α ∈ K, since |K∗| = pn − 1. It follows that every

element of K is a root of qn(x) = xp
n − x. For any d < n, the elements of order at most

pd − 1 satisfy qd(x), which has pd roots. It follows that there are at least pn(p − 1) > 0
elements of order exactly pn − 1, so K∗ is cyclic. N

Corollary 4.23 If K is a finite field, then Gal(K/F ) is cyclic, generated by the Frobenius
automorphism.

Proof. First take F = Fp. Then the map fi(α) = αp
i

is an endomorphism, injective since
K is a field, and surjective since it is finite, hence an automorphism. Since every α satisfies
αp

n
= α, fn = 1, but by Lemma 4.22, fn−1 is nontrivial (applied to the generator). Since

n = deg(K/F ), f = f1 generates Gal(K/F ).
If F is now arbitrary, by Proposition 4.21 we have Gal(K/F ) = Gal(K/Fp)F , and

every subgroup of a cyclic group is cyclic. N
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Corollary 4.24 If K is finite, K/F is primitive.

Proof. No element of G fixes the generator α of K∗, so it cannot lie in any proper subfield.
Therefore F (α) = K. N

Proposition 4.25 If F is infinite and K/F has only finitely many subextensions, then it
is primitive.

Proof. We proceed by induction on the number of generators of K/F .
If K = F (α) we are done. If not, K = F (α1, . . . , αn) = F (α1, . . . , αn−1)(αn) =

F (β, αn) by induction, so we may assume n = 2. There are infinitely many subfields
F (α1 + tα2), with t ∈ F , hence two of them are equal, say for t1 and t2. Thus, α1 + t2α2 ∈
F (α1 + t1α2). Then (t2 − t1)α2 ∈ F (α1 + t1α2), hence α2 lies in this field, hence α1 does.
Therefore K = F (α1 + t1α2). N

Corollary 4.26 If K/F is separable, it is primitive, and the generator may be taken to
be a linear combination of any finite set of generators of K/F .

Proof. We may embed K/F in a Galois extension M/F by adjoining all the conjugates of
its generators. Subextensions of K/F are as well subextensions of K ′/F and by Proposi-
tion 4.21 the map H 7→ (K ′)H is a surjection from the subgroups of G to the subextensions
of K ′/F , which are hence finite in number. By Corollary 4.24 we may assume F is infinite.
The result now follows from Proposition 4.25. N

Corollary 4.27 If K/F is Galois and H ⊂ G, then if L = KH , we have H = GL.

Proof. Let α be a primitive element for K/L. The polynomial
∏
h∈H(x − h(α)) is fixed

by H, and therefore has coefficients in L, so α has |H| conjugate roots over L. But since
α is primitive, we have K = L(α), so the minimal polynomial of α has degree deg(K/L),
which is the same as the number of its roots. Thus |H| = deg(K/L). Since H ⊂ GL and
|GL| = deg(K/L), we have equality. N

Theorem 4.28 The correspondences H 7→ KH , L 7→ GL define inclusion-reversing in-
verse maps between the set of subgroups of G and the set of subextensions of K/F , such
that normal subgroups and Galois subfields correspond.

Proof. This combines Proposition 4.21, Corollary 4.27, and Corollary 4.20. N

§5 Transcendental Extensions

There is a distinguished type of transcendental extension: those that are “purely tran-
scendental.”

Definition 5.1 A field extension E′/E is purely transcendental if it is obtained by ad-
joining a set B of algebraically independent elements. A set of elements is algebraically
independent over E if there is no nonzero polynomialP with coefficients in E such that
P (b1, b2, · · · bn) = 0 for any finite subset of elements b1, . . . , bn ∈ B.
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Example 5.2 The field Q(π) is purely transcendental; in particular, Q(π) ∼= Q(x) with
the isomorphism fixing Q.

Similar to the degree of an algebraic extension, there is a way of keeping track of the
number of algebraically independent generators that are required to generate a purely
transcendental extension.

Definition 5.3 Let E′/E be a purely transcendental extension generated by some set
of algebraically independent elements B. Then the transcendence degree trdeg(E′/E) =
#(B) and B is called a transcendence basis for E′/E (we will see later that trdeg(E′/E)
is independent of choice of basis).

In general, let F/E be a field extension, we can always construct an intermediate extension
F/E′/E such that F/E′ is algebraic and E′/E is purely transcendental. Then if B is
a transcendence basis for E′, it is also called a transcendence basis for F . Similarly,
trdeg(F/E) is defined to be trdeg(E′/E).

Theorem 5.4 Let F/E be a field extension, a transcendence basis exists.

Proof. Let A be an algebraically independent subset of F . Now pick a subset G ⊂ F
that generates F/E, we can find a transcendence basis B such that A ⊂ B ⊂ G. Define a
collection of algebraically independent sets B whose members are subsets of G that contain
A. The set can be partially ordered inclusion and contains at least one element, A. The
union of elements of B is algebraically independent since any algebraic dependence relation
would have occurred in one of the elements of B since the polynomial is only allowed to be
over finitely many variables. The union also satisfies A ⊂

⋃
B ⊂ G so by Zorn’s lemma,

there is a maximal element B ∈ B. Now we claim F is algebraic over E(B). This is because
if it wasn’t then there would be a transcendental element f ∈ G (since E(G) = F )such
that B ∪ {f} wold be algebraically independent contradicting the maximality of B. Thus
B is our transcendence basis. N

Now we prove that the transcendence degree of a field extension is independent of choice
of basis.

Theorem 5.5 Let F/E be a field extension. Any two transcendence bases for F/E have
the same cardinality. This shows that the trdeg(E/F ) is well defined.

Proof. Let B and B′ be two transcendence bases. Without loss of generality, we can
assume that #(B′) ≤ #(B). Now we divide the proof into two cases: the first case is
that B is an infinite set. Then for each α ∈ B′, there is a finite set Bα such that α
is algebraic over E(Bα) since any algebraic dependence relation only uses finitely many
indeterminates. Then we define B∗ =

⋃
α∈B′ Bα. By construction, B∗ ⊂ B, but we claim

that in fact the two sets are equal. To see this, suppose that they are not equal, say there
is an element β ∈ B \ B∗. We know β is algebraic over E(B′) which is algebraic over
E(B∗). Therefor β is algebraic over E(B∗), a contradiction. So #(B) ≤

∑
α∈B′ #(Bα).

Now if B′ is finite, then so is B so we can assume B′ is infinite; this means

#(B) ≤
∑
α∈B′

#(Bα) = #(
∐

Bα) ≤ #(B′ × Z) = #(B′) (2.2)
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with the inequality #(
∐
Bα) ≤ #(B′ × Z) given by the correspondence bαi 7→ (α, i) ∈

B′ × Z with Bα = {bα1 , bα2 · · · bαnα} Therefore in the infinite case, #(B) = #(B′).

Now we need to look at the case where B is finite. In this case, B′ is also finite, so
suppose B = {α1, · · ·αn} and B′ = {β1, · · ·βm} with m ≤ n. We perform induction on
m: if m = 0 then F/E is algebraic so B = so n = 0, otherwise there is an irreducible
polynomial f ∈ E[x, y1, · · · yn] such that f(β1, α1, · · ·αn) = 0. Since β1 is not algebraic
over E, f must involve some yi so without loss of generality, assume f uses y1. Let B∗ =
{β1, α2, · · ·αn}. We claim that B∗ is a basis for F/E. To prove this claim, we see that we
have a tower of algebraic extensions F/E(B∗, α1)/E(B∗) since α1 is algebraic over E(B∗).
Now we claim that B∗ (counting multiplicity of elements) is algebraically independent
over E because if it weren’t, then there would be an irreducible g ∈ E[x, y2, · · · yn] such
that g(β1, α2, · · ·αn) = 0 which must involve x making β1 algebraic over E(α2, · · ·αn)
which would make α1 algebraic over E(α2, · · ·αn) which is impossible. So this means
that {α2, · · ·αn} and {β2, · · ·βm} are bases for F over E(β1) which means by induction,
m = n. N

Example 5.6 Consider the field extension Q(e, π) formed by adjoining the numbers e
and π. This field extension has transcendence degree at least 1 since both e and π are
transcendental over the rationals. However, this field extension might have transcendence
degree 2 if e and π are algebraically independent. Whether or not this is true is unknown
and the problem of determining trdeg(Q(e, π)) is an open problem.

Example 5.7 let E be a field and F = E(t)/E. Then {t} is a transcendence basis since
F = E(t). However, {t2} is also a transcendence basis since E(t)/E(t2) is algebraic.
This illustrates that while we can always decompose an extension F/E into an algebraic
extension F/E′ and a purely transcendental extension E′/E, this decomposition is not
unique and depends on choice of transcendence basis.

Exercise 2.3 If we have a tower of fields G/F/E, then trdeg(G/E) = trdeg(F/E) +
trdeg(G/F ).

Example 5.8 Let X be a compact Riemann surface. Then the function field C(X) (see
Example 1.7) has transcendence degree one over C. In fact, any finitely generated exten-
sion of C of transcendence degree one arises from a Riemann surface. There is even an
equivalence of categories between the category of compact Riemann surfaces and (non-
constant) holomorphic maps and the opposite category of finitely generated extensions of
C and morphisms of C-algebras. See [For91].

There is an algebraic version of the above statement as well. Given an (irreducible)
algebraic curve in projective space over an algebraically closed field k (e.g. the complex
numbers), one can consider its “field of rational functions:” basically, functions that look
like quotients of polynomials, where the denominator does not identically vanish on the
curve. There is a similar anti-equivalence of categories between smooth projective curves
and non-constant morphisms of curves and finitely generated extensions of k of transcen-
dence degree one. See [Har77].
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5.1 Linearly Disjoint Field Extensions

Let k be a field, K and L field extensions of k. Suppose also that K and L are embedded
in some larger field Ω.

Definition 5.9 The compositum of K and L written KL is k(K ∪ L) = L(K) = K(L).

Definition 5.10 K and L are said to be linearly disjoint over k if the following map is
injective:

θ : K ⊗k L→ KL (2.3)

defined by x⊗ y 7→ xy.
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Chapter 3

Three important functors

There are three functors that will be integral to our study of commutative algebra in the
future: localization, the tensor product, and Hom. While localization is an exact functor,
the tensor product and Hom are not. The failure of exactness in those cases leads to the
theory of flatness and projectivity (and injectivity), and eventually the derived functors
Tor and Ext that crop up in commutative algebra.

§1 Localization

Localization is the process of making invertible a collection of elements in a ring. It is a
generalization of the process of forming a quotient field of an integral domain.

1.1 Geometric intuition

We first start off with some of the geometric intuition behind the idea of localization. Sup-
pose we have a Riemann surface X (for example, the Riemann sphere). Let A(U) be the
ring of holomorphic functions over some neighborhood U ⊂ X. Now, for holomorphicity
to hold, all that is required is that a function doesn’t have a pole inside of U , thus when
U = X, this condition is the strictest and as U gets smaller functions begin to show up
that may not arise from the restriction of a holomorphic function over a larger domain.
For example, if we want to study holomorphicity “near a point z0” all that we should re-
quire is that the function doesn’t pole at z0. This means that we should consider quotients
of holomorphic functions f/g where g(z0) 6= 0. This process of inverting a collection of
elements is expressed through the algebraic construction known as “localization.”

1.2 Localization at a multiplicative subset

Let R be a commutative ring. We start by constructing the notion of localization in the
most general sense.

We have already implicitly used this definition, but nonetheless, we make it formally:

Definition 1.1 A subset S ⊂ R is a multiplicative subset if 1 ∈ S and if x, y ∈ S
implies xy ∈ S.

We now define the notion of localization. Formally, this means inverting things. This
will give us a functor from R-modules to R-modules.
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Definition 1.2 If M is an R-module, we define the module S−1M as the set of formal
fractions

{m/s,m ∈M, s ∈ S}

modulo an equivalence relation: where m/s ∼ m′/s′ if and only if

t(s′m−m′s) = 0

for some t ∈ S. The reason we need to include the t in the definition is that otherwise the
relation would not be transitive (i.e. would not be an equivalence relation).

So two fractions agree if they agree when clearing denominators and multiplication.
It is easy to check that this is indeed an equivalence relation. Moreover S−1M is an

abelian group with the usual addition of fractions

m

s
+
m′

s′
=
s′m+ sm′

ss′

and it is easy to check that this is a legitimate abelian group.

Definition 1.3 Let M be an R-module and S ⊂ R a multiplicative subset. The abelian
group S−1M is naturally an R-module. We define

x(m/s) = (xm)/s, x ∈ R.

It is easy to check that this is well-defined and makes it into a module.
Finally, we note that localization is a functor from the category of R-modules to itself.

Indeed, given f : M → N , there is a naturally induced map S−1M
S−1f→ S−1N .

We now consider the special case when the localized module is the initial ring itself.
Let M = R. Then S−1R is an R-module, and it is in fact a commutative ring in its own
right. The ring structure is quite tautological:

(x/s)(y/s′) = (xy/ss′).

There is a map R→ S−1R sending x→ x/1, which is a ring-homomorphism.

Definition 1.4 For S ⊂ R a multiplicative set, the localization S−1R is a commutative
ring as above. In fact, it is an R-algebra; there is a natural map φ : R → S−1R sending
r → r/1.

We can, in fact, describe φ : R → S−1R by a universal property. Note that for each
s ∈ S, φ(s) is invertible. This is because φ(s) = s/1 which has a multiplicative inverse
1/s. This property characterizes S−1R.

For any commutative ring B, Hom(S−1R,B) is naturally isomorphic to the subset
of Hom(R,B) that send S to units. The map takes S−1R → B to the pull-back R →
S−1R → B. The proof of this is very simple. Suppose that f : R → B is such that
f(s) ∈ B is invertible for each s ∈ S. Then we must define S−1R→ B by sending r/s to
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f(r)f(s)−1. It is easy to check that this is well-defined and that the natural isomorphism
as claimed is true.

Let R be a ring, M an R-module, S ⊂ R a multiplicatively closed subset. We defined
a ring of fractions S−1R and an R-module S−1M . But in fact this is a module over the
ring S−1R. We just multiply (x/t)(m/s) = (xm/st).

In particular, localization at S gives a functor from R-modules to S−1R-modules.

Exercise 3.1 Let R be a ring, S a multiplicative subset. Let T be the R-algebra
R[{xs}s∈S ]/({sxs − 1}). This is the polynomial ring in the variables xs, one for each
s ∈ S, modulo the ideal generated by sxs = 1. Prove that this R-algebra is naturally
isomorphic to S−1R, using the universal property.

Exercise 3.2 Define a functor Rings→ Sets sending a ring to its set of units, and show
that it is corepresentable (use Z[X,X−1]).

1.3 Local rings

A special case of great importance in the future is when the multiplicative subset is
the complement of a prime ideal, and we study this in the present subsection. Such
localizations will be “local rings” and geometrically correspond to the process of zooming
at a point.

Example 1.5 Let R be an integral domain and let S = R−{0}. This is a multiplicative
subset because R is a domain. In this case, S−1R is just the ring of fractions by allowing
arbitrary nonzero denominators; it is a field, and is called the quotient field. The most
familiar example is the construction of Q as the quotient field of Z.

We’d like to generalize this example.

Example 1.6 Let R be arbitrary and p is a prime ideal. This means that 1 /∈ p and
x, y ∈ R−p implies that xy ∈ R−p. Hence, the complement S = R−p is multiplicatively
closed. We get a ring S−1R.

Definition 1.7 This ring is denoted Rp and is called the localization at p. If M is an
R-module, we write Mp for the localization of M at R− p.

This generalizes the previous example (where p = (0)).

There is a nice property of the rings Rp. To elucidate this, we start with a lemma.

Lemma 1.8 Let R be a nonzero commutative ring. The following are equivalent:

1. R has a unique maximal ideal.

2. If x ∈ R, then either x or 1− x is invertible.

Definition 1.9 In this case, we call R local. A local ring is one with a unique maximal
ideal.
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Proof (Proof of the lemma). First we prove (2) =⇒ (1).
Assume R is such that for each x, either x or 1 − x is invertible. We will find the

maximal ideal. Let M be the collection of noninvertible elements of R. This is a subset
of R, not containing 1, and it is closed under multiplication. Any proper ideal must be a
subset of M, because otherwise that proper ideal would contain an invertible element.

We just need to check that M is closed under addition. Suppose to the contrary that
x, y ∈M but x+ y is invertible. We get (with a = x/(x+ y))

1 =
x

x+ y
+

y

x+ y
= a+ (1− a).

Then one of a, 1− a is invertible. So either x(x+ y)−1 or y(x+ y)−1 is invertible, which
implies that either x, y is invertible, contradiction.

Now prove the reverse direction. Assume R has a unique maximal ideal M. We claim
that M consists precisely of the noninvertible elements. To see this, first note that M can’t
contain any invertible elements since it is proper. Conversely, suppose x is not invertible,
i.e. (x) ( R. Then (x) is contained in a maximal ideal by Proposition 4.5, so (x) ⊂ M
since M is unique among maximal ideals. Thus x ∈M.

Suppose x ∈ R; we can write 1 = x + (1 − x). Since 1 /∈M, one of x, 1− x must not
be in M, so one of those must not be invertible. So (1) =⇒ (2). The lemma is proved.N

Let us give some examples of local rings.

Example 1.10 Any field is a local ring because the unique maximal ideal is (0).

Example 1.11 Let R be any commutative ring and p ⊂ R a prime ideal. Then Rp is a
local ring.

We state this as a result.

Proposition 1.12 Rp is a local ring if p is prime.

Proof. Let m ⊂ Rp consist of elements x/s for x ∈ p and s ∈ R−p. It is left as an exercise
(using the primality of p) to the reader to see that whether the numerator belongs to p is
independent of the representation x/s used for it.

Then I claim that m is the unique maximal ideal. First, note that m is an ideal; this
is evident since the numerators form an ideal. If x/s, y/s′ belong to m with appropriate
expressions, then the numerator of

xs′ + ys

ss′

belongs to p, so this sum belongs to m. Moreover, m is a proper ideal because 1
1 is not of

the appropriate form.
I claim that m contains all other proper ideals, which will imply that it is the unique

maximal ideal. Let I ⊂ Rp be any proper ideal. Suppose x/s ∈ I. We want to prove
x/s ∈ m. In other words, we have to show x ∈ p. But if not x/s would be invertible, and
I = (1), contradiction. This proves locality. N

Exercise 3.3 Any local ring is of the form Rp for some ring R and for some prime ideal
p ⊂ R.
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Example 1.13 Let R = Z. This is not a local ring; the maximal ideals are given by (p)
for p prime. We can thus construct the localizations Z(p) of all fractions a/b ∈ Q where
b /∈ (p). Here Z(p) consists of all rational numbers that don’t have powers of p in the
denominator.

Exercise 3.4 A local ring has no idempotents other than 0 and 1. (Recall that e ∈ R is
idempotent if e2 = e.) In particular, the product of two rings is never local.

It may not yet be clear why localization is such a useful process. It turns out that
many problems can be checked on the localizations at prime (or even maximal) ideals, so
certain proofs can reduce to the case of a local ring. Let us give a small taste.

Proposition 1.14 Let f : M → N be a homomorphism of R-modules. Then f is injective
if and only if for every maximal ideal m ⊂ R, we have that fm : Mm → Nm is injective.

Recall that, by definition, Mm is the localization at R−m.
There are many variants on this (e.g. replace with surjectivity, bijectivity). This is a

general observation that lets you reduce lots of commutative algebra to local rings, which
are easier to work with.

Proof. Suppose first that each fm is injective. I claim that f is injective. Suppose x ∈
M − {0}. We must show that f(x) 6= 0. If f(x) = 0, then fm(x) = 0 for every maximal
ideal m. Then by injectivity it follows that x maps to zero in each Mm. We would now
like to get a contradiction.

Let I = {a ∈ R : ax = 0 ∈M}. This is proper since x 6= 0. So I is contained in some
maximal ideal m. Then x maps to zero in Mm by the previous paragraph; this means that
there is s ∈ R−m with sx = 0 ∈M . But s /∈ I, contradiction.

Now let us do the other direction. Suppose f is injective and m a maximal ideal;
we prove fm injective. Suppose fm(x/s) = 0 ∈ Nm. This means that f(x)/s = 0 in
the localized module, so that f(x) ∈ M is killed by some t ∈ R − m. We thus have
f(tx) = t(f(x)) = 0 ∈ M . This means that tx = 0 ∈ M since f is injective. But this in
turn means that x/s = 0 ∈Mm. This is what we wanted to show. N

1.4 Localization is exact

Localization is to be thought of as a very mild procedure.
The next result says how inoffensive localization is. This result is a key tool in reducing

problems to the local case.

Proposition 1.15 Suppose f : M → N, g : N → P and M → N → P is exact. Let
S ⊂ R be multiplicatively closed. Then

S−1M → S−1N → S−1P

is exact.

Or, as one can alternatively express it, localization is an exact functor.
Before proving it, we note a few corollaries:
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Corollary 1.16 If f : M → N is surjective, then S−1M → S−1N is too.

Proof. To say that A → B is surjective is the same as saying that A → B → 0 is exact.
From this the corollary is evident. N

Similarly:

Corollary 1.17 If f : M → N is injective, then S−1M → S−1N is too.

Proof. To say that A → B is injective is the same as saying that 0 → A → B is exact.
From this the corollary is evident. N

Proof (Proof of the proposition). We adopt the notation of the proposition. If the com-
posite g ◦ f is zero, clearly the localization S−1M → S−1N → S−1P is zero too. Call the
maps S−1M → S−1N,S−1N → S−1P as φ, ψ. We know that ψ◦φ = 0 so ker(ψ) ⊃ Im(φ).
Conversely, suppose something belongs to ker(ψ). This can be written as a fraction

x/s ∈ ker(ψ)

where x ∈ N, s ∈ S. This is mapped to

g(x)/s ∈ S−1P,

which we’re assuming is zero. This means that there is t ∈ S with tg(x) = 0 ∈ P . This
means that g(tx) = 0 as an element of P . But tx ∈ N and its image of g vanishes, so tx
must come from something in M . In particular,

tx = f(y) for some y ∈M.

In particular,
x

s
=
tx

ts
=
f(y)

ts
= φ(y/ts) ∈ Im(φ).

This proves that anything belonging to the kernel of ψ lies in Im(φ). N

1.5 Nakayama’s lemma

We now state a very useful criterion for determining when a module over a local ring is
zero.

Lemma 1.18 (Nakayama’s lemma) If R is a local ring with maximal ideal m. Let M
be a finitely generated R-module. If mM = M , then M = 0.

Note that mM is the submodule generated by products of elements of m and M .

Remark Once one has the theory of the tensor product, this equivalently states that if
M is finitely generated, then

M ⊗R R/m = M/mM 6= 0.

So to prove that a finitely generated module over a local ring is zero, you can reduce to
studying the reduction to R/m. This is thus a very useful criterion.
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Nakayama’s lemma highlights why it is so useful to work over a local ring. Thus, it
is useful to reduce questions about general rings to questions about local rings. Before
proving it, we note a corollary.

Corollary 1.19 Let R be a local ring with maximal ideal m, and M a finitely generated
module. If N ⊂M is a submodule such that N + mN = M , then N = M .

Proof. Apply Nakayama above (Lemma 1.18) to M/N . N

We shall prove more generally:

Proposition 1.20 Suppose M is a finitely generated R-module, J ⊂ R an ideal. Suppose
JM = M . Then there is a ∈ 1 + J such that aM = 0.

If J is the maximal ideal of a local ring, then a is a unit, so that M = 0.

Proof. Suppose M is generated by {x1, . . . , xn} ⊂ M . This means that every element of
M is a linear combination of elements of xi. However, each xi ∈ JM by assumption. In
particular, each xi can be written as

xi =
∑

aijxj , where aij ∈ m.

If we let A be the matrix {aij}, then A sends the vector (xi) into itself. In particular,
I −A kills the vector (xi).

Now I −A is an n-by-n matrix in the ring R. We could, of course, reduce everything
modulo J to get the identity; this is because A consists of elements of J . It follows that
the determinant must be congruent to 1 modulo J .

In particular, a = det(I − A) lies in 1 + J . Now by familiar linear algebra, aI can be
represented as the product of A and the matrix of cofactors; in particular, aI annihilates
the vector (xi), so that aM = 0. N

Before returning to the special case of local rings, we observe the following useful fact
from ideal theory:

Proposition 1.21 Let R be a commutative ring, I ⊂ R a finitely generated ideal such
that I2 = I. Then I is generated by an idempotent element.

Proof. We know that there is x ∈ 1 + I such that xI = 0. If x = 1 + y, y ∈ I, it follows
that

yt = t

for all t ∈ I. In particular, y is idempotent and (y) = I. N

Exercise 3.5 Proposition 1.21 fails if the ideal is not finitely generated.

Exercise 3.6 Let M be a finitely generated module over a ring R. Suppose f : M →M
is a surjection. Then f is an isomorphism. To see this, consider M as a module over R[t]
with t acting by f ; since (t)M = M , argue that there is a polynomial Q(t) ∈ R[t] such
that Q(t)t acts as the identity on M , i.e. Q(f)f = 1M .
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Exercise 3.7 Give a counterexample to the conclusion of Nakayama’s lemma when the
module is not finitely generated.

Exercise 3.8 Let M be a finitely generated module over the ring R. Let I be the
Jacobson radical of R (cf. ?? 1.26). If IM = M , then M = 0.

Exercise 3.9 (A converse to Nakayama’s lemma) Suppose conversely that R is a
ring, and a ⊂ R an ideal such that aM 6= M for every nonzero finitely generated R-module.
Then a is contained in every maximal ideal of R.

Exercise 3.10 Here is an alternative proof of Nakayama’s lemma. Let R be local with
maximal ideal m, and let M be a finitely generated module with mM = M . Let n be the
minimal number of generators for M . If n > 0, pick generators x1, . . . , xn. Then write
x1 = a1x1 + · · ·+ anxn where each ai ∈ m. Deduce that x1 is in the submodule generated
by the xi, i ≥ 2, so that n was not actually minimal, contradiction.

Let M,M ′ be finitely generated modules over a local ring (R,m), and let φ : M →M ′

be a homomorphism of modules. Then Nakayama’s lemma gives a criterion for φ to be a
surjection: namely, the map φ : M/mM →M ′/mM ′ must be a surjection. For injections,
this is false. For instance, if φ is multiplication by any element of m, then φ is zero but
φ may yet be injective. Nonetheless, we give a criterion for a map of free modules over a
local ring to be a split injection.

Proposition 1.22 Let R be a local ring with maximal ideal m. Let F, F ′ be two finitely
generated free R-modules, and let φ : F → F ′ be a homomorphism. Then φ is a split
injection if and only if the reduction φ

F/mF
φ→ F ′/mF ′

is an injection.

Proof. One direction is easy. If φ is a split injection, then it has a left inverse ψ : F ′ → F
such that ψ ◦ φ = 1F . The reduction of ψ as a map F ′/mF ′ → F/mF is a left inverse to
φ, which is thus injective.

Conversely, suppose φ injective. Let e1, . . . , er be a “basis” for F , and let f1, . . . , fr be
the images under φ in F ′. Then the reductions f1, . . . , fr are linearly independent in the
R/m-vector space F ′/mF ′. Let us complete this to a basis of F ′/mF ′ by adding elements
g1, . . . , gs ∈ F ′/mF ′, which we can lift to elements g1, . . . , gs ∈ F ′. It is clear that F ′ has
rank r + s since its reduction F ′/mF ′ does.

We claim that the set {f1, . . . , fr, g1, . . . , gs} is a basis for F ′. Indeed, we have a map

Rr+s → F ′

of free modules of rank r + s. It can be expressed as an r + s-by-r + s matrix M ; we
need to show that M is invertible. But if we reduce modulo m, it is invertible since the
reductions of f1, . . . , fr, g1, . . . , gs form a basis of F ′/mF ′. Thus the determinant of M is
not in m, so by locality it is invertible. The claim about F ′ is thus proved.
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We can now define the left inverse F ′ → F of φ. Indeed, given x ∈ F ′, we can write
it uniquely as a linear combination

∑
aifi +

∑
bjgj by the above. We define ψ(

∑
aifi +∑

bjgj) =
∑
aiei ∈ F . It is clear that this is a left inverse N

We next note a slight strenghtening of the above result, which is sometimes useful.
Namely, the first module does not have to be free.

Proposition 1.23 Let R be a local ring with maximal ideal m. Let M,F be two finitely
generated R-modules with F free, and let φ : M → F ′ be a homomorphism. Then φ is a
split injection if and only if the reduction φ

M/mM
φ→ F/mF

is an injection.

It will in fact follow that M is itself free, because M is projective (see ?? below) as it is
a direct summand of a free module.

Proof. Let L be a “free approximation” to M . That is, choose a basis x1, . . . , xn for
M/mM (as an R/m-vector space) and lift this to elements x1, . . . , xn ∈M . Define a map

L = Rn →M

by sending the ith basis vector to xi. Then L/mL → M/mM is an isomorphism. By
Nakayama’s lemma, L→M is surjective.

Then the composite map L → M → F is such that the L/mL → F/mF is injective,
so L→ F is a split injection (by Proposition 1.22). It follows that we can find a splitting
F → L, which when composed with L→M is a splitting of M → F . N

Exercise 3.11 Let A be a local ring, and B a ring which is finitely generated and free
as an A-module. Suppose A→ B is an injection. Then A→ B is a split injection. (Note
that any nonzero morphism mapping out of a field is injective.)

§2 The functor Hom

In any category, the morphisms between two objects form a set.1 In many categories,
however, the hom-sets have additional structure. For instance, the hom-sets between
abelian groups are themselves abelian groups. The same situation holds for the category
of modules over a commutative ring.

Definition 2.1 Let R be a commutative ring and M,N to be R-modules. We write
HomR(M,N) for the set of all R-module homomorphisms M → N . HomR(M,N) is an
R-module because one can add homomorphisms f, g : M → N by adding them pointwise:
if f, g are homomorphisms M → N , define f + g : M → N via (f + g)(m) = f(m) + g(m);
similarly, one can multiply homomorphisms f : M → N by elements a ∈ R: one sets
(af)(m) = a(f(m)).

1Strictly speaking, this may depend on your set-theoretic foundations.
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Recall that in any category, the hom-sets are functorial. For instance, given f :
N → N ′, post-composition with f defines a map HomR(M,N) → HomR(M,N ′) for
any M . Similarly precomposition gives a natural map HomR(N ′,M)→ HomR(N,M). In
particular, we get a bifunctor Hom, contravariant in the first variable and covariant in the
second, of R-modules into R-modules.

2.1 Left-exactness of Hom

We now discuss the exactness properties of this construction of forming Hom-sets. The
following result is basic and is, in fact, a reflection of the universal property of the kernel.

Proposition 2.2 If M is an R-module, then the functor

N → HomR(M,N)

is left exact (but not exact in general).

This means that if
0→ N ′ → N → N ′′

is exact, then

0→ HomR(M,N ′)→ HomR(M,N)→ HomR(M,N ′′)

is exact as well.

Proof. First, we have to show that the map HomR(M,N ′) → HomR(M,N) is injective;
this is because N ′ → N is injective, and composition with N ′ → N can’t kill any nonzero
M → N ′. Similarly, exactness in the middle can be checked easily, and follows from
?? 1.17; it states simply that a map M → N has image landing inside N ′ (i.e. factors
through N ′) if and only if it composes to zero in N ′′. N

This functor HomR(M, ·) is not exact in general. Indeed:

Example 2.3 Suppose R = Z, and consider the R-module (i.e. abelian group) M =
Z/2Z. There is a short exact sequence

0→ 2Z→ Z→ Z/2Z→ 0.

Let us apply HomR(M, ·). We get a complex

0→ Hom(Z/2Z, 2Z)→ Hom(Z/2Z,Z)→ Hom(Z/2Z,Z/2Z)→ 0.

The second-to-last term is Z/2Z; everything else is zero. Thus the sequence is not exact,
and in particular the functor HomZ(Z/2,−) is not an exact functor.

We have seen that homming out of a module is left-exact. Now, we see the same for
homming into a module.
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Proposition 2.4 If M is a module, then HomR(−,M) is a left-exact contravariant func-
tor.

We write this proof in slightly more detail than Proposition 2.2, because of the con-
travariance.

Proof. We want to show that Hom(·,M) is a left-exact contravariant functor, which means
that if A

u−→ B
v−→ C → 0 is exact, then so is

0→ Hom(C,M)
v−→ Hom(B,M)

u−→ Hom(A,M)

is exact. Here, the bold notation refers to the induced maps of u, v on the hom-sets: if
f ∈ Hom(B,M) and g ∈ Hom(C,M), we define u and v via v(g) = g ◦v and u(f) = f ◦u.

Let us show first that v is injective. Suppose that g ∈ Hom(C,M). If v(g) = g ◦ v = 0
then (g ◦ v)(b) = 0 for all b ∈ B. Since v is a surjection, this means that g(C) = 0 and
hence g = 0. Therefore, v is injective, and we have exactness at Hom(C,M).

Since v ◦ u = 0, it is clear that u ◦ u = 0.
Now, suppose that f ∈ ker(u) ⊂ Hom(B,M). Then u(f) = f◦u = 0. Thus f : B →M

factors through B/ Im(u). However, Im(u) = ker(v), so f factors through B/ ker(v).
Exactness shows that there is an isomorphism B/ ker(v) ' C. In particular, we find that
f factors through C. This is what we wanted. N

Exercise 3.12 Come up with an example where HomR(−,M) is not exact.

Exercise 3.13 Over a field, Hom is always exact.

2.2 Projective modules

Let M be an R-module for a fixed commutative ring R. We have seen that HomR(M,−)
is generally only a left-exact functor. Sometimes, however, we do have exactness. We
axiomatize this with the following.

Definition 2.5 An R-module M is called projective if the functor HomR(M, ·) is exact.2

One may first observe that a free module is projective. Indeed, let F = RI for an
indexing set. Then the functor N → HomR(F,N) is naturally isomorphic to N → N I . It
is easy to see that this functor preserves exact sequences (that is, if 0→ A→ B → C → 0
is exact, so is 0→ AI → BI → CI → 0). Thus F is projective. One can also easily check
that a direct summand of a projective module is projective.

It turns out that projective modules have a very clean characterization. They are
precisely the direct summands in free modules.

TO BE ADDED: check this

Proposition 2.6 The following are equivalent for an R-module M :

1. M is projective.

2It is possible to define a projective module over a noncommutative ring. The definition is the same,
except that the Hom-sets are no longer modules, but simply abelian groups.
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2. Given any map M → N/N ′ from M into a quotient of R-module N/N ′, we can lift
it to a map M → N .

3. There is a module M ′ such that M ⊕M ′ is free.

Proof. The equivalence of 1 and 2 is just unwinding the definition of projectivity, be-
cause we just need to show that HomR(M, ·) preserves surjective maps, i.e. quotients.
(HomR(M, ·) is already left-exact, after all.) To say that HomR(M,N)→ HomR(M,N/N ′)
is surjective is just the statement that any map M → N/N ′ can be lifted to M → N .

Let us show that 2 implies 3. Suppose M satisfies 2. Then choose a surjection P �M
where P is free, by Proposition 6.6. Then we can write M ' P/P ′ for a submodule
P ′ ⊂ P . The isomorphism map M → P/P ′ leads by 2 to a lifting M → P . In particular,
there is a section of P → M , namely this lifting. Since a section leads to a split exact
sequence by ??, we find then that P ' ker(P →M)⊕ Im(M → P ) ' ker(P →M)⊕M ,
verifying 3 since P is free.

Now let us show that 3 implies 2. Suppose M ⊕M ′ is free, isomorphic to P . Then a
map M → N/N ′ can be extended to

P → N/N ′

by declaring it to be trivial on M ′. But now P → N/N ′ can be lifted to N because P is
free, and we have observed that a free module is projective above; alternatively, we just lift
the image of a basis. This defines P → N . We may then compose this with the inclusion
M → P to get the desired map M → P → N , which is a lifting of M → N/N ′. N

Of course, the lifting P → N of a given map P → N/N ′ is generally not unique, and
in fact is unique precisely when HomR(P,N ′) = 0.

So projective modules are precisely those with the following lifting property. Consider
a diagram

P

��
M //M ′′ // 0

where the bottom row is exact. Then, if P is projective, there is a lifting P →M making
commutative the diagram

P

��}}z
z

z
z

M //M ′′ // 0

Corollary 2.7 Let M be a module. Then there is a surjection P � M , where P is
projective.

Proof. Indeed, we know (Proposition 6.6) that we can always get a surjection from a free
module. Since free modules are projective by Proposition 2.6, we are done. N

Exercise 3.14 Let R be a principal ideal domain, F ′ a submodule of a free module
F . Show that F ′ is free. (Hint: well-order the set of generators of F , and climb up by
transfinite induction.) In particular, any projective modules is free.
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2.3 Example: the Serre-Swan theorem

We now briefly digress to describe an important correspondence between projective mod-
ules and vector bundles. The material in this section will not be used in the sequel.

Let X be a compact space. We shall not recall the topological notion of a vector bundle
here.

We note, however, that if E is a (complex) vector bundle, then the set Γ(X,E) of
global sections is naturally a module over the ring C(X) of complex-valued continuous
functions on X.

Proposition 2.8 If E is a vector bundle on a compact Hausdorff space X, then there is
a surjection ON � E for some N .

Here ON denotes the trivial bundle.
It is known that in the category of vector bundles, every epimorphism splits. In

particular, it follows that E can be viewed as a direct summand of the bundle ON . Since
Γ(X,E) is then a direct summand of Γ(X,ON ) = C(X)N , we find that Γ(X,E) is a direct
summand of a projective C(X)-module. Thus:

Proposition 2.9 Γ(X,E) is a finitely generated projective C(X)-module.

Theorem 2.10 (Serre-Swan) The functor E 7→ Γ(X,E) induces an equivalence of cat-
egories between vector bundles on X and finitely generated projective modules over C(X).

2.4 Injective modules

We have given a complete answer to the question of when the functor HomR(M,−) is
exact. We have shown that there are a lot of such projective modules in the category of
R-modules, enough that any module admits a surjection from one such. However, we now
have to answer the dual question: when is the functor HomR(−, Q) exact?

Let us make the dual definition:

Definition 2.11 An R-module Q is injective if the functor HomR(−, Q) is exact.

Thus, a module Q over a ring R is injective if whenever M → N is an injection, and
one has a map M → Q, it can be extended to N → Q: in other words, HomR(N,Q) →
HomR(M,Q) is surjective. We can visualize this by a diagram

0 //M //

��

N

~~}
}

}
}

Q

where the dotted arrow always exists if Q is injective.
The notion is dual to projectivity, in some sense, so just as every module M admits an

epimorphic map P →M for P projective, we expect by duality that every module admits
a monomorphic map M → Q for Q injective. This is in fact true, but will require some
work. We start, first, with a fact about injective abelian groups.
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Theorem 2.12 A divisible abelian group (i.e. one where the map x→ nx for any n ∈ N
is surjective) is injective as a Z-module (i.e. abelian group).

Proof. The actual idea of the proof is rather simple, and similar to the proof of the Hahn-
Banach theorem. Namely, we extend bit by bit, and then use Zorn’s lemma.

The first step is that we have a subgroup M of a larger abelian group N . We have a
map of f : M → Q for Q some divisible abelian group, and we want to extend it to N .

Now we can consider the poset of pairs (f̃ ,M ′) where M ′ ⊃ M , and f̃ : M ′ → N
is a map extending f . Naturally, we make this into a poset by defining the order as
“(f̃ ,M ′) ≤ (f̃ ′,M ′′) if M ′′ contains M ′ and f̃ ′ is an extension of f̃ . It is clear that every
chain has an upper bound, so Zorn’s lemma implies that we have a submodule M ′ ⊂ N
containing M , and a map f̃ : M ′ → N extending f , such that there is no proper extension
of f̃ . From this we will derive a contradiction unless M ′ = N .

So suppose we have M ′ 6= N , for M ′ the maximal submodule to which f can be
extended, as in the above paragraph. Pick m ∈ N −M ′, and consider the submodule
M ′ + Zm ⊂ N . We are going to show how to extend f̃ to this bigger submodule. First,
suppose Zm ∩M ′ = {0}, i.e. the sum is direct. Then we can extend f̃ because M ′ + Zm
is a direct sum: just define it to be zero on Zm.

The slightly harder part is what happens if Zm ∩M ′ 6= {0}. In this case, there is an
ideal I ⊂ Z such that n ∈ I if and only if nm ∈ M ′. This ideal, however, is principal; let
g ∈ Z− {0} be a generator. Then gm = p ∈M ′. In particular, f̃(gm) is defined. We can
“divide” this by g, i.e. find u ∈ Q such that gu = f̃(gm).

Now we may extend to a map f̃ ′ from Zm+M ′ into Q as follows. Choose m′ ∈M ′, k ∈
Z. Define f̃ ′(m′ + km) = f̃(m′) + ku. It is easy to see that this is well-defined by the
choice of u, and gives a proper extension of f̃ . This contradicts maximality of M ′ and
completes the proof. N

Exercise 3.15 Theorem 2.12 works over any principal ideal domain.

Exercise 3.16 (Baer) Let N be an R-module such that for any ideal I ⊂ R, any mor-
phism I → N can be extended to R → N . Then N is injective. (Imitate the above
argument.)

From this, we may prove:

Theorem 2.13 Any R-module M can be imbedded in an injective R-module Q.

Proof. First of all, we know that any R-module M is a quotient of a free R-module. We
are going to show that the dual (to be defined shortly) of a free module is injective. And
so since every module admits a surjection from a free module, we will use a dualization
argument to prove the present theorem.

First, for any abelian group G, define the dual group as G∨ = HomZ(G,Q/Z).
Dualization is clearly a contravariant functor from abelian groups to abelian groups. By
Proposition 2.4 and Theorem 2.12, an exact sequence of groups

0→ A→ B → C → 0
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induces an exact sequence
0→ C∨ → B∨ → A∨ → 0.

In particular, dualization is an exact functor:

Proposition 2.14 Dualization preserves exact sequences (but reverses the order).

Now, we are going to apply this to R-modules. The dual of a left R-module is acted
upon by R. The action, which is natural enough, is as follows. Let M be an R-module,
and f : M → Q/Z be a homomorphism of abelian groups (since Q/Z has in general no
R-module structure), and r ∈ R; then we define rf to be the map M → Q/Z defined via

(rf)(m) = f(rm).

It is easy to check that M∨ is thus made into an R-module.3 In particular, dualization
into Q/Z gives a contravariant exact functor from R-modules to R-modules.

Let M be as before, and now consider the R-module M∨. By Proposition 6.6, we can
find a free module F and a surjection

F →M∨ → 0.

Now dualizing gives an exact sequence of R-modules

0→M∨∨ → F∨.

However, there is a natural map (of R-modules) M →M∨∨: given m ∈M , we can define
a functional Hom(M,Q/Z) → Q/Z by evaluation at m. One can check that this is a
homomorphism. Moreover, this morphism M → M∨∨ is actually injective: if m ∈ M
were in the kernel, then by definition every functional M → Q/Z must vanish on m. It is
easy to see (using Z-injectivity of Q/Z) that this cannot happen if m 6= 0: we could just
pick a nontrivial functional on the monogenic subgroup Zm and extend to M .

We claim now that F∨ is injective. This will prove the theorem, as we have the
composite of monomorphisms M ↪→ M∨∨ ↪→ F∨ that embeds M inside an injective
module.

Lemma 2.15 The dual of a free R-module F is an injective R-module.

Proof. Let 0→ A→ B be exact; we have to show that

HomR(B,F∨)→ HomR(A,F∨)→ 0.

is exact. Now we can reduce to the case where F is the R-module R itself. Indeed, F
is a direct sum of R’s by assumption, and taking hom’s turns them into direct products;
moreover the direct product of exact sequences is exact.

So we are reduced to showing that R∨ is injective. Now we claim that

HomR(B,R∨) = HomZ(B,Q/Z). (3.1)

N
3If R is noncommutative, this would not work: instead M∨ would be an right R-module. For commu-

tative rings, we have no such distinction between left and right modules.
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In particular, HomR(−, R∨) is an exact functor because Q/Z is an injective abelian group.
The proof of Eq. (3.1) is actually “trivial.” For instance, a R-homomorphism f : B → R∨

induces f̃ : B → Q/Z by sending b→ (f(b))(1). One checks that this is bijective.

2.5 The small object argument

There is another, more set-theoretic approach to showing that any R-module M can be
imbedded in an injective module. This approach, which constructs the injective module by
a transfinite colimit of push-outs, is essentially analogous to the “small object argument”
that one uses in homotopy theory to show that certain categories (e.g. the category of CW
complexes) are model categories in the sense of Quillen; see [Hov07]. While this method
is somewhat abstract and more complicated than the one of Section 2.4, it is also more
general. Apparently this method originates with Baer, and was revisited by Cartan and
Eilenberg in [?] and by Grothendieck in [Gro57]. There Grothendieck uses it to show that
many other abelian categories have enough injectives.

We first begin with a few remarks on smallness. Let {Bα}, α ∈ A be an inductive
system of objects in some category C, indexed by an ordinal A. Let us assume that C has
(small) colimits. If A is an object of C, then there is a natural map

lim−→Hom(A,Bα)→ Hom(A, lim−→Bα) (3.2)

because if one is given a map A→ Bβ for some β, one naturally gets a map from A into
the colimit by composing with Bβ → lim−→Bα. (Note that the left colimit is one of sets!)

In general, the map Eq. (3.2) is neither injective or surjective.

Example 2.16 Consider the category of sets. Let A = N and Bn = {1, . . . , n} be the
inductive system indexed by the natural numbers (where Bn → Bm, n ≤ m is the obvious
map). Then lim−→Bn = N, so there is a map

A→ lim−→Bn,

which does not factor as
A→ Bm

for any m. Consequently, lim−→Hom(A,Bn)→ Hom(A, lim−→Bn) is not surjective.

Example 2.17 Next we give an example where the map fails to be injective. Let Bn =
N/ {1, 2, . . . , n}, that is, the quotient set of N with the first n elements collapsed to one
element. There are natural maps Bn → Bm for n ≤ m, so the {Bn} form an inductive
system. It is easy to see that the colimit lim−→Bn = {∗}: it is the one-point set. So it follows
that Hom(A, lim−→Bn) is a one-element set.

However, lim−→Hom(A,Bn) is not a one-element set. Consider the family of maps A→
Bn which are just the natural projections N → N/ {1, 2, . . . , n} and the family of maps
A → Bn which map the whole of A to the class of 1. These two families of maps are
distinct at each step and thus are distinct in lim−→Hom(A,Bn), but they induce the same
map A→ lim−→Bn.
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Nonetheless, if A is a finite set, it is easy to see that for any sequence of sets B1 →
B2 → . . . , we have

lim−→Hom(A,Bn) = Hom(A, lim−→Bn).

Proof. Let f : A → lim−→Bn. The range of A is finite, containing say elements c1, . . . , cr ∈
lim−→Bn. These all come from some elements in BN for N large by definition of the colimit.

Thus we can define f̃ : A→ BN lifting f at a finite stage.

Next, suppose two maps fn : A→ Bm, gn : A→ Bm define the same map A→ lim−→Bn.
Then each of the finitely many elements of A gets sent to the same point in the colimit.
By definition of the colimit for sets, there is N ≥ m such that the finitely many elements
of A get sent to the same points in BN under f and g. This shows that lim−→Hom(A,Bn)→
Hom(A, lim−→Bn) is injective. N

The essential idea is that A is “small” relative to the long chain of compositions
B1 → B2 → . . . , so that it has to factor through a finite step.

Let us generalize this.

Definition 2.18 Let C be a category, I a class of maps, and ω an ordinal. An object
A ∈ C is said to be ω-small (with respect to I) if whenever {Bα} is an inductive system
parametrized by ω with maps in I, then the map

lim−→Hom(A,Bα)→ Hom(A, lim−→Bα)

is an isomorphism.

Our definition varies slightly from that of [Hov07], where only “nice” transfinite se-
quences {Bα} are considered.

In our applications, we shall begin by restricting ourselves to the category of R-modules
for a fixed commutative ring R. We shall also take I to be the set of monomorphisms, or
injections.4 Then each of the maps

Bβ → lim−→Bα

is an injection, so it follows that Hom(A,Bβ)→ Hom(A, lim−→Bα) is one, and in particular
the canonical map

lim−→Hom(A,Bα)→ Hom(A, lim−→Bα) (3.3)

is an injection. We can in fact interpret the Bα’s as subobjects of the big module lim−→Bα,
and think of their union as lim−→Bα. (This is not an abuse of notation if we identify Bα
with the image in the colimit.)

We now want to show that modules are always small for “large” ordinals ω. For this,
we have to digress to do some set theory:

4There are, incidentally, categories, such as the category of rings, where a categorical epimorphism may
not be a surjection of sets.
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Definition 2.19 Let ω be a limit ordinal, and κ a cardinal. Then ω is κ-filtered if every
collection C of ordinals strictly less than ω and of cardinality at most κ has an upper
bound strictly less than ω.

Example 2.20 A limit ordinal (e.g. the natural numbers ω0) is κ-filtered for any finite
cardinal κ.

Proposition 2.21 Let κ be a cardinal. Then there exists a κ-filtered ordinal ω.

Proof. If κ is finite, Example 2.20 shows that any limit ordinal will do. Let us thus assume
that κ is infinite.

Consider the smallest ordinal ω whose cardinality is strictly greater than that of κ.
Then we claim that ω is κ-filtered. Indeed, if C is a collection of at most κ ordinals strictly
smaller than ω, then each of these ordinals is of size at most κ. Thus the union of all the
ordinals in C (which is an ordinal) is of size at most κ, so is strictly smaller than ω, and
it provides an upper bound as in the definition. N

Proposition 2.22 Let M be a module, κ the cardinality of the set of its submodules.
Then if ω is κ-filtered, then M is ω-small (with respect to injections).

The proof is straightforward, but let us first think about a special case. If M is
finite, then the claim is that for any inductive system {Bα} with injections between them,
parametrized by a limit ordinal, any map M → lim−→Bα factors through one of the Bα.
But this is clear. M is finite, so since each element in the image must land inside one of
the Bα, so all of M lands inside some finite stage.

Proof. We need only show that the map Eq. (3.3) is a surjection when ω is κ-filtered.
Let f : A → lim−→Bα be a map. Consider the subobjects {f−1(Bα)} of A, where Bα is

considered as a subobject of the colimit. If one of these, say f−1(Bβ), fills A, then the
map factors through Bβ.

So suppose to the contrary that all of the f−1(Bα) were proper subobjects of A.
However, we know that ⋃

f−1(Bα) = f−1
(⋃

Bα

)
= A.

Now there are at most κ different subobjects of A that occur among the f−1(Bα), by
hypothesis. Thus we can find a set A of cardinality at most κ such that as α′ ranges over
A, the f−1(Bα′) range over all the f−1(Bα).

However, A has an upper bound ω̃ < ω as ω is κ-filtered. In particular, all the f−1(Bα′)
are contained in f−1(Bω̃). It follows that f−1(Bω̃) = A. In particular, the map f factors
through Bω̃. N

From this, we will be able to deduce the existence of lots of injectives. Let us recall
the criterion of Baer (?? 3.16): a module Q is injective if and only if in every commutative
diagram

a

��

// Q

R

??�
�

�
�
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for a ⊂ R an ideal, the dotted arrow exists. In other words, we are trying to solve an
extension problem with respect to the inclusion a ↪→ R into the module M .

If M is an R-module, then in general we may have a semi-complete diagram as above.
In it, we can form the push-out

a

��

// Q

��
R // R⊕a Q

.

Here the vertical map is injective, and the diagram commutes. The point is that we can
extend a→ Q to R if we extend Q to the larger module R⊕a Q.

The point of the small object argument is to repeat this procedure transfinitely many
times.

Theorem 2.23 Let M be an R-module. Then there is an embedding M ↪→ Q for Q
injective.

Proof. We start by defining a functor M on the category of R-modules. Given N , we
consider the set of all maps a→ N for a ⊂ R an ideal, and consider the push-out⊕

a //

��

N

��⊕
R // N ⊕⊕

a

⊕
R

(3.4)

where the direct sum of copies of R is taken such that every copy of an ideal a corresponds
to one copy of R. We define M(N) to be this push-out. Given a map N → N ′, there is a
natural morphism of diagrams Eq. (3.4), so M is a functor. Note furthermore that there
is a natural transformation

N →M(N),

which is always an injection.
The key property of M is that if a → N is any morphism, it can be extended to

R → M(N), by the very construction of M(N). The idea will now be to apply M a
transfinite number of times and to use the small object property.

We define for each ordinal ω a functor Mω on the category of R-modules, together with
a natural injection N →Mω(N). We do this by transfinite induction. First, M1 = M is
the functor defined above. Now, suppose given an ordinal ω, and suppose Mω′ is defined
for ω′ < ω. If ω has an immediate predecessor ω̃, we let

Mω = M ◦Mω̃.

If not, we let Mω(N) = lim−→ω′<ω
Mω′(N). It is clear (e.g. inductively) that the Mω(N)

form an inductive system over ordinals ω, so this is reasonable.
Let κ be the cardinality of the set of ideals in R, and let Ω be a κ-filtered ordinal. The

claim is as follows.

Lemma 2.24 For any N , MΩ(N) is injective.
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If we prove this, we will be done. In fact, we will have shown that there is a functorial
embedding of a module into an injective. Thus, we have only to prove this lemma.

Proof. By Baer’s criterion (?? 3.16), it suffices to show that if a ⊂ R is an ideal, then
any map f : a →MΩ(N) extends to R →MΩ(N). However, we know since Ω is a limit
ordinal that

MΩ(N) = lim−→
ω<Ω

Mω(N),

so by Proposition 2.22, we find that

HomR(a,MΩ(N)) = lim−→
ω<Ω

HomR(a,Mω(N)).

This means in particular that there is some ω′ < Ω such that f factors through the
submodule Mω′(N), as

f : a→Mω′(N)→MΩ(N).

However, by the fundamental property of the functor M, we know that the map a →
Mω′(N) can be extended to

R→M(Mω′(N)) = Mω′+1(N), N

and the last object imbeds in MΩ(N). In particular, f can be extended to MΩ(N). N

2.6 Split exact sequences

TO BE ADDED: additive functors preserve split exact seq Suppose that 0 //L
ψ //M

f //N //0
is a split short exact sequence. Since HomR(D, ·) is a left-exact functor, we see that

0 // HomR(D,L)
ψ′ // HomR(D,M)

f ′ // HomR(D,N)

is exact. In addition, HomR(D,L⊕N) ∼= HomR(D,L)⊕HomR(D,N). Therefore, in the
case that we start with a split short exact sequence M ∼= L ⊕ N , applying HomR(D, ·)
does yield a split short exact sequence

0 // HomR(D,L)
ψ′ // HomR(D,M)

f ′ // HomR(D,N) //0 .

Now, assume that

0 // HomR(D,L)
ψ′ // HomR(D,M)

f ′ // HomR(D,N) //0

is a short exact sequence of abelian groups for all R-modules D. Set D = R and using

HomR(R,N) ∼= N yields that 0 //L
ψ //M

f //N //0 is a short exact sequence.
Set D = N , so we have

0 // HomR(N,L)
ψ′ // HomR(N,M)

f ′ // HomR(N,N) //0

Here, f ′ is surjective, so the identity map of HomR(N,N) lifts to a map g ∈ HomR(N,M)
so that f ◦g = f ′(g) = id. This means that g is a splitting homomorphism for the sequence

0 //L
ψ //M

f //N //0, and therefore the sequence is a split short exact sequence.
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§3 The tensor product

We shall now introduce the third functor of this chapter: the tensor product. The tensor
product’s key property is that it allows one to “linearize” bilinear maps. When taking the
tensor product of rings, it provides a categorical coproduct as well.

3.1 Bilinear maps and the tensor product

Let R be a commutative ring, as usual. We have seen that the Hom-sets HomR(M,N) of
R-modules M,N are themselves R-modules. Consequently, if we have three R-modules
M,N,P , we can think about module-homomorphisms

M
λ→ HomR(N,P ).

Suppose x ∈ M,y ∈ N . Then we can consider λ(x) ∈ HomR(N,P ) and thus we can
consider the element λ(x)(y) ∈ P. We denote this element λ(x)(y), which depends on
the variables x ∈ M,y ∈ N , by λ(x, y) for convenience; it is a function of two variables
M ×N → P .

There are certain properties of λ(·, ·) that we list below. Fix x, x′ ∈M ; y, y′ ∈ N ; a ∈
R. Then:

1. λ(x, y + y′) = λ(x, y) + λ(x, y′) because λ(x) is additive.

2. λ(x, ay) = aλ(x, y) because λ(x) is an R-module homomorphism.

3. λ(x+ x′, y) = λ(x, y) + λ(x′, y) because λ is additive.

4. λ(ax, y) = aλ(x, y) because λ is an R-module homomorphism.

Conversely, given a function λ : M × N → P of two variables satisfying the above
properties, it is easy to see that we can get a morphism of R-modules M → HomR(N,P ).

Definition 3.1 An R-bilinear map λ : M ×N → P is a map satisfying the above listed
conditions. In other words, it is required to be R-linear in each variable separately.

The previous discussion shows that there is a bijection between R-bilinear maps M ×
N → P with R-module maps M → HomR(N,P ). Note that the first interpretation
is symmetric in M,N ; the second, by contrast, can be interpreted in terms of the old
concepts of an R-module map. So both are useful.

Exercise 3.17 Prove that a Z-bilinear map out of Z/2×Z/3 is identically zero, whatever
the target module.

Let us keep the notation of the previous discussion: in particular, M,N,P will be
modules over a commutative ring R.

Given a bilinear map M ×N → P and a homomorphism P → P ′, we can clearly get a
bilinear map M ×N → P ′ by composition. In particular, given M,N , there is a covariant
functor from R-modules to Sets sending any R-module P to the collection of R-bilinear
maps M × N → P . As usual, we are interested in when this functor is corepresentable.
As a result, we are interested in universal bilinear maps out of M ×N .
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Definition 3.2 AnR-bilinear map λ : M×N → P is called universal if for all R-modules

Q, the composition of P → Q with M ×N λ→ P gives a bijection

HomR(P,Q) ' {bilinear maps M ×N → Q}

So, given a bilinear map M ×N → Q, there is a unique map P → Q making the diagram

P

��

M ×N

λ

;;vvvvvvvvv

##GGGGGGGGG

Q

Alternatively, P corepresents the functor Q→ {bilinear maps M ×N → Q}.

General nonsense says that given M,N , an universal R-bilinear map M × N → P
is unique up to isomorphism (if it exists). This follows from Yoneda’s lemma. For
convenience, we give a direct proof.

Suppose M × N λ→ P was universal and M × N λ′→ P ′ is also universal. Then by
the universal property, there are unique maps P → P ′ and P ′ → P making the following
diagram commutative:

P

��

M ×N

λ

::vvvvvvvvv

λ′

##HHHHHHHHH

P ′

OO

These compositions P → P ′ → P, P ′ → P → P ′ have to be the identity because of the
uniqueness part of the universal property. As a result, P → P ′ is an isomorphism.

We shall now show that this universal object does indeed exist.

Proposition 3.3 Given M,N , a universal bilinear map out of M ×N exists.

Before proving it we make:

Definition 3.4 We denote the codomain of the universal map out of M ×N by M ⊗RN .
This is called the tensor product of M,N , so there is a universal bilinear map out of
M ×N into M ⊗R N .

Proof (Proof of Proposition 3.3). We will simply give a presentation of the tensor product
by “generators and relations.” Take the free R-module M ⊗RN generated by the symbols
{x⊗ y}x∈M,y∈N and quotient out by the relations forced upon us by the definition of a
bilinear map (for x, x′ ∈M, y, y′ ∈ N, a ∈ R)

1. (x+ x′)⊗ y = x⊗ y + x′ ⊗ y.
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2. (ax)⊗ y = a(x⊗ y) = x⊗ (ay).

3. x⊗ (y + y′) = x⊗ y + x⊗ y′.

We will abuse notation and denote x⊗ y for its image in M ⊗R N (as opposed to the
symbol generating the free module).

There is a bilinear map M × N → M ⊗R N sending (x, y) → x ⊗ y; the relations
imposed imply that this map is a bilinear map. We have to check that it is universal, but
this is actually quite direct.

Suppose we had a bilinear map λ : M × N → P . We must construct a linear map
M ⊗R N → P . To do this, we can just give a map on generators, and show that it is
zero on each of the relations. It is easy to see that to make the appropriate diagrams
commute, the linear map M ⊗N → P has to send x⊗ y → λ(x, y). This factors through
the relations on x⊗y by bilinearity and leads to an R-linear map M ⊗RN → P such that
the following diagram commutes:

M ×N //

λ

&&MMMMMMMMMMMM M ⊗R N

��
P

.

It is easy to see that M ⊗R N → P is unique because the x⊗ y generate it. N

The theory of the tensor product allows one to do away with bilinear maps and just
think of linear maps.

Given M,N , we have constructed an object M ⊗R N . We now wish to see the func-
toriality of the tensor product. In fact, (M,N) → M ⊗R N is a covariant functor in
two variables from R-modules to R-modules. In particular, if M → M ′, N → N ′ are
morphisms, there is a canonical map

M ⊗R N →M ′ ⊗R N ′. (3.5)

To obtain Eq. (3.5), we take the natural bilinear map M × N → M ′ × N ′ → M ′ ⊗R N ′
and use the universal property of M ⊗R N to get a map out of it.

3.2 Basic properties of the tensor product

We make some observations and prove a few basic properties. As the proofs will show, one
powerful way to prove things about an object is to reason about its universal property. If
two objects have the same universal property, they are isomorphic.

Proposition 3.5 The tensor product is symmetric: for R-modules M,N , we have M ⊗R
N ' N ⊗RM canonically.

Proof. This is clear from the universal properties: giving a bilinear map out of M × N
is the same as a bilinear map out N ×M . Thus M ⊗R N and N ⊗R N have the same
universal property. It is also clear from the explicit construction. N
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Proposition 3.6 For an R-module M , there is a canonical isomorphism M →M ⊗R R.

Proof. If we think in terms of bilinear maps, this statement is equivalent to the statement
that a bilinear map λ : M × R → P is the same as a linear map M → N . Indeed, to do
this, restrict λ to λ(·, 1). Given f : M → N , similarly, we take for λ as λ(x, a) = af(x).
This gives a bijection as claimed. N

Proposition 3.7 The tensor product is associative. There are canonical isomorphisms
M ⊗R (N ⊗R P ) ' (M ⊗R N)⊗R P .

Proof. There are a few ways to see this: one is to build it explicitly from the construction
given, sending x⊗ (y ⊗ z)→ (x⊗ y)⊗ z.

More conceptually, both have the same universal property: by general categorical
nonsense (Yoneda’s lemma), we need to show that for all Q, there is a canonical bijection

HomR(M ⊗ (N ⊗ P )), Q) ' HomR((M ⊗N)⊗ P,Q)

where the R’s are dropped for simplicity. But both of these sets can be identified with
the set of trilinear maps5 M ×N × P → Q. Indeed

HomR(M ⊗ (N ⊗ P ), Q) ' bilinear M × (N ⊗ P )→ Q

' Hom(N ⊗ P,Hom(M,Q))

' bilinear N × P → Hom(M,Q)

' Hom(N,Hom(P,Hom(M,Q))

' trilinear maps. N

3.3 The adjoint property

Finally, while we defined the tensor product in terms of a “universal bilinear map,” we
saw earlier that bilinear maps could be interpreted as maps into a suitable Hom-set. In
particular, fix R-modules M,N,P . We know that the set of bilinear maps M ×N → P is
naturally in bijection with

HomR(M,HomR(N,P ))

as well as with

HomR(M⊗R, N, P ).

As a result, we find:

Proposition 3.8 For R-modules M,N,P , there is a natural bijection

HomR(M,HomR(N,P )) ' HomR(M ⊗R N,P ).

5Easy to define.
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There is a more evocative way of phrasing the above natural bijection. Given N , let
us define the functors FN , GN via

FN (M) = M ⊗R N, GN (P ) = HomR(N,P ).

Then the above proposition states that there is a natural isomorphism

HomR(FN (M), P ) ' HomR(M,GN (P )).

In particular, FN and GN are adjoint functors. So, in a sense, the operations of Hom and
⊗ are dual to each other.

Proposition 3.9 Tensoring commutes with colimits.

In particular, it follows that if {Nα} is a family of modules, and M is a module, then

M ⊗R
⊕

Nα =
⊕

M ⊗R Nα.

Exercise 3.18 Give an explicit proof of the above relation.

Proof. This is a formal consequence of the fact that the tensor product is a left adjoint
and consequently commutes with all colimits. TO BE ADDED: proof N

In particular, by Proposition 3.9, the tensor product commutes with cokernels. That
is, if A → B → C → 0 is an exact sequence of R-modules and M is an R-module,
A⊗RM → B ⊗RM → C ⊗RM → 0 is also exact, because exactness of such a sequence
is precisely a condition on the cokernel. That is, the tensor product is right exact.

We can thus prove a simple result on finite generation:

Proposition 3.10 If M,N are finitely generated, then M ⊗R N is finitely generated.

Proof. Indeed, if we have surjections Rm → M,Rn → N , we can tensor them; we get a
surjection since the tensor product is right-exact. So have a surjection Rmn = Rm⊗RRn →
M ⊗R N . N

3.4 The tensor product as base-change

Before this, we have considered the tensor product as a functor within a fixed category.
Now, we shall see that when one takes the tensor product with a ring, one gets additional
structure. As a result, we will be able to get natural functors between different module
categories.

Suppose we have a ring-homomorphism φ : R → R′. In this case, any R′-module can
be regarded as an R-module. In particular, there is a canonical functor of restriction

R′-modules→ R-modules.

We shall see that the tensor product provides an adjoint to this functor. Namely, if
M has an R-module structure, then M ⊗R R′ has an R′ module structure where R′ acts
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on the right. Since the tensor product is functorial, this gives a functor in the opposite
direction:

R-modules→ R′-modules.

Let M ′ be an R′-module and M an R-module. In view of the above, we can talk about

HomR(M,M ′)

by thinking of M ′ as an R-module.

Proposition 3.11 There is a canonical isomorphism between

HomR(M,M ′) ' HomR′(M ⊗R R′,M ′).

In particular, the restriction functor and the functor M → M ⊗R R′ are adjoints to each
other.

Proof. We can describe the bijection explicitly. Given an R′-homomorphism f : M ⊗R
R′ →M ′, we get a map

f0 : M →M ′

sending

m→ m⊗ 1→ f(m⊗ 1).

This is easily seen to be an R-module-homomorphism. Indeed,

f0(ax) = f(ax⊗ 1) = f(φ(a)(x⊗ 1)) = af(x⊗ 1) = af0(x)

since f is an R′-module homomorphism.

Conversely, if we are given a homomorphism of R-modules

f0 : M →M ′

then we can define

f : M ⊗R R′ →M ′

by sending m⊗r′ → r′f0(m), which is a homomorphism of R′ modules. This is well-defined
because f0 is a homomorphism of R-modules. We leave some details to the reader. N

Example 3.12 In the representation theory of finite groups, the operation of tensor prod-
uct corresponds to the procedure of inducing a representation. Namely, if H ⊂ G is a sub-
group of a group G, then there is an obvious restriction functor from G-representations to
H-representations. The adjoint to this is the induction operator. Since a H-representation
(resp. a G-representation) is just a module over the group ring, the operation of induction
is really a special case of the tensor product. Note that the group rings are generally not
commutative, so this should be interpreted with some care.
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3.5 Some concrete examples

We now present several concrete computations of tensor products in explicit cases to
illuminate what is happening.

Example 3.13 Let us compute Z/10⊗Z Z/12. Since 1 spans Z/(10) and 1 spans Z/(12),
we see that 1⊗ 1 spans Z/(10)⊗ Z/(12) and this tensor product is a cyclic group.

Note that 1⊗ 0 = 1⊗ (10 · 0) = 10⊗ 0 = 0⊗ 0 = 0 and 0⊗ 1 = (12 · 0)⊗ 1 = 0⊗ 12 =
0 ⊗ 0 = 0. Now, 10(1 ⊗ 1) = 10 ⊗ 1 = 0 ⊗ 1 = 0 and 12(1 ⊗ 1) = 1 ⊗ 12 = 1 ⊗ 0 = 0, so
the cyclic group Z/(10)⊗Z/(12) has order dividing both 10 and 12. This means that the
cyclic group has order dividing gcd(10, 12) = 2.

To show that the order of Z/(10)⊗Z/(12), define a bilinear map g : Z/(10)×Z/(12)→
Z/(2) via g : (x, y) 7→ xy. The universal property of tensor products then says that there
is a unique linear map f : Z/(10)⊗ Z/(12)→ Z/(2) making the diagram

Z/(10)× Z/(12)
⊗ //

g
))SSSSSSSSSSSSSSS

Z/(10)⊗ Z/(12)

f
��

Z/(2).

commute. In particular, this means that f(x ⊗ y) = g(x, y) = xy. Hence, f(1 ⊗ 1) = 1,
so f is surjective, and therefore, Z/(10)⊗ Z/(12) has size at least two. This allows us to
conclude that Z/(10)⊗ Z/(12) = Z/(2).

We now generalize the above example to tensor products of cyclic groups.

Example 3.14 Let d = gcd(m,n). We will show that (Z/mZ)⊗ (Z/nZ) ' (Z/dZ), and
thus in particular if m and n are relatively prime, then (Z/mZ)⊗(Z/nZ) ' (0). First, note
that any a⊗ b ∈ (Z/mZ)⊗ (Z/nZ) can be written as ab(1⊗ 1), so that (Z/mZ)⊗ (Z/nZ)
is generated by 1 ⊗ 1 and hence is a cyclic group. We know from elementary number
theory that d = xm+ yn for some x, y ∈ Z. We have m(1⊗ 1) = m⊗ 1 = 0⊗ 1 = 0 and
n(1 ⊗ 1) = 1 ⊗ n = 1 ⊗ 0 = 0. Thus d(1 ⊗ 1) = (xm + yn)(1 ⊗ 1) = 0, so that 1 ⊗ 1 has
order dividing d.

Conversely, consider the map f : (Z/mZ)×(Z/nZ)→ (Z/dZ) defined by f(a+mZ, b+
nZ) = ab+ dZ. This is well-defined, since if a′+mZ = a+mZ and b′+nZ = b+nZ then
a′ = a+mr and b′ = b+ns for some r, s and thus a′b′+dZ = ab+(mrb+nsa+mnrs)+dZ =
ab + dZ (since d = gcd(m,n) divides m and n). This is obviously bilinear, and hence
induces a map f̃ : (Z/mZ) ⊗ (Z/nZ) → (Z/dZ), which has f̃(1 ⊗ 1) = 1 + dZ. But the
order of 1 + dZ in Z/dZ is d, so that the order of 1 ⊗ 1 in (Z/mZ) ⊗ (Z/nZ) must be at
least d. Thus 1⊗ 1 is in fact of order d, and the map f̃ is an isomorphism between cyclic
groups of order d.

Finally, we present an example involving the interaction of Hom and the tensor prod-
uct.

Example 3.15 Given an R-module M , let us use the notation M∗ = HomR(M,R). We
shall define a functorial map

M∗ ⊗R N → HomR(M,N),
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and show that it is an isomorphism when M is finitely generated and free.

Define ρ′ : M∗ × N → HomR(M,N) by ρ′(f, n)(m) = f(m)n (note that f(m) ∈ R,
and the multiplication f(m)n is that between an element of R and an element of N). This
is bilinear,

ρ′(af+bg, n)(m) = (af+bg)(m)n = (af(m)+bg(m))n = af(m)n+bg(m)n = aρ′(f, n)(m)+bρ′(g, n)(m)

ρ′(f, an1+bn2)(m) = f(m)(an1+bn2) = af(m)n1+bf(m)n2 = aρ′(f, n1)(m)+bρ′(f, n2)(m)

so it induces a map ρ : M∗ ⊗ N → Hom(M,N) with ρ(f ⊗ n)(m) = f(m)n. This
homomorphism is unique since the f ⊗ n generate M∗ ⊗N .

Suppose M is free on the set {a1, . . . , ak}. Then M∗ = Hom(M,R) is free on the set
{fi : M → R, fi(r1a1 + · · · + rkak) = ri}, because there are clearly no relations among
the fi and because any f : M → R has f = f(a1)f1 + · · · + f(an)fn. Also note that
any element

∑
hj ⊗ pj ∈ M∗ ⊗ N can be written in the form

∑k
i=1 fi ⊗ ni, by setting

ni =
∑
hj(ai)pj , and that this is unique because the fi are a basis for M∗.

We claim that the map ψ : HomR(M,N)→M∗⊗N defined by ψ(g) =
∑k

i=1 fi⊗ g(ai) is

inverse to ρ. Given any
∑k

i=1 fi ⊗ ni ∈M∗ ⊗N , we have

ρ(
k∑
i=1

fi ⊗ ni)(aj) =
k∑
i=1

ρ(fi ⊗ ni)(aj) =
k∑
i=1

fi(aj)ni = nj

Thus, ρ(
∑k

i=1 fi ⊗ ni)(ai) = ni, and thus ψ(ρ(
∑k

i=1 fi ⊗ ni)) =
∑k

i=1 fi ⊗ ni. Thus,
ψ ◦ ρ = idM∗⊗N .

Conversely, recall that for g : M → N ∈ HomR(M,N), we defined ψ(g) =
∑k

i=1 fi⊗g(ai).
Thus,

ρ(ψ(g))(aj) = ρ(
k∑
i=1

fi ⊗ g(ai))(aj) =
k∑
i=1

ρ(fi ⊗ g(ai))(aj) =
k∑
i=1

fi(aj)g(ai) = g(aj)

and because ρ(ψ(g)) agrees with g on the ai, it is the same element of HomR(M,N) be-
cause the ai generate M . Thus, ρ ◦ ψ = idHomR(M,N).

Thus, ρ is an isomorphism.

We now interpret localization as a tensor product.

Proposition 3.16 Let R be a commutative ring, S ⊂ R a multiplicative subset. Then
there exists a canonical isomorphism of functors:

φ : S−1M ' S−1R⊗RM.
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Proof. Here is a construction of φ. If x/s ∈ S−1M where x ∈M, s ∈ S, we define

φ(x/s) = (1/s)⊗m.

Let us check that this is well-defined. Suppose x/s = x′/s′; then this means there is t ∈ S
with

xs′t = x′st.

From this we need to check that φ(x/s) = φ(x′/s′), i.e. that 1/s ⊗ x and 1/s′ ⊗ x′
represent the same elements in the tensor product. But we know from the last statement
that

1

ss′t
⊗ xs′t =

1

ss′t
x′st ∈ S−1R⊗M

and the first is just

s′t(
1

ss′t
⊗ x) =

1

s
⊗ x

by linearity, while the second is just
1

s′
⊗ x′

similarly. One next checks that φ is an R-module homomorphism, which we leave to the
reader.

Finally, we need to describe the inverse. The inverse ψ : S−1R ⊗M → S−1M is easy
to construct because it’s a map out of the tensor product, and we just need to give a
bilinear map

S−1R×M → S−1M,

and this sends (r/s,m) to mr/s.
It is easy to see that φ, ψ are inverses to each other by the definitions. N

It is, perhaps, worth making a small categorical comment, and offering an alternative
argument. We are given two functors F,G from R-modules to S−1R-modules, where
F (M) = S−1R ⊗R M and G(M) = S−1M . By the universal property, the map M →
S−1M from an R-module to a tensor product gives a natural map

S−1R⊗RM → S−1M,

that is a natural transformation F → G. Since it is an isomorphism for free modules, it
is an isomorphism for all modules by a standard argument.

3.6 Tensor products of algebras

There is one other basic property of tensor products to discuss before moving on: namely,
what happens when one tensors a ring with another ring. We shall see that this gives
rise to push-outs in the category of rings, or alternatively, coproducts in the category of
R-algebras. Let R be a commutative ring and suppose R1, R2 are R-algebras. That is, we
have ring homomorphisms φ0 : R→ R0, φ1 : R→ R1.

Proposition 3.17 R0 ⊗R R1 has the structure of a commutative ring in a natural way.
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Indeed, this multiplication multiplies two typical elements x⊗ y, x′ ⊗ y′ of the tensor
product by sending them to xx′ ⊗ yy′. The ring structure is determined by this formula.
One ought to check that this approach respects the relations of the tensor product. We
will do so in an indirect way.

Proof. Notice that giving a multiplication law on R0 ⊗R R1 is equivalent to giving an
R-bilinear map

(R0 ⊗R R1)× (R0 ⊗R1)→ R0 ⊗R R1,

i.e. an R-linear map

(R0 ⊗R R1)⊗R (R0 ⊗R1)→ R0 ⊗R R1

which satisfies certain constraints (associativity, commutativity, etc.). But the left side is
isomorphic to (R0 ⊗R R0) ⊗R (R1 ⊗R R1). Since we have bilinear maps R0 × R0 → R0

and R1 × R1 → R1, we get linear maps R0 ⊗R R0 → R0 and R1 ⊗R R1 → R1. Tensoring
these maps gives the multiplication as a bilinear map. It is easy to see that these two
approaches are the same.

We now need to check that this operation is commutative and associative, with 1⊗ 1
as a unit; moreover, it distributes over addition. Distributivity over addition is built into
the construction (i.e. in view of bilinearity). The rest (commutativity, associativity, units)
can be checked directly on the generators, since we have distributivity. We shall leave the
details to the reader. N

We can in fact describe the tensor product of R-algebras by a universal property. We
will describe a commutative diagram:

R

%%KKKKKKKKKKK

yyttttttttttt

R0

%%JJJJJJJJJJ R1

yytttttttttt

R0 ⊗R R1

Here R0 → R0 ⊗R R1 sends x 7→ x ⊗ 1; similarly for R1 7→ R0 ⊗R R1. These are ring-
homomorphisms, and it is easy to see that the above diagram commutes, since r ⊗ 1 =
1⊗ r = r(1⊗ 1) for r ∈ R. In fact,

Proposition 3.18 R0⊗RR1 is universal with respect to this property: in the language of
category theory, the above diagram is a pushout square.

This means for any commutative ring B, and every pair of maps u0 : R0 → B and
u1 : R1 → B such that the pull-backs R→ R0 → B and R→ R1 → B are the same, then
we get a unique map of rings

R0 ⊗R R1 → B

which restricts on R0, R1 to the morphisms u0, u1 that we started with.
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Proof. If B is a ring as in the previous paragraph, we make B into an R-module by the map
R→ R0 → B (or R→ R1 → B, it is the same by assumption). This map R0 ⊗R R1 → B
sends

x⊗ y → u0(x)u1(y).

It is easy to check that (x, y) → u0(x)u1(y) is R-bilinear (because of the condition that
the two pull-backs of u0, u1 to R are the same), and that it gives a homomorphism of rings
R0 ⊗R R1 → B which restricts to u0, u1 on R0, R1. One can check, for instance, that this
is a homomorphism of rings by looking at the generators.

It is also clear that R0 ⊗R R1 → B is unique, because we know that the map on
elements of the form x ⊗ 1 and 1 ⊗ y is determined by u0, u1; these generate R0 ⊗R R1,
though. N

In fact, we now claim that the category of rings has all coproducts. We see that the
coproduct of any two elements exists (as the tensor product over Z). It turns out that
arbitrary coproducts exist. More generally, if {Rα} is a family of R-algebras, then one
can define an object ⊗

α

Rα,

which is a coproduct of the Rα in the category of R-algebras. To do this, we simply take
the generators as before, as formal objects⊗

rα, rα ∈ Rα,

except that all but finitely many of the rα are required to be the identity. One quotients
by the usual relations.

Alternatively, one may use the fact that filtered colimits exist, and construct the infinite
coproduct as a colimit of finite coproducts (which are just ordinary tensor products).

§4 Exactness properties of the tensor product

In general, the tensor product is not exact; it is only exact on the right, but it can fail to
preserve injections. Yet in some important cases it is exact. We study that in the present
section.

4.1 Right-exactness of the tensor product

We will start by talking about extent to which tensor products do preserve exactness
under any circumstance. First, let’s recall what is going on. If M,N are R-modules over
the commutative ring R, we have defined another R-module HomR(M,N) of morphisms
M → N . This is left-exact as a functor of N . In other words, if we fix M and let N vary,
then the construction of homming out of M preserves kernels.

In the language of category theory, this constructionN → HomR(M,N) has an adjoint.
The other construction we discussed last time was this adjoint, and it is the tensor product.
Namely, given M,N we defined a tensor product M ⊗R N such that giving a map
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M⊗RN → P into some R-module P is the same as giving a bilinear map λ : M×N → P ,
which in turn is the same as giving an R-linear map

M → HomR(N,P ).

So we have a functorial isomorphism

HomR(M ⊗R N,P ) ' HomR(M,HomR(N,P )).

Alternatively, tensoring is the left-adjoint to the hom functor. By abstract nonsense, it
follows that since Hom(M, ·) preserves cokernels, the left-adjoint preserves cokernels and
is right-exact. We shall see this directly.

Proposition 4.1 The functor N →M ⊗R N is right-exact, i.e. preserves cokernels.

In fact, the tensor product is symmetric, so it’s right exact in either variable.

Proof. We have to show that if N ′ → N → N ′′ → 0 is exact, then so is

M ⊗R N ′ →M ⊗R N →M ⊗R N ′′ → 0.

There are a lot of different ways to think about this. For instance, we can look at the
direct construction. The tensor product is a certain quotient of a free module.

M ⊗R N ′′ is the quotient of the free module generated by m ⊗ n′′,m ∈ M,n ∈ N ′′

modulo the usual relations. The map M ⊗N →M ⊗N ′′ sends m⊗ n→ m⊗ n′′ if n′′ is
the image of n in N ′′. Since each n′′ can be lifted to some n, it is obvious that the map
M ⊗R N →M ⊗R N ′′ is surjective.

Now we know that M ⊗R N ′′ is a quotient of M ⊗R N . But which relations do you
have to impose on M ⊗R N to get M ⊗R N ′′? In fact, each relation in M ⊗R N ′′ can be
lifted to a relation in M ⊗R N , but with some redundancy. So the only thing to quotient
out by is the statement that x⊗ y, x⊗ y′ have the same image in M ⊗N ′′. In particular,
we have to quotient out by

x⊗ y − x⊗ y′ , y − y′ ∈ N ′

so that if we kill off x⊗ n′ for n′ ∈ N ′ ⊂ N , then we get M ⊗N ′′. This is a direct proof.
One can also give a conceptual proof. We would like to know that M ⊗ N ′′ is the

cokernel of M ⊗ N ′ → M ⊗ N ′′. In other words, we’d like to know that if we mapped
M⊗RN into some P and the pull-back to M⊗RN ′, it’d factor uniquely through M⊗RN ′′.
Namely, we need to show that

HomR(M ⊗N ′′, P ) = ker(HomR(M ⊗N,P )→ HomR(M ⊗N ′′, P )).

But the first is just HomR(N ′′,HomR(M,P )) by the adjointness property. Similarly, the
second is just

ker(HomR(N,Hom(M,P ))→ HomR(N ′,HomR(M,P ))

but this last statement is HomR(N ′′,HomR(M,P )) by just the statement that N ′′ =
coker(N ′ → N). To give a map N ′′ into some module (e.g. HomR(M,P )) is the same
thing as giving a map out of N which kills N ′. So we get the functorial isomorphism. N
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Remark Formation of tensor products is, in general, not exact.

Example 4.2 Let R = Z. Let M = Z/2Z. Consider the exact sequence

0→ Z→ Q→ Q/Z→ 0

which we can tensor with M , yielding

0→ Z/2Z→ Q⊗ Z/2Z→ Q/Z⊗ Z/2Z→ 0

I claim that the second thing Q⊗ Z/2Z is zero. This is because by tensoring with Z/2Z,
we’ve made multiplication by 2 identically zero. By tensoring with Q, we’ve made multi-
plication by 2 invertible. The only way to reconcile this is to have the second term zero.
In particular, the sequence becomes

0→ Z/2Z→ 0→ 0→ 0

which is not exact.

Exercise 3.19 Let R be a ring, I, J ⊂ R ideals. Show that R/I ⊗R R/J ' R/(I + J).

4.2 A characterization of right-exact functors

Let us consider additive functors on the category of R-modules. So far, we know a very
easy way of getting such functors: given an R-module N , we have a functor

TN : M →M ⊗R N.

In other words, we have a way of generating a functor on the category of R-modules for
each R-module. These functors are all right-exact, as we have seen. Now we will prove a
converse.

Proposition 4.3 Let F be a right-exact functor on the category of R-modules that com-
mutes with direct sums. Then F is isomorphic to some TN .

Proof. The idea is that N will be F (R).
Without the right-exactness hypothesis, we shall construct a natural morphism

F (R)⊗M → F (M)

as follows. Given m ∈M , there is a natural map R→M sending 1→ m. This identifies
M = HomR(R,M). But functoriality gives a map F (R)× HomR(R,M)→ F (M), which
is clearly R-linear; the universal property of the tensor product now produces the desired
transformation TF (R) → F .

It is clear that TF (R)(M)→ F (M) is an isomorphism for M = R, and thus for M free,
as both TF (R) and F commute with direct sums. Now let M be any R-module. There is
a “free presentation,” that is an exact sequence

RI → RJ →M → 0
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for some sets I, J ; we get a commutative, exact diagram

TF (R)(R
I)

��

// TF (R)(R
J)

��

// TF (R)(M)

��

// 0

F (RI) // F (RJ) // F (M) // 0

where the leftmost two vertical arrows are isomorphisms. A diagram chase now shows
that TF (R)(M)→ F (M) is an isomorphism. In particular, F ' TF (R) as functors. N

Without the hypothesis that F commutes with arbitrary direct sums, we could only
draw the same conclusion on the category of finitely presented modules; the same proof
as above goes through, though I and J are required to be finite.6

Proposition 4.4 Let F be a right-exact functor on the category of finitely presented R-
modules that commutes with direct sums. Then F is isomorphic to some TN .

From this we can easily see that localization at a multiplicative subset S ⊂ R is given
by tensoring with S−1R. Indeed, localization is a right-exact functor on the category of
R-modules, so it is given by tensoring with some module M ; applying to R shows that
M = S−1R.

4.3 Flatness

In some cases, though, the tensor product is exact.

Definition 4.5 Let R be a commutative ring. An R-module M is called flat if the functor
N →M ⊗R N is exact. An R-algebra is flat if it is flat as an R-module.

We already know that tensoring with anything is right exact, so the only thing to be
checked for flatness of M is that the operation of tensoring by M preserves injections.

Example 4.6 Z/2Z is not flat as a Z-module by Example 4.2.

Example 4.7 If R is a ring, then R is flat as an R-module, because tensoring by R is the
identity functor.

More generally, if P is a projective module (i.e., homming out of P is exact), then P
is flat.

Proof. If P =
⊕

AR is free, then tensoring with P corresponds to taking the direct sum
|A| times, i.e.

P ⊗RM =
⊕
A

M.

This is because tensoring with R preserves (finite or direct) infinite sums. The functor
M →

⊕
AM is exact, so free modules are flat.

6Recall that an additive functor commutes with finite direct sums.

126



The CRing Project, §3.4.

A projective module, as discussed earlier, is a direct summand of a free module. So if
P is projective, P ⊕ P ′ '

⊕
AR for some P ′. Then we have that

(P ⊗RM)⊕ (P ′ ⊗RM) '
⊕
A

M.

If we had an injection M →M ′, then there is a direct sum decomposition yields a diagram
of maps

P ⊗RM

��

//
⊕

AM

��
P ⊗RM ′ //

⊕
AM

′

.

A diagram-chase now shows that the vertical map is injective. Namely, the composition
P ⊗RM →

⊕
AM

′ is injective, so the vertical map has to be injective too. N

Example 4.8 If S ⊂ R is a multiplicative subset, then S−1R is a flat R-module, because
localization is an exact functor.

Let us make a few other comments.

Remark Let φ : R→ R′ be a homomorphism of rings. Then, first of all, any R′-module
can be regarded as an R-module by composition with φ. In particular, R′ is an R-module.

If M is an R-module, we can define

M ⊗R R′

as an R-module. But in fact this tensor product is an R′-module; it has an action of R′.
If x ∈M and a ∈ R′ and b ∈ R′, multiplication of (x⊗a) ∈M ⊗RR′ by b ∈ R′ sends this,
by definition, to

b(x⊗ a) = x⊗ ab.

It is easy to check that this defines an action of R′ on M ⊗R R′. (One has to check that
this action factors through the appropriate relations, etc.)

The following fact shows that the hom-sets behave nicely with respect to flat base
change.

Proposition 4.9 Let M be a finitely presented R-module, N an R-module. Let S be a
flat R-algebra. Then the natural map

HomR(M,N)⊗R S → HomS(M ⊗R S,N ⊗R S)

is an isomorphism.

Proof. Indeed, it is clear that there is a natural map

HomR(M,N)→ HomS(M ⊗R S,N ⊗R S)
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of R-modules. The latter is an S-module, so the universal property gives the map
HomR(M,N) ⊗R S → HomS(M ⊗R S,N ⊗R S) as claimed. If N is fixed, then we have
two contravariant functors in M ,

T1(M) = HomR(M,N)⊗R S, T2(M) = HomS(M ⊗R S,N ⊗R S).

We also have a natural transformation T1(M) → T2(M). It is clear that if M is finitely
generated and free, then the natural transformation is an isomorphism (for example, if
M = R, then we just have the map N ⊗R S → N ⊗R S).

Note moreover that both functors are left-exact: that is, given an exact sequence

M ′ →M →M ′′ → 0,

there are induced exact sequences

0→ T1(M ′′)→ T1(M)→ T1(M ′), 0→ T2(M ′′)→ T2(M)→ T2(M ′).

Here we are using the fact that Hom is always a left-exact functor and the fact that
tensoring with S preserves exactness. (Thus it is here that we use flatness.)

Now the following lemma will complete the proof:

Lemma 4.10 Let T1, T2 be contravariant, left-exact additive functors from the category
of R-modules to the category of abelian groups. Suppose a natural transformation t :
T1(M) → T2(M) is given, and suppose this is an isomorphism whenever M is finitely
generated and free. Then it is an isomorphism for any finitely presented module M .

Proof. This lemma is a diagram chase. Fix a finitely presented M , and choose a presen-
tation

F ′ → F →M → 0,

with F ′, F finitely generated and free. Then we have an exact and commutative diagram

0 // T1(M)

��

// T1(F )

'
��

// T1(F ′)

'
��

0 // T2(M) // T2(F ) // T2(F ′). N

By hypotheses, the two vertical arrows to the right are isomorphisms, as indicated. A
diagram chase now shows that the remaining arrow is an isomorphism, which is what we
wanted to prove. N

Example 4.11 Let us now consider finitely generated flat modules over a principal ideal
domain R. By Theorem 5.4, we know that any such M is isomorphic to a direct sum⊕
R/ai for some ai ∈ R. But if any of the ai is not zero, then that ai would be a nonzero

zerodivisor on M . However, we know no element of R − {0} can be a zerodivisor on M .
It follows that all the ai = 0. In particular, we have proved:

Proposition 4.12 A finitely generated module over a PID is flat if and only if it is free.
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4.4 Finitely presented flat modules

In Example 4.7, we saw that a projective module over any ring R was automatically flat.
In general, the converse is flat. For instance, Q is a flat Z-module (as tensoring by Q is
a form of localization). However, because Q is divisible (namely, multiplication by n is
surjective for any n), Q cannot be a free abelian group.

Nonetheless:

Theorem 4.13 A finitely presented flat module over a ring R is projective.

Proof. We follow [Wei94].
Let us define the following contravariant functor from R-modules to R-modules. Given

M , we send it to M∗ = HomZ(M,Q/Z). This is made into an R-module in the following
manner: given φ : M → Q/Z (which is just a homomorphism of abelian groups!) and
r ∈ R, we send this to rφ defined by (rφ)(m) = φ(rm). Since Q/Z is an injective abelian
group, we see that M 7→ M∗ is an exact contravariant functor from R-modules to R-
modules. In fact, we note that 0 → A → B → C → 0 is exact implies 0 → C∗ → B∗ →
A∗ → 0 is exact.

Let F be any R-module. There is a natural homomorphism

M∗ ⊗R F → HomR(F,M)∗. (3.6)

This is defined as follows. Given φ : M → Q/Z and x ∈ F , we define a new map
Hom(F,M)→ Q/Z by sending a homomorphism ψ : F →M to φ(ψ(x)). In other words,
we have a natural map

HomZ(M,Q/Z)⊗R F → HomZ(HomR(F,M)∗,Q/Z).

Now fix M . This map (3.6) is an isomorphism if F is finitely generated and free. Both
are right-exact (because dualizing is contravariant-exact!). The “finite presentation trick”
now shows that the map is an isomorphism if F is finitely presented. TO BE ADDED:
this should be elaborated on

Fix now F finitely presented and flat, and consider the above two quantities in (3.6)
as functors in M . Then the first functor is exact, so the second one is too. In particular,
HomR(F,M)∗ is an exact functor in M ; in particular, if M �M ′′ is a surjection, then

HomR(F,M ′′)∗ → HomR(F,M)∗

is an injection. But this implies that

HomR(F,M)→ HomR(F,M ′′)

is a surjection, i.e. that F is projective. Indeed:

Lemma 4.14 A→ B → C is exact if and only if C∗ → B∗ → A∗ is exact.

Proof. Indeed, one direction was already clear (from Q/Z being an injective abelian group).
Conversely, we note that M = 0 if and only if M∗ = 0 (again by injectivity and the fact
that (Z/a)∗ 6= 0 for any a). Thus dualizing reflects isomorphisms: if a map becomes an
isomorphism after dualized, then it was an isomorphism already. From here it is easy to
deduce the result (by applying the above fact to the kernel and image). N
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Chapter 4

The Spec of a ring

The notion of the Spec of a ring is fundamental in modern algebraic geometry. It is the
scheme-theoretic analog of classical affine schemes. The identification occurs when one
identifies the maximal ideals of the polynomial ring k[x1, . . . , xn] (for k an algebraically
closed field) with the points of the classical variety Ank = kn. In modern algebraic geometry,
one adds the “non-closed points” given by the other prime ideals. Just as general varieties
were classically defined by gluing affine varieties, a scheme is defined by gluing open affines.

This is not a book on schemes, but it will nonetheless be convenient to introduce the
Spec construction, outside of the obvious benefits of including preparatory material for
algebraic geometry. First of all, it will provide a convenient notation. Second, and more
importantly, it will provide a convenient geometric intuition. For example, an R-module
can be thought of as a kind of “vector bundle”—technically, a sheaf—over the space
SpecR, with the caveat that the rank might not be locally constant (which is, however,
the case when the module is projective).

§1 The spectrum of a ring

We shall now associate to every commutative ring a topological space SpecR in a functorial
manner. That is, there will be a contravariant functor

Spec : CRing→ Top

where Top is the category of topological spaces. This construction is the basis for scheme-
theoretic algebraic geometry and will be used frequently in the sequel.

The motivating observation is the following. If k is an algebraically closed field, then
the maximal ideals in k[x1, . . . , xn] are of the form (x1−a1, . . . , xn−an) for (a1, . . . , an) ∈
k[x1, . . . , xn]. This is the Nullstellensatz, which we have not proved yet. We can thus
identify the maximal ideals in the polynomial ring with the space kn. If I ⊂ k[x1, . . . , xn]
is an ideal, then the maximal ideals in k[x1, . . . , xn] correspond to points where everything
in I vanishes. See Example 1.5 for a more detailed explanation. Classical affine algebraic
geometry thus studies the set of maximal ideals in an algebra finitely generated over an
algebraically closed field.

The Spec of a ring is a generalization of this construction. In general, it is more natural
to use all prime ideals instead of just maximal ideals.
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1.1 Definition and examples

We start by defining Spec as a set. We will next construct the Zariski topology and later
the functoriality.

Definition 1.1 Let R be a commutative ring. The spectrum of R, denoted SpecR, is
the set of prime ideals of R.

We shall now make SpecR into a topological space. First, we describe a collection of
sets which will become the closed sets. If I ⊂ R is an ideal, let

V (I) = {p : p ⊃ I} ⊂ SpecR.

Proposition 1.2 There is a topology on SpecR such that the closed subsets are of the
form V (I) for I ⊂ R an ideal.

Proof. Indeed, we have to check the familiar axioms for a topology:

1. ∅ = V ((1)) because no prime contains 1. So ∅ is closed.

2. SpecR = V ((0)) because any ideal contains zero. So SpecR is closed.

3. We show the closed sets are stable under intersections. Let Kα = V (Iα) be closed
subsets of SpecR for α ranging over some index set. Let I =

∑
Iα. Then

V (I) =
⋂
Kα =

⋂
V (Iα),

which follows because I is the smallest ideal containing each Iα, so a prime contains
every Iα iff it contains I.

4. The union of two closed sets is closed. Indeed, if K,K ′ ⊂ SpecR are closed, we show
K ∪K ′ is closed. Say K = V (I),K ′ = V (I ′). Then we claim:

K ∪K ′ = V (II ′).

Here, as usual, II ′ is the ideal generated by products ii′, i ∈ I, i′ ∈ I ′. If p is prime
and contains II ′, it must contain one of I, I ′; this implies the displayed equation
above and implies the result. N

Definition 1.3 The topology on SpecR defined above is called the Zariski topology.
With it, SpecR is now a topological space.

Exercise 4.1 What is the Spec of the zero ring?

In order to see the geometry of this construction, let us work several examples.

Example 1.4 Let R = Z, and consider SpecZ. Then every prime is generated by one
element, since Z is a PID. We have that SpecZ = {(0)} ∪

⋃
p prime{(p)}. The picture is

that one has all the familiar primes (2), (3), (5), . . . , and then a special point (0).
Let us now describe the closed subsets. These are of the form V (I) where I ⊂ Z is an

ideal, so I = (n) for some n ∈ Z.
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1. If n = 0, the closed subset is all of SpecZ.

2. If n 6= 0, then n has finitely many prime divisors. So V ((n)) consists of the prime
ideals corresponding to these prime divisors.

The only closed subsets besides the entire space are the finite subsets that exclude (0).

Example 1.5 Say R = C[x, y] is a polynomial ring in two variables. We will not give a
complete description of SpecR here. But we will write down several prime ideals.

1. For every pair of complex numbers s, t ∈ C, the collection of polynomials f ∈ R such
that f(s, t) = 0 is a prime ideal ms,t ⊂ R. In fact, it is maximal, as the residue ring
is all of C. Indeed, R/ms,t ' C under the map f → f(s, t).

In fact,

Theorem 1.6 The ms,t are all the maximal ideals in R.

This will follow from the Hilbert Nullstellensatz to be proved later (Theorem 4.5).

2. (0) ⊂ R is a prime ideal since R is a domain.

3. If f(x, y) ∈ R is an irreducible polynomial, then (f) is a prime ideal. This is
equivalent to unique factorization in R.1

To draw SpecR, we start by drawing C2, which is identified with the collection of
maximal ideals ms,t, s, t ∈ C. SpecR has additional (non-closed) points too, as described
above, but for now let us consider the topology induced on C2 as a subspace of SpecR.

The closed subsets of SpecR are subsets V (I) where I is an ideal, generated by poly-
nomials {fα(x, y)}. It is of interest to determine the subset of C2 that V (I) induces. In
other words, we ask:

What points of C2 (with (s, t) identified with ms,t) lie in V (I)?

Now, by definition, we know that (s, t) corresponds to a point of V (I) if and only if
I ⊂ ms,t. This is true iff all the fα lie in ms,t, i.e. if fα(s, t) = 0 for all α. So the closed
subsets of C2 (with the induced Zariski topology) are precisely the subsets that can be
defined by polynomial equations.

This is much coarser than the usual topology. For instance, {(z1, z2) : <(z1) ≥ 0} is
not Zariski-closed. The Zariski topology is so coarse because one has only algebraic data
(namely, polynomials, or elements of R) to define the topology.

Exercise 4.2 Let R1, R2 be commutative rings. Give R1 × R2 a natural structure of a
ring, and describe Spec(R1 ×R2) in terms of SpecR1 and SpecR2.

Exercise 4.3 Let X be a compact Hausdorff space, C(X) the ring of real continuous
functions X → R. The maximal ideals in SpecC(X) are in bijection with the points of
X, and the topology induced on X (as a subset of SpecC(X) with the Zariski topology)
is just the usual topology.

1To be proved later ??.
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Exercise 4.4 Prove the following result: if X,Y are compact Hausdorff spaces and
C(X), C(Y ) the associated rings of continuous functions, if C(X), C(Y ) are isomorphic as
R-algebras, then X is homeomorphic to Y .

1.2 The radical ideal-closed subset correspondence

We now return to the case of an arbitrary commutative ring R. If I ⊂ R, we get a closed
subset V (I) ⊂ SpecR. It is called V (I) because one is supposed to think of it as the places
where the elements of I “vanish,” as the elements of R are something like “functions.”
This analogy is perhaps best seen in the example of a polynomial ring over an algebraically
closed field, e.g. Example 1.5 above.

The map from ideals into closed sets is very far from being injective in general, though
by definition it is surjective.

Example 1.7 If R = Z and p is prime, then I = (p), I ′ = (p2) define the same subset
(namely, {(p)}) of SpecR.

We now ask why the map from ideals to closed subsets fails to be injective. As we
shall see, the entire problem disappears if we restrict to radical ideals.

Definition 1.8 If I is an ideal, then the radical Rad(I) or
√
I is defined as

Rad(I) = {x ∈ R : xn ∈ I for some n} .

An ideal is radical if it is equal to its radical. (This is equivalent to the earlier Defini-
tion 2.5.)

Before proceeding, we must check:

Lemma 1.9 If I an ideal, so is Rad(I).

Proof. Clearly Rad(I) is closed under multiplication since I is. Suppose x, y ∈ Rad(I);
we show x + y ∈ Rad(I). Then xn, yn ∈ I for some n (large) and thus for all larger n.
The binomial expansion now gives

(x+ y)2n = x2n +

(
2n

1

)
x2n−1y + · · ·+ y2n,

where every term contains either x, y with power ≥ n, so every term belongs to I. Thus
(x+ y)2n ∈ I and, by definition, we see then that x+ y ∈ Rad(I). N

The map I → V (I) does in fact depend only on the radical of I. In fact, if I, J have
the same radical Rad(I) = Rad(J), then V (I) = V (J). Indeed, V (I) = V (Rad(I)) =
V (Rad(J)) = V (J) by:

Lemma 1.10 For any I, V (I) = V (Rad(I)).

Proof. Indeed, I ⊂ Rad(I) and therefore obviously V (Rad(I)) ⊂ V (I). We have to show
the converse inclusion. Namely, we must prove:
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If p ⊃ I, then p ⊃ Rad(I).

So suppose p ⊃ I is prime and x ∈ Rad(I); then xn ∈ I ⊂ p for some n. But p is prime,
so whenever a product of things belongs to p, a factor does. Thus since xn = x · x · · ·x,
we must have x ∈ p. So

Rad(I) ⊂ p,

proving the quoted claim, and thus the lemma. N

There is a converse to this remark:

Proposition 1.11 If V (I) = V (J), then Rad(I) = Rad(J).

So two ideals define the same closed subset iff they have the same radical.

Proof. We write down a formula for Rad(I) that will imply this at once.

Lemma 1.12 For a commutative ring R and an ideal I ⊂ R,

Rad(I) =
⋂
p⊃I

p.

From this, it follows that V (I) determines Rad(I). This will thus imply the proposition.
We now prove the lemma:

Proof. 1. We show Rad(I) ⊂
⋂

p∈V (I) p. In particular, this follows if we show that if a
prime contains I, it contains Rad(I); but we have already discussed this above.

2. If x /∈ Rad(I), we will show that there is a prime ideal p ⊃ I not containing x. This
will imply the reverse inclusion and the lemma.

We want to find p not containing x, more generally not containing any power of x.
In particular, we want p ∩

{
1, x, x2 . . . ,

}
= ∅. This set S = {1, x, . . . } is multiplicatively

closed, in that it contains 1 and is closed under finite products. Right now, it does not
interset I; we want to find a prime containing I that still does not intersect {xn, n ≥ 0}.

More generally, we will prove:

Sublemma 1.13 Let S be multiplicatively closed set in any ring R and let I be any ideal
with I ∩ S = ∅. There is a prime ideal p ⊃ I and does not intersect S (in fact, any ideal
maximal with respect to the condition of not intersecting S will do).

In English, any ideal missing S can be enlarged to a prime ideal missing S. This is actually
fancier version of a previous argument. We showed earlier that any ideal not containing
the multiplicatively closed subset {1} can be contained in a prime ideal not containing 1,
in Proposition 4.5.

Note that the sublemma clearly implies the lemma when applied to S = {1, x, . . . } .

Proof (Proof of the sublemma). Let P = {J : J ⊃ I, J ∩ S = ∅}. Then P is a poset with
respect to inclusion. Note that P 6= ∅ because I ∈ P . Also, for any nonempty linearly
ordered subset of P , the union is in P (i.e. there is an upper bound). We can invoke Zorn’s
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lemma to get a maximal element of P . This element is an ideal p ⊃ I with p∩S = ∅. We
claim that p is prime.

First of all, 1 /∈ p because 1 ∈ S. We need only check that if xy ∈ p, then x ∈ p or
y ∈ p. Suppose otherwise, so x, y /∈ p. Then (x, p) /∈ P or p would not be maximal. Ditto
for (y, p).

In particular, we have that these bigger ideals both intersect S. This means that there
are

a ∈ p, r ∈ R such that a+ rx ∈ S

and

b ∈ p, r′ ∈ R such that b+ r′y ∈ S.

Now S is multiplicatively closed, so multiply (a+ rx)(b+ r′y) ∈ S. We find:

ab+ ar′y + brx+ rr′xy ∈ S. N

Now a, b ∈ p and xy ∈ p, so all the terms above are in p, and the sum is too. But this
contradicts p ∩ S = ∅. N

The upshot of the previous lemmata is:

Proposition 1.14 There is a bijection between the closed subsets of SpecR and radical
ideals I ⊂ R.

1.3 A meta-observation about prime ideals

We saw in the previous subsection (?? 1.13) that an ideal maximal with respect to the
property of not intersecting a multiplicatively closed subset is prime. It turns out that
this is the case for many such properties of ideals. A general method of seeing this was
developed in [LR08]. In this (optional) subsection, we digress to explain this phenomenon.

If I is an ideal and a ∈ R, we define the notation

(I : a) = {x ∈ R : xa ∈ I} .

More generally, if J is an ideal, we define

(I : J) = {x ∈ R : xJ ⊂ I} .

Let R be a ring, and F a collection of ideals of R. We are interested in conditions
that will guarantee that the maximal elements of F are prime. Actually, we will do the
opposite: the following condition will guarantee that the ideals maximal at not being in
F are prime.

Definition 1.15 The family F is called an Oka family if R ∈ F (where R is considered
as an ideal) and whenever I ⊂ R is an ideal and (I : a), (I, a) ∈ F (for some a ∈ R), then
I ∈ F .
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Example 1.16 Let us begin with a simple observation. If (I : a) is generated by a1, . . . , an
and (I, a) is generated by a, b1, . . . , bm (where we may take b1, . . . , bm ∈ I, without loss of
generality), then I is generated by aa1, . . . , aan, b1, . . . , bm. To see this, note that if x ∈ I,
then x ∈ (I, a) is a linear combination of the {a, b1, . . . , bm}, but the coefficient of a must
lie in (I : a).

As a result, we may deduce that the family of finitely generated ideals is an Oka family.

Example 1.17 Let us now show that the family of principal ideals is an Oka family.
Indeed, suppose I ⊂ R is an ideal, and (I, a) and (I : a) are principal. One can easily
check that (I : a) = (I : (I, a)). Setting J = (I, a), we find that J is principal and (I : J)
is too. However, for any principal ideal J , and for any ideal I ⊂ J ,

I = J(I : J)

as one easily checks. Thus we find in our situation that since J = (I, a) and (I : J) are
principal, I is principal.

Proposition 1.18 ([LR08]) If F is an Oka family of ideals, then any maximal element
of the complement of F is prime.

Proof. Suppose I /∈ F is maximal with respect to not being in F but I is not prime.
Note that I 6= R by hypothesis. Then there is a ∈ R such that (I : a), (I, a) both strictly
contain I, so they must belong to F . Indeed, we can find a, b ∈ R − I with ab ∈ I; it
follows that (I, a) 6= I and (I : a) contains b /∈ I.

By the Oka condition, we have I ∈ F , a contradiction. N

Corollary 1.19 (Cohen) If every prime ideal of R is finitely generated, then every ideal
of R is finitely generated.2

Proof. Suppose that there existed ideals I ⊂ R which were not finitely generated. The
union of a totally ordered chain {Iα} of ideals that are not finitely generated is not finitely
generated; indeed, if I =

⋃
Iα were generated by a1, . . . , an, then all the generators would

belong to some Iα and would consequently generate it.

By Zorn’s lemma, there is an ideal maximal with respect to being not finitely generated.
However, by Proposition 1.18, this ideal is necessarily prime (since the family of finitely
generated ideals is an Oka family). This contradicts the hypothesis. N

Corollary 1.20 If every prime ideal of R is principal, then every ideal of R is principal.

Proof. This is proved in the same way. N

Exercise 4.5 Suppose every nonzero prime ideal in R contains a non-zerodivisor. Then
R is a domain. (Hint: consider the set S of nonzerodivisors, and argue that any ideal
maximal with respect to not intersecting S is prime. Thus, (0) is prime.)

2Later we will say that R is noetherian.
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Remark Let R be a ring. Let κ be an infinite cardinal. By applying Example 1.16 and
Proposition 1.18 we see that any ideal maximal with respect to the property of not being
generated by κ elements is prime. This result is not so useful because there exists a ring
for which every prime ideal of R can be generated by ℵ0 elements, but some ideal cannot.
Namely, let k be a field, let T be a set whose cardinality is greater than ℵ0 and let

R = k[{xn}n≥1, {zt,n}t∈T,n≥0]/(x2
n, z

2
t,n, xnzt,n − zt,n−1)

This is a local ring with unique prime ideal m = (xn). But the ideal (zt,n) cannot be
generated by countably many elements.

1.4 Functoriality of Spec

The construction R → SpecR is functorial in R in a contravariant sense. That is, if f :
R→ R′, there is a continuous map SpecR′ → SpecR. This map sends p ⊂ R′ to f−1(p) ⊂
R, which is easily seen to be a prime ideal in R. Call this map F : SpecR′ → SpecR. So
far, we have seen that SpecR induces a contravariant functor from Rings→ Sets.

Exercise 4.6 A contravariant functor F : C → Sets (for some category C) is called
representable if it is naturally isomorphic to a functor of the form X → Hom(X,X0) for
some X0 ∈ C, or equivalently if the induced covariant functor on Cop is corepresentable.

The functor R → SpecR is not representable. (Hint: Indeed, a representable functor
must send the initial object into a one-point set.)

Next, we check that the morphisms induced on Spec’s from a ring-homomorphism are
in fact continuous maps of topological spaces.

Proposition 1.21 Spec induces a contravariant functor from Rings to the category Top
of topological spaces.

Proof. Let f : R → R′. We need to check that this map SpecR′ → SpecR, which we
call F , is continuous. That is, we must check that F−1 sends closed subsets of SpecR to
closed subsets of SpecR′.

More precisely, if I ⊂ R and we take the inverse image F−1(V (I)) ⊂ SpecR′, it is
just the closed set V (f(I)). This is best left to the reader, but here is the justification. If
p ∈ SpecR′, then F (p) = f−1(p) ⊃ I if and only if p ⊃ f(I). So F (p) ∈ V (I) if and only
if p ∈ V (f(I)).

Example 1.22 Let R be a commutative ring, I ⊂ R an ideal, f : R → R/I. There is a
map of topological spaces

F : Spec(R/I)→ SpecR.

This map is a closed embedding whose image is V (I). Most of this follows because there is
a bijection between ideals of R containing I and ideals of R/I, and this bijection preserves
primality.

Exercise 4.7 Show that this map SpecR/I → SpecR is indeed a homeomorphism from
SpecR/I → V (I).
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1.5 A basis for the Zariski topology

In the previous section, we were talking about the Zariski topology. If R is a commutative
ring, we recall that SpecR is defined to be the collection of prime ideals in R. This has a
topology where the closed sets are the sets of the form

V (I) = {p ∈ SpecR : p ⊃ I} .

There is another way to describe the Zariski topology in terms of open sets.

Definition 1.23 If f ∈ R, we let

Uf = {p : f /∈ p}

so that Uf is the subset of SpecR consisting of primes not containing f . This is the
complement of V ((f)), so it is open.

Proposition 1.24 The sets Uf form a basis for the Zariski topology.

Proof. Suppose U ⊂ SpecR is open. We claim that U is a union of basic open sets Uf .
Now U = SpecR− V (I) for some ideal I. Then

U =
⋃
f∈I

Uf

because if an ideal is not in V (I), then it fails to contain some f ∈ I, i.e. is in Uf for that
f . Alternatively, we could take complements, whence the above statement becomes

V (I) =
⋂
f∈I

V ((f))

which is clear. N

The basic open sets have nice properties.

1. U1 = SpecR because prime ideals are not allowed to contain the unit element.

2. U0 = ∅ because every prime ideal contains 0.

3. Ufg = Uf ∩ Ug because fg lies in a prime ideal p if and only if one of f, g does.

Now let us describe what the Zariski topology has to do with localization. Let R be a
ring and f ∈ R. Consider S =

{
1, f, f2, . . .

}
; this is a multiplicatively closed subset. Last

week, we defined S−1R.

Definition 1.25 For S the powers of f , we write Rf or R[f−1] for the localization S−1R.

There is a map φ : R→ R[f−1] and a corresponding map

SpecR[f−1]→ SpecR

sending a prime p ⊂ R[f−1] to φ−1(p).
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Proposition 1.26 This map induces a homeomorphism of SpecR[f−1] onto Uf ⊂ SpecR.

So if one takes a commutative ring and inverts an element, one just gets an open subset
of Spec. This is why it’s called localization: one is restricting to an open subset on the
Spec level when one inverts something.

Proof. The reader is encouraged to work this proof out for herself.

1. First, we show that SpecR[f−1]→ SpecR lands in Uf . If p ⊂ R[f−1], then we must
show that the inverse image φ−1(p) can’t contain f . If otherwise, that would imply
that φ(f) ∈ p; however, φ(f) is invertible, and then p would be (1).

2. Let’s show that the map surjects onto Uf . If p ⊂ R is a prime ideal not containing f ,
i.e. p ∈ Uf . We want to construct a corresponding prime in the ring R[f−1] whose
inverse image is p.

Let p[f−1] be the collection of all fractions

{ x
fn
, x ∈ p} ⊂ R[f−1],

which is evidently an ideal. Note that whether the numerator is in p is independent
of the representing fraction x

fn used.3 In fact, p[f−1] is a prime ideal. Indeed, suppose

a

fm
b

fn
∈ p[f−1].

Then ab
fm+n belongs to this ideal, which means ab ∈ p; so one of a, b ∈ p and one of

the two fractions a
fm ,

b
fn belongs to p[f−1]. Also, 1/1 /∈ p[f−1].

It is clear that the inverse image of p[f−1] is p, because the image of x ∈ R is x/1,
and this belongs to p[f−1] precisely when x ∈ p.

3. The map SpecR[f−1] → SpecR is injective. Suppose p, p′ are prime ideals in the
localization and the inverse images are the same. We must show that p = p′.

Suppose x
fn ∈ p. Then x/1 ∈ p, so x ∈ φ−1(p) = φ−1(p′). This means that x/1 ∈ p′,

so x
fn ∈ p′ too. So a fraction that belongs to p belongs to p′. By symmetry the two

ideals must be the same.

4. We now know that the map ψ : SpecR[f−1]→ Uf is a continuous bijection. It is left
to see that it is a homeomorphism. We will show that it is open. In particular, we
have to show that a basic open set on the left side is mapped to an open set on the
right side. If y/fn ∈ R[f−1], we have to show that Uy/fn ⊂ SpecR[f−1] has open
image under ψ. We’ll in fact show what open set it is.

We claim that
ψ(Uy/fn) = Ufy ⊂ SpecR.

3Suppose x
fn

= y

fk
for y ∈ p. Then there is N such that fN (fkx− fny) = 0 ∈ p; since y ∈ p and f /∈ p,

it follows that x ∈ p.
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To see this, p is contained in Uf/yn . This mean that p doesn’t contain y/fn. In
particular, p doesn’t contain the multiple yf/1. So ψ(p) doesn’t contain yf . This
proves the inclusion ⊂.

5. To complete the proof of the claim, and the result, we must show that if p ⊂
SpecR[f−1] and ψ(p) = φ−1(p) ∈ Ufy, then y/fn doesn’t belong to p. (This is
kosher and dandy because we have a bijection.) But the hypothesis implies that
fy /∈ φ−1(p), so fy/1 /∈ p. Dividing by fn+1 implies that

y/fn /∈ p

and p ∈ Uf/yn . N

If SpecR is a space, and f is thought of as a “function” defined on SpecR, the space
Uf is to be thought of as the set of points where f “doesn’t vanish” or “is invertible.”
Thinking about rings in terms of their spectra is a very useful idea. We will bring it up
when appropriate.

Remark The construction R→ R[f−1] as discussed above is an instance of localization.
More generally, we defined S−1R for S ⊂ R multiplicatively closed. We can thus define
maps SpecS−1R→ SpecR. To understand S−1R, it may help to note that

lim−→
f∈S

R[f−1]

which is a direct limit of rings where one inverts more and more elements.
As an example, consider S = R−p for a prime p, and for simplicity that R is countable.

We can write S = S0∪S1∪ . . . , where each Sk is generated by a finite number of elements
f0, . . . , fk. Then Rp = lim−→S−1

k R. So we have

S−1R = lim−→
k

R[f−1
0 , f−1

1 , . . . , f−1
k ] = lim−→R[(f0 . . . fk)

−1].

The functions we invert in this construction are precisely those which do not contain p,
or where “the functions don’t vanish.”

The geometric idea is that to construct SpecS−1R = SpecRp, we keep cutting out
from SpecR vanishing locuses of various functions that do not intersect p. In the end, you
don’t restrict to an open set, but to an intersection of them.

Exercise 4.8 Say that R is semi-local if it has finitely many maximal ideals. Let p1,
. . . , pn ⊂ R be primes. The complement of the union, S = R r

⋃
pi, is closed under

multiplication, so we can localize. R[S−1] = RS is called the semi-localization of R at the
pi.

The result of semi-localization is always semi-local. To see this, recall that the ideals
in RS are in bijection with ideals in R contained in

⋃
pi. Now use prime avoidance.

Definition 1.27 For a finitely generated R-module M , define µR(M) to be the smallest
number of elements that can generate M .
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This is not the same as the cardinality of a minimal set of generators. For example, 2 and
3 are a minimal set of generators for Z over itself, but µZ(Z) = 1.

Theorem 1.28 Let R be semi-local with maximal ideals m1, . . . ,mn. Let ki = R/mi.
Then

muR(M) = max{dimkiM/miM}

Proof. TO BE ADDED: proof N

§2 Nilpotent elements

We will now prove a few general results about nilpotent results in a ring. Topologically,
the nilpotents do very little: quotienting by them will not change the Spec. Nonetheless,
they carry geometric importance, and one thinks of these nilpotents as “infinitesimal
thickenings” (in a sense to be elucidated below).

2.1 The radical of a ring

There is a useful corollary of the analysis in the previous section about the Spec of a ring.

Definition 2.1 x ∈ R is called nilpotent if a power of x is zero. The set of nilpotent
elements in R is called the radical of R and is denoted Rad(R) (which is an abuse of
notation).

The set of nilpotents is just the radical Rad((0)) of the zero ideal, so it is an ideal. It
can vary greatly. A domain clearly has no nonzero nilpotents. On the other hand, many
rings do:

Example 2.2 For any n ≥ 2, the ring Z[X]/(Xn) has a nilpotent, namely X. The ideal
of nilpotent elements is (X).

It is easy to see that a nilpotent must lie in any prime ideal. The converse is also true
by the previous analysis. As a corollary of it, we find in fact:

Corollary 2.3 Let R be a commutative ring. Then the set of nilpotent elements of R is
precisely

⋂
p∈SpecR p.

Proof. Apply Lemma 1.12 to the zero ideal. N

We now consider a few examples of nilpotent elements.

Example 2.4 (Nilpotents in polynomial rings) Let us now compute the nilpotent
elements in the polynomial R[x]. The claim is that a polynomial

∑n
m=0 amx

m ∈ R[x] is
nilpotent if and only if all the coefficients am ∈ R are nilpotent. That is, Rad(R[x]) =
(Rad(R))R[x].

If a0, . . . , an are nilpotent, then because the nilpotent elements form an ideal, f = a0 +
· · ·+ anx

n is nilpotent. Conversely, if f is nilpotent, then fm = 0 and thus (anx
n)m = 0.

Thus anx
n is nilpotent, and because the nilpotent elements form an ideal, f − anxn is

nilpotent. By induction, aix
i is nilpotent for all i, so that all ai are nilpotent.
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Before the next example, we need to define a new notion. We now define a power
series ring intuitively in the same way they are used in calculus. In fact, we will use power
series rings much the same way we used them in calculus; they will serve as keeping track
of fine local data that the Zariski topology might “miss” due to its coarseness.

Definition 2.5 Let R be a ring. The power series ring R[[x]] is just the set of all ex-
pressions of the form

∑∞
i=0 cix

i. The arithmetic for the power series ring will be done term
by term formally (since we have no topology, we can’t consider questions of convergence,
though a natural topology can be defined making R[[x]] the completion of another ring,
as we shall see later).

Example 2.6 (Nilpotence in power series rings) Let R be a ring such that Rad(R)
is a finitely generated ideal. (This is satisfied, e.g., if R is noetherian, cf. Chapter 5.) Let
us consider the question of how Rad(R) and Rad(R[[x]]) are related. The claim is that

Rad(R[[x]]) = (Rad(R))R[[x]].

If f ∈ R[[x]] is nilpotent, say with fn = 0, then certainly an0 = 0, so that a0 is nilpotent.
Because the nilpotent elements form an ideal, we have that f − a0 is also nilpotent, and
hence by induction every coefficient of f must be nilpotent in R. For the converse, let
I = Rad(R). There exists an N > 0 such that the ideal power IN = 0 by finite generation.
Thus if f ∈ IR[[x]], then fN ∈ INR[[x]] = 0.

Exercise 4.9 Prove that x ∈ R is nilpotent if and only if the localization Rx is the zero
ring.

Exercise 4.10 Construct an example where Rad(R)R[[x]] 6= Rad(R[[x]]). (Hint: con-
sider R = C[X1, X2, X3, . . . ]/(X1, X

2
2 , X

3
3 , . . . ).)

2.2 Lifting idempotents

If R is a ring, and I ⊂ R a nilpotent ideal, then we want to think of R/I as somehow
close to R. For instance, the inclusion SpecR/I ↪→ SpecR is a homeomorphism, and one
pictures that SpecR has some “fuzz” added (with the extra nilpotents in I) that is killed
in SpecR/I.

One manifestation of the “closeness” of R and R/I is the following result, which states
that the idempotent elements4 of the two are in natural bijection. For convenience, we
state it in additional generality (that is, for noncommutative rings).

Lemma 2.7 (Lifting idempotents) Suppose I ⊂ R is a nilpotent two-sided ideal, for
R any5 ring. Let e ∈ R/I be an idempotent. Then there is an idempotent e ∈ R which
reduces to e.

Note that if J is a two-sided ideal in a noncommutative ring, then so are the powers
of J .

4Recall that an element e ∈ R is idempotent if e2 = e.
5Not necessarily commutative.
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Proof. Let us first assume that I2 = 0. We can find e1 ∈ R which reduces to e, but e1

is not necessarily idempotent. By replacing R with Z[e1] and I with Z[e1] ∩ I, we may
assume that R is in fact commutative. However,

e2
1 ∈ e1 + I.

Suppose we want to modify e1 by i such that e = e1 + i is idempotent and i ∈ I; then e
will do as in the lemma. We would then necessarily have

e1 + i = (e1 + i)2 = e2
1 + 2e1i as I2 = 0.

In particular, we must satisfy

i(1− 2e1) = e2
1 − e1 ∈ I.

We claim that 1 − 2e1 ∈ R is invertible, so that we can solve for i ∈ I. However, R
is commutative. It thus suffices to check that 1− 2e1 lies in no maximal ideal of R. But
the image of e1 in R/m for any maximal ideal m ⊂ R is either zero or one. So 1− 2e1 has
image either 1 or −1 in R/m. Thus it is invertible.

This establishes the result when I has zero square. In general, suppose In = 0. We
have the sequence of noncommutative rings:

R� R/In−1 � R/In−2 · · ·� R/I.

The kernel at each step is an ideal whose square is zero. Thus, we can use the lifting
idempotents partial result proved above each step of the way and left e ∈ R/I to some
e ∈ R. N

While the above proof has the virtue of applying to noncommutative rings, there is
a more conceptual argument for commutative rings. The idea is that idempotents in
A measure disconnections of SpecA.6 Since the topological space underlying SpecA is
unchanged when one quotients by nilpotents, idempotents are unaffected. We prove:

Proposition 2.8 If X = Spec A, then there is a one-to-one correspondence between
Idem(A) and the open and closed subsets of X.

Proof. Suppose I is the radical of (e) for an an idempotent e ∈ R. We show that V (I) is
open and closed. Since V is unaffected by passing to the radical, we will assume without
loss of generality that

I = (e).

I claim that SpecR−V (I) is just V (1−e) = V ((1−e)). This is a closed set, so proving
this claim will imply that V (I) is open. Indeed, V (e) = V ((e)) cannot intersect V (1− e)
because if

p ∈ V (e) ∩ V (1− e),
6More generally, in any ringed space (a space with a sheaf of rings), the idempotents in the ring of

global sections correspond to the disconnections of the topological space.
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then e, 1− e ∈ p, so 1 ∈ p. This is a contradiction since p is necessarily prime.

Conversely, suppose that p ∈ SpecR belongs to neither V (e) nor V (1− e). Then e /∈ p
and 1− e /∈ p. So the product

e(1− e) = e− e2 = 0

cannot lie in p. But necessarily 0 ∈ p, contradiction. So V (e) ∪ V (1− e) = SpecR. This
implies the claim.

Next, we show that if V (I) is open, then I is the radical of (e) for an idempotent e.
For this it is sufficient to prove:

Lemma 2.9 Let I ⊂ R be such that V (I) ⊂ SpecR is open. Then I is principal, generated
by (e) for some idempotent e ∈ R.

Proof. Suppose that SpecR − V (I) = V (J) for some ideal J ⊂ R. Then the intersection
V (I) ∩ V (J) = V (I + J) is all of R, so I + J cannot be a proper ideal (or it would be
contained in a prime ideal). In particular, I + J = R. So we can write

1 = x+ y, x ∈ I, y ∈ J.

Now V (I)∪V (J) = V (IJ) = SpecR. This implies that every element of IJ is nilpotent
by the next lemma. N

Lemma 2.10 Suppose V (X) = SpecR for X ⊂ R an ideal. Then every element of X is
nilpotent.

Proof. Indeed, suppose x ∈ X were non-nilpotent. Then the ring Rx is not the zero
ring, so it has a prime ideal. The map SpecRx → SpecR is, as discussed in class, a
homeomorphism of SpecRx onto D(x). So D(x) ⊂ SpecR (the collection of primes not
containing x) is nonempty. In particular, there is p ∈ SpecR with x /∈ p, so p /∈ V (X). So
V (X) 6= SpecR, contradiction. N

Return to the proof of the main result. We have shown that IJ is nilpotent. In
particular, in the expression x + y = 1 we had earlier, we have that xy is nilpotent. Say
(xy)k = 0. Then expand

1 = (x+ y)2k =

2k∑
i=0

(
2k

i

)
xiy2k−i =

′∑
+

′′∑
where

∑′ is the sum from i = 0 to i = k and
∑′′ is the sum from k + 1 to 2k. Then∑′∑′′ = 0 because in every term occurring in the expansion, a multiple of xkyk occurs.

Also,
∑′ ∈ I and

∑′′ ∈ J because x ∈ I, y ∈ J .

All in all, we find that it is possible to write

1 = x′ + y′, x′ ∈ I, y′ ∈ J, x′y′ = 0.
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(We take x′ =
∑′, y′ =

∑′′.) Then x′(1 − x′) = 0 so x′ ∈ I is idempotent. Similarly
y′ = 1− x′ is. We have that

V (I) ⊂ V (x′), V (J) ⊂ V (y′)

and V (x′), V (y′) are complementary by the earlier arguments, so necessarily

V (I) = V (x′), V (J) = V (y′).

Since an ideal generated by an idempotent is automatically radical, it follows that:

I = (x′), , J = (y′). N

There are some useful applications of this in representation theory, because one can
look for idempotents in endomorphism rings; these indicate whether a module can be
decomposed as a direct sum into smaller parts. Except, of course, that endomorphism
rings aren’t necessarily commutative and this proof breaks down.

Thus we get:

Proposition 2.11 Let A be a ring and I a nilpotent ideal. Then Idem(A)→ Idem(A/I)
is bijective.

Proof. Indeed, the topological spaces of Spec A and Spec A/I are the same. The result
then follows from ??. N

2.3 Units

Finally, we make a few remarks on units modulo nilideals. It is a useful and frequently
used trick that adding a nilpotent does not affect the collection of units. This trick is
essentially an algebraic version of the familiar “geometric series;” convergence questions
do not appear thanks to nilpotence.

Example 2.12 Suppose u is a unit in a ring R and v ∈ R is nilpotent; we show that a+v
is a unit.

Suppose ua = 1 and vm = 0 for some m > 1. Then (u+ v) · a(1− av + (av)2 − · · · ±
(av)m−1) = (1− (−av))(1 + (−av) + (−av)2 + · · ·+ (−av)m−1) = 1− (−av)m = 1− 0 = 1,
so u+ v is a unit.

So let R be a ring, I ⊂ R a nilpotent ideal of square zero. Let R∗ denote the group of
units in R, as usual, and let (R/I)∗ denote the group of units in R/I. We have an exact
sequence of abelian groups:

0→ I → R∗ → (R/I)∗ → 0

where the second map is reduction and the first map sends i→ 1 + i. The hypothesis that
I2 = 0 shows that the first map is a homomorphism. We should check that the last map
is surjective. But if any a ∈ R maps to a unit in R/I, it clearly can lie in no prime ideal
of R, so is a unit itself.
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§3 Vista: sheaves on SpecR

3.1 Presheaves

Let X be a topological space.

Definition 3.1 A presheaf of sets F on X assigns to every open subset U ⊂ X a set
F(U), and to every inclusion U ⊂ V a restriction map resVU : F(V ) → F(U). The
restriction map is required to satisfy:

1. ResUU = idF(U) for all open sets U .

2. ResWU = ResVU ◦ResWV if U ⊂ V ⊂W .

If the sets F(U) are all groups (resp. rings), and the restriction maps are morphisms
of groups (resp. rings), then we say that F is a sheaf of groups (resp. rings). Often the
restriction of an element a ∈ U to a subset W is denoted a|W .

A morphism of presheaves F → G is a collection of maps F(U)→ G(U) for each open
set U , that commute with the restriction maps in the obvious way. Thus the collection of
presheaves on a topological space forms a category.

One should think of the restriction maps as kind of like restricting the domain of a
function. The standard example of presheaves is given in this way, in fact.

Example 3.2 Let X be a topological space, and F the presheaf assigning to each U ⊂ X
the set of continuous functions U → R. The restriction maps come from restricting the
domain of a function.

Now, in classical algebraic geometry, there are likely to be more continuous functions
in the Zariski topology than one really wants. One wants to focus on functions that are
given by polynomial equations.

Example 3.3 Let X be the topological space Cn with the topology where the closed
sets are those defined by the zero loci of polynomials (that is, the topology induced on
Cn from the Zariski topology of SpecC[x1, . . . , xn] via the canonical imbedding Cn ↪→
SpecC[x1, . . . , xn]). Then there is a presheaf assigning to each open set U the collection of
rational functions defined everywhere on U , with the restriction maps being the obvious
ones.

Remark The notion of presheaf thus defined relied very little on the topology of X. In
fact, we could phrase it in purely categorical terms. Let C be the category consisting of
open subsets U ⊂ X and inclusions of open subsets U ⊂ U ′. This is a rather simple
category (the hom-sets are either empty or consist of one element). Then a presheaf is
just a contravariant functor from C to Sets (or Grp, etc.). A morphism of presheaves is
a natural transformation of functors.

In fact, given any category C, we can define the category of presheaves on it to be the
category of functors Fun(Cop,Set). This category is complete and cocomplete (we can
calculate limits and colimits “pointwise”), and the Yoneda embedding realizes C as a full
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subcategory of it. So if X ∈ C, we get a presheaf Y 7→ HomC(Y,X). In general, however,
such representable presheaves are rather special; for instance, what do they look like for
the category of open sets in a topological space?

3.2 Sheaves

Definition 3.4 Let F be a presheaf of sets on a topological space X. We call F a sheaf
if F further satisfies the following two “sheaf conditions.”

1. (Separatedness) If U is an open set of X covered by a family of open subsets {Ui}
and there are two elements a, b ∈ F(U) such that a|Ui = b|Ui for all Ui, then a = b.

2. (Gluability) If U is an open set of X covered by Ui and there are elements ai ∈ F(Ui)
such that ai|Ui∩Uj = aj |Ui∩Uj for all i and j, then there exists an element a ∈ F(U)
that restricts to the ai. Notice that by the first axiom, this element is unique.

A morphism of sheaves is just a morphism of presheaves, so the sheaves on a topological
space X form a full subcategory of presheaves on X.

The above two conditions can be phrased more compactly as follows. Whenever {Ui}i∈I
is an open cover of U ⊂ X, we require that the following sequence be an equalizer of sets:

F(U)→
∏
i∈I
F(Ui)⇒

∏
i,j∈I
F(Ui ∩ Uj)

where the two arrows correspond to the two allowable restriction maps. Similarly, we say
that a presheaf of abelian groups (resp. rings) is a sheaf if it is a sheaf of sets.

Example 3.5 The example of functions gives an example of a sheaf, because functions
are determined by their restrictions to an open cover! Namely, if X is a topological space,
and we consider the presheaf

U 7→ {continuous functions U → R} ,

then this is clearly a presheaf, because we can piece together continuous functions in a
unique manner.

Example 3.6 Here is a refinement of the above example. Let X be a smooth manifold.
For each U , let F(U) denote the group of smooth functions U → R. This is easily checked
to be a sheaf.

We could, of course, replace “smooth” by “Cr” or by “holomorphic” in the case of a
complex manifold.

Remark As remarked above, the notion of presheaf can be defined on any category,
and does not really require a topological space. The definition of a sheaf requires a bit
more topologically, because the idea that a family {Ui} covers an open set U was used
inescapably in the definition. The idea of covering required the internal structure of the
open sets and was not a purely categorical idea. However, Grothendieck developed a
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way to axiomatize this, and introduced the idea of a Grothendieck topology on a category
(which is basically a notion of when a family of maps covers something). On a category
with a Grothendieck topology (also known as a site), one can define the notion of a sheaf
in a similar manner as above. See [Vis08].

There is a process that allows one to take any presheaf and associate a sheaf to it. In
some sense, this associated sheaf should also be the best “approximation” of our presheaf
with a sheaf. This motivates the following universal property:

Definition 3.7 Let F be a presheaf. Then F ′ is said to be the sheafification of F if for
any sheaf G and a morphism F → G, there is a unique factorization of this morphism as
F → F ′ → G.

Theorem 3.8 We can construct the sheafification of a presheaf F as follows: F ′(U) =
{s : U →

∐
x∈U Fx|for all x ∈ U, s(x) ∈ Fx and there is a neighborhood V ⊂ U and t ∈

F(V ) such that for all y ∈ V, s(y) is the image of t in the local ring Fy}.

TO BE ADDED: proof

In the theory of schemes, when one wishes to replace polynomial rings over C (or an
algebraically closed field) with arbitrary commutative rings, one must drop the idea that
a sheaf is necessarily given by functions. A scheme is defined as a space with a certain
type of sheaf of rings on it. We shall not define a scheme formally, but show how on the
building blocks of schemes—objects of the form SpecA—a sheaf of rings can be defined.

3.3 Sheaves on SpecA

TO BE ADDED: we need to describe how giving sections over basic open sets gives a
presheaf in general.

Proposition 3.9 Let A be a ring and let X = Spec(A). Then the assignment of the ring
Af to the basic open set Xf defines a presheaf of rings on X.

Proof.

Part (i). If Xg ⊂ Xf are basic open sets, then there exist n ≥ 1 and u ∈ A such that
gn = uf .

Proof of part (i). Let S = {gn : n ≥ 0} and suppose S ∩ (f) = ∅. Then the extension
(f)e into S−1A is a proper ideal, so there exists a maximal ideal S−1p of S−1A, where
p ∩ S = ∅. Since (f)e ∈ S−1p, we see that f/1 ∈ S−1p, so f ∈ p. But S ∩ p = ∅ implies
that g /∈ p. This is a contradiction, since then p ∈ Xg \Xf .

Part (ii). If Xg ⊂ Xf , then there exists a unique map ρ : Af → Ag, called the
restriction map, which makes the following diagram commute.

A

~~~~~~~~~

  @@@@@@@

Af // Ag
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Proof of part (ii). Let n ≥ 1 and u ∈ A be such that gn = uf by part (i). Note that
in Ag,

(f/1)(u/gn) = (fu/gn) = 1/1 = 1

which means that f maps to a unit in Ag. Hence every fm maps to a unit in Ag, so the
universal property of Af yields the desired unique map ρ : Af → Ag.

Part (iii). If Xg = Xf , then the corresponding restriction ρ : Af → Ag is an isomor-
phism.

Proof of part (iii). The reverse inclusion yields a ρ′ : Ag → Af such that the diagram

A

  @@@@@@@

~~~~~~~~~

Af

ρ
++ Ag

ρ′
kk

commutes. But since the localization map is epic, this implies that ρρ′ = ρ′ρ = 1.

Part (iv). If Xh ⊂ Xg ⊂ Xf , then the diagram

Af //

  AAAAAAAA
Ah

Ag

>>}}}}}}}}

of restriction maps commutes.

Proof of part (iv). Consider the following tetrahedron.

A

}}||||||||

!!BBBBBBBB

��

Af //

  AAAAAAAA
Ah

Ag

>>}}}}}}}}

Except for the base, the commutativity of each face of the tetrahedron follows from the
universal property of part (ii). But its easy to see that commutativity of the those faces
implies commutativity of the base, which is what we want to show.

Part (v). If Xg̃ = Xg ⊂ Xf = Xf̃ , then the diagram

Af //

��

Ag

��
Af̃ // Ag̃

of restriction maps commutes. (Note that the vertical maps here are isomorphisms.)
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Proof of part (v). By part (iv), the two triangles of

Af //

��   @@@@@@@@
Ag

��
Af̃ // Ag̃

commute. Therefore the square commutes.
Part (vi). Fix a prime ideal p in A. Consider the direct system consisting of rings

Af for every f /∈ p and restriction maps ρfg : Af → Ag whenever Xg ⊂ Xf . Then
lim−→Af ∼= Ap.

proof of part (vi). First, note that since f /∈ p and p is prime, we know that fm /∈ p
for all m ≥ 0. Therefore the image of fm under the localization A→ Ap is a unit, which
means the universal property of Af yields a unique map αf : Af → Ap such that the
following diagram commutes.

A

  @@@@@@@

~~~~~~~~~

Af
αf // Ap

Then consider the following tetrahedron.

A

~~||||||||

  BBBBBBBB

��

Af //

  AAAAAAA
Ah

Ap

>>}}}}}}}}

All faces except the bottom commute by construction, so the bottom face commutes as
well. This implies that the αf commute with the restriction maps, as necessary. Now, to
see that lim−→Af ∼= Ap, we show that Ap satisfies the universal property of lim−→Af .

Suppose B is a ring and there exist maps βf : Af → B which commute with the
restrictions. Define β : A → B as the composition A → Af → B. The fact that β is
independent of choice of f follows from the commutativity of the following diagram.

A

  @@@@@@@@

~~}}}}}}}

Af
ρfg //

βf

  AAAAAAA
Ag

βg

~~~~~~~~~~

B

Now, for every f /∈ p, we know that β(f) must be a unit since β(f) = βf (f/1) and f/1 is
a unit in Af . Therefore the universal property of Ap yields a unique map Ap → B, which
clearly commutes with all the arrows necessary to make lim−→Af ∼= Ap. N
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Proposition 3.10 Let A be a ring and let X = Spec(A). The presheaf of rings OX
defined on X is a sheaf.

Proof. The proof proceeds in two parts. Let (Ui)i∈I be a covering of X by basic open sets.
Part 1. If s ∈ A is such that si := ρX,Ui(s) = 0 for all i ∈ I, then s = 0.
Proof of part 1. Suppose Ui = Xfi . Note that si is the fraction s/1 in the ring Afi , so

si = 0 implies that there exists some integer mi such that sfmii = 0. Define gi = fmii , and
note that we still have an open cover by sets Xgi since Xfi = Xgi (a prime ideal contains
an element if and only if it contains every power of that element). Also sgi = 0, so the
fraction s/1 is still 0 in the ring Agi . (Essentially, all we’re observing here is that we are
free to change representation of the basic open sets in our cover to make notation more
convenient).

SinceX is quasi-compact, choose a finite subcoverX = Xg1∪· · ·∪Xgn . This means that
g1, . . . , gn must generate the unit ideal, so there exists some linear combination

∑
xigi = 1

with xi ∈ A. But then

s = s · 1 = s
(∑

xigi

)
=
∑

xi(sgi) = 0.

Part 2. Let si ∈ OX(Ui) be such that for every i, j ∈ I,

ρUi,Ui∩Uj (si) = ρUj ,Ui∩Uj (sj).

(That is, the collection (si)i∈I agrees on overlaps). Then there exists a unique s ∈ A such
that ρX,Ui(s) = si for every i ∈ I.

Proof of part 2. Let Ui = Xfi , so that si = ai/(f
mi
i ) for some integers mi. As in

part 1, we can clean up notation by defining gi = fmii , so that si = ai/gi. Choose a finite
subcover X = Xg1∪· · ·∪Xgn . Then the condition that the cover agrees on overlaps means
that

aigj
gigj

=
ajgi
gigj

for all i, j in the finite subcover. This is equivalent to the existence of some kij such that

(aigj − ajgi)(gigj)kij = 0.

Let k be the maximum of all the kij , so that (aigj − ajgi)(gigj)k = 0 for all i, j in the
finite subcover. Define bi = aig

k
i and hi = gk+1

i . We make the following observations:

bihj − bjhi = 0, Xgi = Xhi , and si = ai/gi = bi/hi

The first observation implies that the Xhi cover X, so the hi generate the unit ideal. Then
there exists some linear combination

∑
xihi = 1. Define s =

∑
xibi. I claim that this is

the global section that restricts to si on the open cover.
The first step is to show that it restricts to si on our chosen finite subcover. In other

words, we want to show that s/1 = si = bi/hi in Ahi , which is equivalent to the condition
that there exist some li such that (shibi)h

li
i = 0. But in fact, even li = 0 works:

shi − bi =
(∑

xjbj

)
hi − bi

(∑
xjhj

)
=
∑

xj (hibj − bihj) = 0.

154



The CRing Project, §4.3.

This shows that s restricts to si on each set in our finite subcover. Now we need to show
that in fact, it restricts to si for all of the sets in our cover. Choose any j ∈ I. Then
U1, . . . , Un, Uj still cover X, so the above process yields an s′ such that s′ restricts to si
for all i ∈ {1, . . . , n, j}. But then s− s′ satisfies the assumptions of part 1 using the cover
{U1, . . . , Un, Uj}, so this means s = s′. Hence the restriction of s to Uj is also sj . N
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Chapter 5

Noetherian rings and modules

The finiteness condition of a noetherian ring is necessary for much of commutative algebra;
many of the results we prove after this will apply only (or mostly) to the noetherian case.
In algebraic geometry, the noetherian condition guarantees that the topological space
associated to the ring (the Spec) has all its sets quasi-compact; this condition can be
phrased as saying that the space itself is noetherian in a certain sense.

We shall start by proving the basic properties of noetherian rings. These are fairly
standard and straightforward; they could have been placed after Chapter 1, in fact. More
subtle is the structure theory for finitely generated modules over a noetherian ring. While
there is nothing as concrete as there is for PIDs (there, one has a very explicit descrition
for the isomorphism classes), one can still construct a so-called “primary decomposition.”
This will be the primary focus after the basic properties of noetherian rings and modules
have been established. Finally, we finish with an important subclass of noetherian rings,
the artinian ones.

§1 Basics

1.1 The noetherian condition

Definition 1.1 Let R be a commutative ring and M an R-module. We say that M is
noetherian if every submodule of M is finitely generated.

There is a convenient reformulation of the finiteness hypothesis above in terms of the
ascending chain condition.

Proposition 1.2 M is a module over R. The following are equivalent:

1. M is noetherian.

2. Every chain of submodules M0 ⊂M1 ⊂ · · · ⊂M , eventually stabilizes at some MN .
(Ascending chain condition.)

3. Every nonempty collection of submodules of M has a maximal element.

Proof. Say M is noetherian and we have such a chain

M0 ⊂M1 ⊂ . . . .
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Write

M ′ =
⋃
Mi ⊂M,

which is finitely generated since M is noetherian. Let it be generated by x1, . . . , xn. Each
of these finitely many elements is in the union, so they are all contained in some MN .
This means that

M ′ ⊂MN , so MN = M ′

and the chain stabilizes.

For the converse, assume the ACC. Let M ′ ⊂M be any submodule. Define a chain of
submodules M0 ⊂M1 ⊂ · · · ⊂M ′ inductively as follows. First, just take M0 = {0}. Take
Mn+1 to be Mn +Rx for some x ∈M ′ −Mn, if such an x exists; if not take Mn+1 = Mn.
So M0 is zero, M1 is generated by some nonzero element of M ′, M2 is M1 together with
some element of M ′ not in M1, and so on, until (if ever) the chain stabilizes.

However, by construction, we have an ascending chain, so it stabilizes at some finite
place by the ascending chain condition. Thus, at some point, it is impossible to choose
something in M ′ that does not belong to MN . In particular, M ′ is generated by N
elements, since MN is and M ′ = MN . This proves the reverse implication. Thus the
equivalence of 1 and 2 is clear. The equivalence of 2 and 3 is left to the reader. N

Working with noetherian modules over non-noetherian rings can be a little funny,
though, so normally this definition is combined with:

Definition 1.3 The ring R is noetherian if R is noetherian as an R-module. Equiva-
lently phrased, R is noetherian if all of its ideals are finitely generated.

We start with the basic examples:

Example 1.4 1. Any field is noetherian. There are two ideals: (1) and (0).

2. Any PID is noetherian: any ideal is generated by one element. So Z is noetherian.

The first basic result we want to prove is that over a noetherian ring, the noetherian
modules are precisely the finitely generated ones. This will follow from Proposition 1.5 in
the next subsection. So the defining property of noetherian rings is that a submodule of
a finitely generated module is finitely generated. (Compare Proposition 1.8.)

Exercise 5.1 The ring C[X1, X2, . . . ] of polynomials in infinitely many variables is not
noetherian. Note that the ring itself is finitely generated (by the element 1), but there are
ideals that are not finitely generated.

Remark Let R be a ring such that every prime ideal is finitely generated. Then R is
noetherian. See Corollary 1.19, or prove it as an exercise.
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1.2 Stability properties

The class of noetherian rings is fairly robust. If one starts with a noetherian ring, most
of the elementary operations one can do to it lead to noetherian rings.

Proposition 1.5 If

0→M ′ →M →M ′′ → 0

is an exact sequence of modules, then M is noetherian if and only if M ′,M ′′ are.

One direction states that noetherianness is preserved under subobjects and quotients.
The other direction states that noetherianness is preserved under extensions.

Proof. If M is noetherian, then every submodule of M ′ is a submodule of M , so is finitely
generated. SoM ′ is noetherian too. Now we show thatM ′′ is noetherian. LetN ⊂M ′′ and
let Ñ ⊂ M the inverse image. Then Ñ is finitely generated, so N—as the homomorphic
image of Ñ—is finitely generated So M ′′ is noetherian.

Suppose M ′,M ′′ noetherian. We prove M noetherian. We verify the ascending chain
condition. Consider

M1 ⊂M2 ⊂ · · · ⊂M.

Let M ′′i denote the image of Mi in M ′′ and let M ′i be the intersection of Mi with M ′.
Here we think of M ′ as a submodule of M . These are ascending chains of submodules of
M ′,M ′′, respectively, so they stabilize by noetherianness. So for some N , we have that
n ≥ N implies

M ′n = M ′n+1, M ′′n = M ′′n+1.

We claim that this implies, for such n,

Mn = Mn+1.

Indeed, say x ∈ Mn+1 ⊂ M . Then x maps into something in M ′′n+1 = M ′′n . So there is
something in Mn, call it y, such that x, y go to the same thing in M ′′. In particular,

x− y ∈Mn+1

goes to zero in M ′′, so x− y ∈M ′. Thus x− y ∈M ′n+1 = M ′n. In particular,

x = (x− y) + y ∈M ′n +Mn = Mn.

So x ∈Mn, and

Mn = Mn+1.

This proves the result. N

The class of noetherian modules is thus “robust.” We can get from that the following.

Proposition 1.6 If φ : A→ B is a surjection of commutative rings and A is noetherian,
then B is noetherian too.
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Proof. Indeed, B is noetherian as an A-module; indeed, it is the quotient of a noetherian
A-module (namely, A). However, it is easy to see that the A-submodules of B are just
the B-modules in B, so B is noetherian as a B-module too. So B is noetherian. N

We know show that noetherianness of a ring is preserved by localization:

Proposition 1.7 Let R be a commutative ring, S ⊂ R a multiplicatively closed subset. If
R is noetherian, then S−1R is noetherian.

I.e., the class of noetherian rings is closed under localization.

Proof. Say φ : R → S−1R is the canonical map. Let I ⊂ S−1R be an ideal. Then
φ−1(I) ⊂ R is an ideal, so finitely generated. It follows that

φ−1(I)(S−1R) ⊂ S−1R

is finitely generated as an ideal in S−1R; the generators are the images of the generators
of φ−1(I).

Now we claim that

φ−1(I)(S−1R) = I.

The inclusion ⊂ is trivial. For the latter inclusion, if x/s ∈ I, then x ∈ φ−1(I), so

x = (1/s)x ∈ (S−1R)φ−1(I).

This proves the claim and implies that I is finitely generated. N

Let R be a noetherian ring. We now characterize the noetherian R-modules.

Proposition 1.8 An R-module M is noetherian if and only if M is finitely generated.

Proof. The only if direction is obvious. A module is noetherian if and only if every
submodule is finitely generated.

For the if direction, if M is finitely generated, then there is a surjection of R-modules

Rn →M N

where R is noetherian. But Rn is noetherian by Proposition 1.5 because it is a direct sum
of copies of R. So M is a quotient of a noetherian module and is noetherian.

1.3 The basis theorem

Let us now prove something a little less formal. This is, in fact, the biggest of the
“stability” properties of a noetherian ring: we are going to see that finitely generated
algebras over noetherian rings are still noetherian.

Theorem 1.9 (Hilbert basis theorem) If R is a noetherian ring, then the polynomial
ring R[X] is noetherian.
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Proof. Let I ⊂ R[X] be an ideal. We prove that it is finitely generated. For each m ∈ Z≥0,
let I(n) be the collection of elements a ∈ R consisting of the coefficients of xn of elements
of I of degree ≤ n. This is an ideal, as is easily seen.

In fact, we claim that
I(1) ⊂ I(2) ⊂ . . .

which follows because if a ∈ I(1), there is an element aX + . . . in I. Thus X(aX + . . . ) =
aX2 + · · · ∈ I, so a ∈ I(2). And so on.

Since R is noetherian, this chain stabilizes at some I(N). Also, because R is noetherian,
each I(n) is generated by finitely many elements an,1, . . . , an,mn ∈ I(n). All of these come
from polynomials Pn,i ∈ I such that Pn,i = an,iX

n + . . . .
The claim is that the Pn,i for n ≤ N and i ≤ mn generate I. This is a finite set of

polynomials, so if we prove the claim, we will have proved the basis theorem. Let J be
the ideal generated by {Pn,i, n ≤ N, i ≤ mn}. We know J ⊂ I. We must prove I ⊂ J .

We will show that any element P (X) ∈ I of degree n belongs to J by induction on n.
The degree is the largest nonzero coefficient. In particular, the zero polynomial does not
have a degree, but the zero polynomial is obviously in J .

There are two cases. In the first case, n ≥ N . Then we write

P (X) = aXn + . . . .

By definition, a ∈ I(n) = I(N) since the chain of ideals I(n) stabilized. Thus we can
write a in terms of the generators: a =

∑
aN,iλi for some λi ∈ R. Define the polynomial

Q =
∑

λiPN,ix
n−N ∈ J.

Then Q has degree n and the leading term is just a. In particular,

P −Q

is in I and has degree less than n. By the inductive hypothesis, this belongs to J , and
since Q ∈ J , it follows that P ∈ J .

Now consider the case of n < N . Again, we write P (X) = aXn + . . . . Then a ∈ I(n).
We can write

a =
∑

an,iλi, λi ∈ R.

But the an,i ∈ I(n). The polynomial

Q =
∑

λiPn,i

belongs to J since n < N . In the same way, P −Q ∈ I has a lower degree. Induction as
before implies that P ∈ J . N

Example 1.10 Let k be a field. Then k[x1, . . . , xn] is noetherian for any n, by the Hilbert
basis theorem and induction on n.

Corollary 1.11 If R is a noetherian ring and R′ a finitely generated R-algebra, then R′

is noetherian too.
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Proof. Each polynomial ring R[X1, . . . , Xn] is noetherian by Theorem 1.9 and an easy
induction on n. Consequently, any quotient of a polynomial ring (i.e. any finitely generated
R-algebra, such as R′) is noetherian. N

Example 1.12 Any finitely generated commutative ring R is noetherian. Indeed, then
there is a surjection

Z[x1, . . . , xn]� R

where the xi get mapped onto generators in R. The former is noetherian by the basis
theorem, and R is as a quotient noetherian.

Corollary 1.13 Any ring R can be obtained as a filtered direct limit of noetherian rings.

Proof. Indeed, R is the filtered direct limit of its finitely generated subrings. N

This observation is sometimes useful in commutative algebra and algebraic geome-
try, in order to reduce questions about arbitrary commutative rings to noetherian rings.
Noetherian rings have strong finiteness hypotheses that let you get numerical invariants
that may be useful. For instance, we can do things like inducting on the dimension for
noetherian local rings.

Example 1.14 Take R = C[x1, . . . , xn]. For any algebraic variety V defined by polyno-
mial equations, we know that V is the vanishing locus of some ideal I ⊂ R. Using the
Hilbert basis theorem, we have shown that I is finitely generated. This implies that V
can be described by finitely many polynomial equations.

1.4 Noetherian induction

The finiteness condition on a noetherian ring allows for “induction” arguments to be made;
we shall see examples of this in the future.

Proposition 1.15 (Noetherian Induction Principle) Let R be a noetherian ring, let
P be a property, and let F be a family of ideals R. Suppose the inductive step: if all ideals
in F strictly larger than I ∈ F satisfy P, then I satisfies P. Then all ideals in F satisfy
P.

Proof. Assume Fcrim = {J ∈ F|J does not satisfy P} 6= ∅. Since R is noetherian, Fcrim

has a maximal member I. By maximality, all ideals in F strictly containing I satisfy P,
so I also does by the inductive step. N

§2 Associated primes

We shall now begin the structure theory for noetherian modules. The first step will be to
associate to each module a collection of primes, called the associated primes, which lie in
a bigger collection of primes (the support) where the localizations are nonzero.
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2.1 The support

Let R be a noetherian ring. An R-module M is supposed to be thought of as something
like a vector bundle, somehow spread out over the topological space SpecR. If p ∈ SpecR,
then let κ(p) = fr. field R/p, which is the residue field of Rp. If M is any R-module, we
can consider M⊗Rκ(p) for each p; it is a vector space over κ(p). If M is finitely generated,
then M ⊗R κ(p) is a finite-dimensional vector space.

Definition 2.1 Let M be a finitely generated R-module. Then suppM , the support of
M , is defined to be the set of primes p ∈ SpecR such that M ⊗R κ(p) 6= 0.

One is supposed to think of a module M as something like a vector bundle over the
topological space SpecR. At each p ∈ SpecR, we associate the vector space M ⊗R κ(p);
this is the “fiber.” Of course, the intuition of M ’s being a vector bundle is somewhat
limited, since the fibers do not generally have the same dimension. Nonetheless, we can
talk about the support, i.e. the set of spaces where the “fiber” is not zero.

Note that p ∈ suppM if and only if Mp 6= 0. This is because

(M ⊗R Rp)/(pRp(M ⊗R Rp)) = Mp ⊗Rp κ(p)

and we can use Nakayama’s lemma over the local ring Rp. (We are using the fact that M
is finitely generated.)

A vector bundle whose support is empty is zero. Thus the following easy proposition
is intuitive:

Proposition 2.2 M = 0 if and only if suppM = ∅.

Proof. Indeed, M = 0 if and only if Mp = 0 for all primes p ∈ SpecR. This is equivalent
to suppM = ∅. N

Exercise 5.2 Let 0→M ′ →M →M ′′ → 0 be exact. Then

suppM = suppM ′ ∪ suppM ′′.

We will see soon that that suppM is closed in SpecR. One imagines that M lives on
this closed subset suppM , in some sense.

2.2 Associated primes

Throughout this section, R is a noetherian ring. The associated primes of a module M
will refer to primes that arise as the annihilators of elements in M . As we shall see,
the support of a module is determined by the associated primes. Namely, the associated
primes contain the “generic points” (that is, the minimal primes) of the support. In some
cases, however, they may contain more.

TO BE ADDED: We are currently using the notation Ann(x) for the annihilator of
x ∈M . This has not been defined before. Should we add this in a previous chapter?

163



The CRing Project, §5.2.

Definition 2.3 Let M be a finitely generated R-module. The prime ideal p is said to be
associated to M if there exists an element x ∈ M such that p is the annihilator of x.
The set of associated primes is Ass(M).

Note that the annihilator of an element x ∈ M is not necessarily prime, but it is
possible that the annihilator might be prime, in which case it is associated.

Exercise 5.3 Show that p ∈ Ass(M) if and only if there is an injection R/p ↪→M .

Exercise 5.4 Let p ∈ SpecR. Then Ass(R/p) = {p}.

Example 2.4 Take R = k[x, y, z], where k is an integral domain, and let I = (x2 −
yz, x(z−1)). Any prime associated to I must contain I, so let’s consider p = (x2−yz, z−
1) = (x2− y, z− 1), which is I : x. It is prime because R/p = k[x], which is a domain. To
see that (I : x) ⊂ p, assume tx ∈ I ⊂ p; since x 6∈ p, t ∈ p, as desired.

There are two more associated primes, but we will not find them here.

We shall start by proving that Ass(M) 6= ∅ for nonzero modules.

Proposition 2.5 If M 6= 0, then M has an associated prime.

Proof. Consider the collection of ideals in R that arise as the annihilator of a nonzero
element in M . Let I ⊂ R be a maximal element among this collection. The existence of
I is guaranteed thanks to the noetherianness of R. Then I = Ann(x) for some x ∈M , so
1 /∈ I because the annihilator of a nonzero element is not the full ring.

I claim that I is prime, and hence I ∈ Ass(M). Indeed, suppose ab ∈ I where a, b ∈ R.
This means that

(ab)x = 0. N

Consider the annihilator Ann(bx) of bx. This contains the annihilator of x, so I; it also
contains a.

There are two cases. If bx = 0, then b ∈ I and we are done. Suppose to the contrary
bx 6= 0. In this case, Ann(bx) contains (a) + I, which contains I. By maximality, it must
happen that Ann(bx) = I and a ∈ I.

In either case, we find that one of a, b belongs to I, so that I is prime.

Example 2.6 (A module with no associated prime) Without the noetherian hypoth-
esis, Proposition 2.5 is false. Consider R = C[x1, x2, . . . ], the polynomial ring over C in
infinitely many variables, and the ideal I = (x1, x

2
2, x

3
3, . . . ) ⊂ R. The claim is that

Ass(R/I) = ∅.

To see this, suppose a prime p was the annihilator of some f ∈ R/I. Then f lifts to
f ∈ R; it follows that p is precisely the set of g ∈ R such that fg ∈ I. Now f contains
only finitely many of the variables xi, say x1, . . . , xn. It is then clear that xn+1

n+1f ∈ I (so

xn+1
n+1 ∈ p), but xn+1f /∈ I (so xn+1 /∈ p). It follows that p is not a prime, a contradiction.
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We shall now show that the associated primes are finite in number.

Proposition 2.7 If M is finitely generated, then Ass(M) is finite.

The idea is going to be to use the fact that M is finitely generated to build M out
of finitely many pieces, and use that to bound the number of associated primes to each
piece. For this, we need:

Lemma 2.8 Suppose we have an exact sequence of finitely generated R-modules

0→M ′ →M →M ′′ → 0.

Then

Ass(M ′) ⊂ Ass(M) ⊂ Ass(M ′) ∪Ass(M ′′)

Proof. The first claim is obvious. If p is the annihilator of in x ∈M ′, it is an annihilator
of something in M (namely the image of x), because M ′ →M is injective. So Ass(M ′) ⊂
Ass(M).

The harder direction is the other inclusion. Suppose p ∈ Ass(M). Then there is x ∈M
such that p = Ann(x). Consider the submodule Rx ⊂ M . If Rx ∩M ′ 6= 0, then we can
choose y ∈ Rx ∩M ′ − {0}. I claim that Ann(y) = p and so p ∈ Ass(M ′). To see this,
y = ax for some a ∈ R. The annihilator of y is the set of elements b ∈ R such that

abx = 0

or, equivalently, the set of b ∈ R such that ab ∈ p = Ann(x). But y = ax 6= 0, so a /∈ p.
As a result, the condition b ∈ Ann(y) is the same as b ∈ p. In other words,

Ann(y) = p

which proves the claim.

Suppose now that Rx ∩M ′ = 0. Let φ : M � M ′′ be the surjection. I claim that
p = Ann(φ(x)) and consequently that p ∈ Ass(M ′′). The proof is as follows. Clearly p
annihilates φ(x) as it annihilates x. Suppose a ∈ Ann(φ(x)). This means that φ(ax) = 0,
so ax ∈ kerφ = M ′; but kerφ ∩ Rx = 0. So ax = 0 and consequently a ∈ p. It follows
Ann(φ(x)) = p. N

The next step in the proof of Proposition 2.7 is that any finitely generated module
admits a filtration each of whose quotients are of a particularly nice form. This result is
quite useful and will be referred to in the future.

Proposition 2.9 (Dévissage) For any finitely generated R-module M , there exists a
finite filtration

0 = M0 ⊂M1 ⊂ · · · ⊂Mk = M

such that the successive quotients Mi+1/Mi are isomorphic to various R/pi with the pi ⊂ R
prime.
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Proof. Let M ′ ⊂ M be maximal among submodules for which such a filtration (ending
with M ′) exists. We would like to show that M ′ = M . Now M ′ is well-defined since 0 has
such a filtration and M is noetherian.

There is a filtration

0 = M0 ⊂M1 ⊂ · · · ⊂Ml = M ′ ⊂M

where the successive quotients, except possibly the last M/M ′, are of the form R/pi for
pi ∈ SpecR. If M ′ = M , we are done. Otherwise, consider the quotient M/M ′ 6= 0.
There is an associated prime of M/M ′. So there is a prime p which is the annihilator of
x ∈M/M ′. This means that there is an injection

R/p ↪→M/M ′.

Now, take Ml+1 as the inverse image in M of R/p ⊂ M/M ′. Then, we can consider the
finite filtration

0 = M0 ⊂M1 ⊂ · · · ⊂Ml+1,

all of whose successive quotients are of the form R/pi; this is because Ml+1/Ml = Ml+1/M
′

is of this form by construction. We have thus extended this filtration one step further, a
contradiction since M ′ was assumed to be maximal. N

Now we are in a position to meet the goal, and prove that Ass(M) is always a finite
set.

Proof (Proof of Proposition 2.7). Suppose M is finitely generated Take our filtration

0 = M0 ⊂M1 ⊂ · · · ⊂Mk = M.

By induction, we show that Ass(Mi) is finite for each i. It is obviously true for i = 0.
Assume now that Ass(Mi) is finite; we prove the same for Ass(Mi+1). We have an exact
sequence

0→Mi →Mi+1 → R/pi → 0

which implies that, by Lemma 2.8,

Ass(Mi+1) ⊂ Ass(Mi) ∪Ass(R/pi) = Ass(Mi) ∪ {pi} ,

so Ass(Mi+1) is also finite. By induction, it is now clear that Ass(Mi) is finite for every i.
This proves the proposition; it also shows that the number of associated primes is at

most the length of the filtration. N

Finally, we characterize the zerodivisors on M in terms of the associated primes. The
last characterization of the result will be useful in the future. It implies, for instance, that
if R is local and m the maximal ideal, then if every element of m is a zerodivisor on a
finitely generated module M , then m ∈ Ass(M).

Proposition 2.10 If M is a finitely generated module over a noetherian ring R, then the
zerodivisors on M are the union

⋃
p∈Ass(M) p.

More strongly, if I ⊂ R is any ideal consisting of zerodivisors on M , then I is contained
in an associated prime.
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Proof. Any associated prime is an annihilator of some element of M , so it consists of
zerodivisors. Conversely, if a ∈ R annihilates x ∈ M , then a belongs to every associated
prime of the nonzero module Ra ⊂M . (There is at least one by Proposition 2.7.)

For the last statement, we use prime avoidance (Theorem 4.14): if I consists of zero-
divisors, then I is contained in the union

⋃
p∈Ass(M) p by the first part of the proof. This

is a finite union by ??, so prime avoidance implies I is contained one of these primes. N

Exercise 5.5 For every module M over any (not necessarily noetherian) ring R, the set
of M -zerodivisorsZ(M) is a union of prime ideals. In general, there is an easy charac-
terization of sets Z which are a union of primes: it is exactly when R r Z is a saturated
multiplicative set. This is Kaplansky’s Theorem 2.

Definition 2.11 A multiplicative set S 6= ∅ is a saturated multiplicative set if for all
a, b ∈ R, a, b ∈ S if and only if ab ∈ S. (“multiplicative set” just means the “if” part)

To see that Z(M) is a union of primes, just verify that its complement is a saturated
multiplicative set.

2.3 Localization and Ass(M)

It turns out to be extremely convenient that the construction M → Ass(M) behaves
about as nicely with respect to localization as we could possibly want. This lets us, in
fact, reduce arguments to the case of a local ring, which is a significant simplification.

So, as usual, let R be noetherian, and M a finitely generated R-module. Let fur-
ther S ⊂ R be a multiplicative subset. Then S−1M is a finitely generated module over
the noetherian ring S−1M . So it makes sense to consider both Ass(M) ⊂ SpecR and
Ass(S−1M) ⊂ SpecS−1R. But we also know that SpecS−1R ⊂ SpecR is just the
set of primes of R that do not intersect S. Thus, we can directly compare Ass(M)
and Ass(S−1M), and one might conjecture (correctly, as it happens) that Ass(S−1M) =
Ass(M) ∩ SpecS−1R.

Proposition 2.12 Let R noetherian, M finitely generated and S ⊂ R multiplicatively
closed. Then

Ass(S−1M) =
{
S−1p : p ∈ Ass(M), p ∩ S = ∅

}
.

Proof. We first prove the easy direction, namely that Ass(S−1M) contains primes in
SpecS−1R ∩Ass(M).

Suppose p ∈ Ass(M) and p ∩ S = ∅. Then p = Ann(x) for some x ∈ M . Then
the annihilator of x/1 ∈ S−1M is just S−1p, as one can directly check. Thus S−1p ∈
Ass(S−1M). So we get the easy inclusion.

Let us now do the harder inclusion. Call the localization map R → S−1R as φ. Let
q ∈ Ass(S−1M). By definition, this means that q = Ann(x/s) for some x ∈M , s ∈ S. We
want to see that φ−1(q) ∈ Ass(M) ⊂ SpecR. By definition φ−1(q) is the set of elements
a ∈ R such that

ax

s
= 0 ∈ S−1M.
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In other words, by definition of the localization, this is

φ−1(q) =
⋃
t∈S
{a ∈ R : atx = 0 ∈M} =

⋃
Ann(tx) ⊂ R.

We know, however, that among elements of the form Ann(tx), there is a maximal element
I = Ann(t0x) for some t0 ∈ S, since R is noetherian. The claim is that I = φ−1(q), so
φ−1(q) ∈ Ass(M).

Indeed, any other annihilator I ′ = Ann(tx) (for t ∈ S) must be contained in Ann(t0tx).
However, I ⊂ Ann(t0x) and I is maximal, so I = Ann(t0tx) and I ′ ⊂ I. In other words, I
contains all the other annihilators Ann(tx) for t ∈ S. In particular, the big union above,
i.e. φ−1(q), is just I = Ann(t0x). In particular, φ−1(q) = Ann(t0x) is in Ass(M). This
means that every associated prime of S−1M comes from an associated prime of M , which
completes the proof. N

Exercise 5.6 Show that, if M is a finitely generated module over a noetherian ring, that
the map

M →
⊕

p∈Ass(M)

Mp

is injective. Is this true if M is not finitely generated?

2.4 Associated primes determine the support

The next claim is that the support and the associated primes are related.

Proposition 2.13 The support is the closure of the associated primes:

suppM =
⋃

q∈Ass(M)

{q}

By definition of the Zariski topology, this means that a prime p ∈ SpecR belongs to
suppM if and only if it contains an associated prime.

Proof. First, we show that supp(M) contains the set of primes p ∈ SpecR containing an
associated prime; this will imply that supp(M) ⊃

⋃
q∈Ass(M) {q}. So let q be an associated

prime and p ⊃ q. We need to show that

p ∈ suppM, i.e. Mp 6= 0.

But, since q ∈ Ass(M), there is an injective map

R/q ↪→M,

so localization gives an injective map

(R/q)p ↪→Mp.

Here, however, the first object (R/q)p is nonzero since nothing nonzero in R/q can be
annihilated by something outside p. So Mp 6= 0, and p ∈ suppM .
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Let us now prove the converse inclusion. Suppose that p ∈ suppM . We have to
show that p contains an associated prime. By assumption, Mp 6= 0, and Mp is a finitely
generated module over the noetherian ring Rp. So Mp has an associated prime. It follows
by Proposition 2.12 that Ass(M)∩SpecRp is nonempty. Since the primes of Rp correspond
to the primes contained in p, it follows that there is a prime contained in p that lies in
Ass(M). This is precisely what we wanted to prove. N

Corollary 2.14 For M finitely generated, suppM is closed. Further, every minimal
element of suppM lies in Ass(M).

Proof. Indeed, the above result says that

suppM =
⋃

q∈Ass(M)

{q}.

Since Ass(M) is finite, it follows that suppM is closed. The above equality also shows
that any minimal element of suppM must be an associated prime. N

Example 2.15 Corollary 2.14 is false for modules that are not finitely generated. Con-
sider for instance the abelian group

⊕
p Z/p. The support of this as a Z-module is precisely

the set of all closed points (i.e., maximal ideals) of SpecZ, and is consequently is not closed.

Corollary 2.16 The ring R has finitely many minimal prime ideals.

Proof. Clearly, suppR = SpecR. Thus every prime ideal of R contains an associated
prime of R by Proposition 2.13. N

So SpecR is the finite union of the irreducible closed pieces q if R is noetherian. TO
BE ADDED: I am not sure if “irreducibility” has already been defined. Check this.

We have just seen that suppM is a closed subset of SpecR and is a union of finitely
many irreducible subsets. More precisely,

suppM =
⋃

q∈Ass(M)

{q}

though there might be some redundancy in this expression. Some associated prime might
be contained in others.

Definition 2.17 A prime p ∈ Ass(M) is an isolated associated prime of M if it is
minimal (with respect to the ordering on Ass(M)); it is embedded otherwise.

So the embedded primes are not needed to describe the support of M .
TO BE ADDED: Examples of embedded primes

Remark It follows that in a noetherian ring, every minimal prime consists of zerodivisors.
Although we shall not use this in the future, the same is true in non-noetherian rings as
well. Here is an argument.

Let R be a ring and p ⊂ R a minimal prime. Then Rp has precisely one prime ideal.
We now use:
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Lemma 2.18 If a ring R has precisely one prime ideal p, then any x ∈ p is nilpotent.

Proof. Indeed, it suffices to see that Rx = 0 (?? 4.9 in Chapter 4) if x ∈ p. But SpecRx
consists of the primes of R not containing x. However, there are no such primes. Thus
SpecRx = ∅, so Rx = 0. N

It follows that every element in p is a zerodivisor in Rp. As a result, if x ∈ p, there is
s
t ∈ Rp such that xs/t = 0 but s

t 6= 0. In particular, there is t′ /∈ p with

xst′ = 0, st′ 6= 0,

so that x is a zerodivisor.

2.5 Primary modules

A primary modules are ones that has only one associated prime. It is equivalent to say
that any homothety is either injective or nilpotent. As we will see in the next section, any
module has a “primary decomposition:” in fact, it embeds as a submodule of a sum of
primary modules.

Definition 2.19 Let p ⊂ R be prime, M a finitely generated R-module. Then M is
p-primary if

Ass(M) = {p} .

A module is primary if it is p-primary for some prime p, i.e., has precisely one
associated prime.

Proposition 2.20 Let M be a finitely generated R-module. Then M is p-primary if and
only if, for every m ∈M − {0}, the annihilator Ann(m) has radical p.

Proof. We first need a small observation.

Lemma 2.21 If M is p-primary, then any nonzero submodule M ′ ⊂M is p-primary.

Proof. Indeed, we know that Ass(M ′) ⊂ Ass(M) by Lemma 2.8. Since M ′ 6= 0, we also
know that M ′ has an associated prime (Proposition 2.5). Thus Ass(M ′) = {p}, so M ′ is
p-primary. N

Let us now return to the proof of the main result, Proposition 2.20. Assume first that
M is p-primary. Let x ∈M , x 6= 0. Let I = Ann(x); we are to show that Rad(I) = p. By
definition, there is an injection

R/I ↪→M

sending 1→ x. As a result, R/I is p-primary by the above lemma. We want to know that
p = Rad(I). We saw that the support suppR/I = {q : q ⊃ I} is the union of the closures
of the associated primes. In this case,

supp(R/I) = {q : q ⊃ p} .
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But we know that Rad(I) =
⋂

q⊃I q, which by the above is just p. This proves that
Rad(I) = p. We have shown that if R/I is primary, then I has radical p.

The converse is easy. Suppose the condition holds and q ∈ Ass(M), so q = Ann(x) for
x 6= 0. But then Rad(q) = p, so

q = p

and Ass(M) = {p}. N

We have another characterization.

Proposition 2.22 Let M 6= 0 be a finitely generated R-module. Then M is primary if
and only if for each a ∈ R, then the homothety M

a→M is either injective or nilpotent.

Proof. Suppose first thatM is p-primary. Then multiplication by anything in p is nilpotent
because the annihilator of everything nonzero has radical p by Proposition 2.20. But if
a /∈ p, then Ann(x) for x ∈M − {0} has radical p and cannot contain a.

Let us now do the other direction. Assume that every element of a acts either in-
jectively or nilpotently on M . Let I ⊂ R be the collection of elements a ∈ R such that
anM = 0 for n large. Then I is an ideal, since it is closed under addition by the binomial
formula: if a, b ∈ I and an, bn act by zero, then (a+ b)2n acts by zero as well.

I claim that I is actually prime. If a, b /∈ I, then a, b act by multiplication injectively
on M . So a : M → M, b : M → M are injective. However, a composition of injections is
injective, so ab acts injectively and ab /∈ I. So I is prime.

We need now to check that if x ∈ M is nonzero, then Ann(x) has radical I. Indeed,
if a ∈ R annihilates x, then the homothety M

a→ M cannot be injective, so it must be
nilpotent (i.e. in I). Conversely, if a ∈ I, then a power of a is nilpotent, so a power of
a must kill x. It follows that Ann(x) = I. Now, by Proposition 2.20, we see that M is
I-primary. N

We now have this notion of a primary module. The idea is that all the torsion is
somehow concentrated in some prime.

Example 2.23 If R is a noetherian ring and p ∈ SpecR, then R/p is p-primary. More
generally, if I ⊂ R is an ideal, then R/I is ideal if and only if Rad(I) is prime. This follows
from Proposition 2.22.

Exercise 5.7 If 0→M ′ →M →M ′′ → 0 is an exact sequence with M ′,M,M ′′ nonzero
and finitely generated, then M is p-primary if and only if M ′,M ′′ are.

Exercise 5.8 Let M be a finitely generated R-module. Let p ∈ SpecR. Show that
the sum of two p-primary submodules is p-primary. Deduce that there is a p-primary
submodule of M which contains every p-primary submodule.

Exercise 5.9 (Bourbaki) Let M be a finitely generated R-module. Let T ⊂ Ass(M)
be a subset of the associated primes. Prove that there is a submodule N ⊂M such that

Ass(N) = T, Ass(M/N) = Ass(M)− T.

171



The CRing Project, §5.3.

§3 Primary decomposition

This is the structure theorem for modules over a noetherian ring, in some sense. Throuogh-
out, we fix a noetherian ring R.

3.1 Irreducible and coprimary modules

Definition 3.1 Let M be a finitely generated R-module. A submodule N ⊂ M is p-
coprimary if M/N is p-primary.

Similarly, we can say that N ⊂ M is coprimary if it is p-coprimary for some p ∈
SpecR.

We shall now show we can represent any submodule of M as an intersection of copri-
mary submodules. In order to do this, we will define a submodule of M to be irreducible
if it cannot be written as a nontrivial intersection of submodules of M . It will follow by
general nonsense that any submodule is an intersection of irreducible submodueles. We
will then see that any irreducible submodule is coprimary.

Definition 3.2 The submomdule N ( M is irreducible if whenever N = N1 ∩ N2 for
N1, N2 ⊂ M submodules, then either one of N1, N2 equals N . In other words, it is not
the intersection of larger submodules.

Proposition 3.3 An irreducible submodule N ⊂M is coprimary.

Proof. Say a ∈ R. We would like to show that the homothety

M/N
a→M/N

is either injective or nilpotent. Consider the following submodules of M/N :

K(n) = {x ∈M/N : anx = 0} .

Then clearlyK(0) ⊂ K(1) ⊂ . . . ; this chain stabilizes as the quotient module is noetherian.
In particular, K(n) = K(2n) for large n.

It follows that if x ∈ M/N is divisible by an (n large) and nonzero, then anx is also
nonzero. Indeed, say x = any 6= 0; then y /∈ K(n), so anx = a2ny 6= 0 or we would have
y ∈ K(2n) = K(n). In M/N , the submodules

an(M/N) ∩ ker(an)

are equal to zero for large n. But our assumption was that N is irreducible. So one of
these submodules of M/N is zero. That is, either an(M/N) = 0 or ker an = 0. We get
either injectivity or nilpotence on M/N . This proves the result. N
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3.2 Irreducible and primary decompositions

We shall now show that in a finitely generated module over a noetherian ring, we can
write 0 as an intersection of coprimary modules. This decomposition, which is called a
primary decomposition, will be deduced from purely general reasoning.

Definition 3.4 An irreducible decomposition of the module M is a representation
N1 ∩N2 · · · ∩Nk = 0, where the Ni ⊂M are irreducible submodules.

Proposition 3.5 If M is finitely generated, then M has an irreducible decomposition.
There exist finitely many irreducible submodules N1, . . . , Nk with

N1 ∩ · · · ∩Nk = 0.

In other words,

M →
⊕

M/Ni

is injective. So a finitely generated module over a noetherian ring can be imbedded in a
direct sum of primary modules, since by Proposition 3.3 the M/Ni are primary.

Proof. This is now purely formal.
Among the submodules of M , some may be expressible as intersections of finitely many

irreducibles, while some may not be. Our goal is to show that 0 is such an intersection.
Let M ′ ⊂ M be a maximal submodule of M such that M ′ cannot be written as such an
intersection. If no such M ′ exists, then we are done, because then 0 can be written as an
intersection of finitely many irreducible submodules.

Now M ′ is not irreducible, or it would be the intersection of one irreducible submodule.
It follows M ′ can be written as M ′ = M ′1 ∩M ′2 for two strictly larger submodules of M .
But by maximality, M ′1,M

′
2 admit decompositions as intersections of irreducibles. So M ′

admits such a decomposition as well, a contradiction. N

Corollary 3.6 For any finitely generated M , there exist coprimary submodules N1, . . . , Nk ⊂
M such that N1 ∩ · · · ∩Nk = 0.

Proof. Indeed, every irreducible submodule is coprimary. N

For any M , we have an irreducible decomposition

0 =
⋂
Ni

for the Ni a finite set of irreducible (and thus coprimary) submodules. This decomposition
here is highly non-unique and non-canonical. Let’s try to pare it down to something which
is a lot more canonical.

The first claim is that we can collect together modules which are coprimary for some
prime.

Lemma 3.7 Let N1, N2 ⊂ M be p-coprimary submodules. Then N1 ∩ N2 is also p-
coprimary.
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Proof. We have to show that M/N1 ∩N2 is p-primary. Indeed, we have an injection

M/N1 ∩N2 �M/N1 ⊕M/N2

which implies that Ass(M/N1 ∩N2) ⊂ Ass(M/N1)∪Ass(M/N2) = {p}. So we are done.N

In particular, if we do not want irreducibility but only primariness in the decomposition

0 =
⋂
Ni,

we can assume that each Ni is pi coprimary for some prime pi with the pi distinct.

Definition 3.8 Such a decomposition of zero, where the different modules Ni are pi-
coprimary for different pi, is called a primary decomposition.

3.3 Uniqueness questions

In general, primary decomposition is not unique. Nonetheless, we shall see that a limited
amount of uniqueness does hold. For instance, the primes that occur are determined.

Let M be a finitely generated module over a noetherian ring R, and suppose N1∩· · ·∩
Nk = 0 is a primary decomposition. Let us assume that the decomposition is minimal :
that is, if we dropped one of the Ni, the intersection would no longer be zero. This implies
that

Ni 6⊃
⋂
j 6=i

Nj

or we could omit one of the Ni. Then the decomposition is called a reduced primary
decomposition.

Again, what this tells us is that M �
⊕
M/Ni. What we have shown is that M

can be imbedded in a sum of pieces, each of which is p-primary for some prime, and the
different primes are distinct.

This is not unique. However,

Proposition 3.9 The primes pi that appear in a reduced primary decomposition of zero
are uniquely determined. They are the associated primes of M .

Proof. All the associated primes of M have to be there, because we have the injection

M �
⊕

M/Ni

so the associated primes of M are among those of M/Ni (i.e. the pi).
The hard direction is to see that each pi is an associated prime. I.e. if M/Ni is

pi-primary, then pi ∈ Ass(M); we don’t need to use primary modules except for primes
in the associated primes. Here we need to use the fact that our decomposition has no
redundancy. Without loss of generality, it suffices to show that p1, for instance, belongs
to Ass(M). We will use the fact that

N1 6⊃ N2 ∩ . . . .
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So this tells us that N2 ∩N3 ∩ . . . is not equal to zero, or we would have a containment.
We have a map

N2 ∩ · · · ∩Nk →M/N1;

it is injective, since the kernel is N1∩N2∩· · ·∩Nk = 0 as this is a decomposition. However,
M/N1 is p1-primary, so N2∩· · ·∩Nk is p1-primary. In particular, p1 is an associated prime
of N2 ∩ · · · ∩Nk, hence of M . N

The primes are determined. The factors are not. However, in some cases they are.

Proposition 3.10 Let pi be a minimal associated prime of M , i.e. not containing any
smaller associated prime. Then the submodule Ni corresponding to pi in the reduced pri-
mary decomposition is uniquely determined: it is the kernel of

M →Mpi .

Proof. We have that
⋂
Nj = {0} ⊂M . When we localize at pi, we find that

(
⋂
Nj)pi =

⋂
(Nj)pi = 0

as localization is an exact functor. If j 6= i, then M/Nj is pj primary, and has only pj
as an associated prime. It follows that (M/Nj)pi has no associated primes, since the only
associated prime could be pj , and that’s not contained in pj . In particular, (Nj)pi = Mpi .

Thus, when we localize the primary decomposition at pi, we get a trivial primary
decomposition: most of the factors are the full Mpi . It follows that (Ni)pi = 0. When we
draw a commutative diagram

Ni
//

��

(Ni)pi = 0

��
M //Mpi .

we find that Ni goes to zero in the localization.
Now if x ∈ ker(M → Mpi , then sx = 0 for some s /∈ pi. When we take the map

M →M/Ni, sx maps to zero; but s acts injectively on M/Ni, so x maps to zero in M/Ni,
i.e. is zero in Ni. N

This has been abstract, so:

Example 3.11 Let R = Z. Let M = Z⊕ Z/p. Then zero can be written as

Z ∩ Z/p

as submodules of M . But Z is p-coprimary, while Z/p is (0)-coprimary.
This is not unique. We could have considered

{(n, n), n ∈ Z} ⊂M.

However, the zero-coprimary part has to be the p-torsion. This is because (0) is the
minimal ideal.

The decomposition is always unique, in general, if we have no inclusions among the
prime ideals. For Z-modules, this means that primary decomposition is unique for torsion
modules. Any torsion group is a direct sum of the p-power torsion over all primes p.
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Exercise 5.10 Suppose R is a noetherian ring and Rp is a domain for each prime ideal
p ⊂ R. Then R is a finite direct product

∏
Ri for each Ri a domain.

To see this, consider the minimal primes pi ∈ SpecR. There are finitely many of them,
and argue that since every localization is a domain, SpecR is disconnected into the pieces
V (pi). It follows that there is a decomposition R =

∏
Ri where SpecRi has pi as the

unique minimal prime. Each Ri satisfies the same condition as R, so we may reduce to
the case of R having a unique minimal prime ideal. In this case, however, R is reduced,
so its unique minimal prime ideal must be zero.

§4 Artinian rings and modules

The notion of an artinian ring appears to be dual to that of a noetherian ring, since the
chain condition is simply reversed in the definition. However, the artinian condition is
much stronger than the noetherian one. In fact, artinianness actually implies noetherian-
ness, and much more. Artinian modules over non-artinian rings are frequently of interest
as well; for instance, if R is a noetherian ring and m is a maximal ideal, then for any
finitely generated R-module M , the module M/mM is artinian.

4.1 Definitions

Definition 4.1 A commutative ring R is Artinian every descending chain of ideals I0 ⊃
I1 ⊃ I2 ⊃ . . . stabilizes.

Definition 4.2 The same definition makes sense for modules. We can define an R-module
M to be Artinian if every descending chain of submodules stabilizes.

In fact, as we shall see when we study dimension theory, we actually often do want to
study artinian modules over non-artinian rings, so this definition is useful.

Exercise 5.11 A module is artinian if and only if every nonempty collection of submod-
ules has a minimal element.

Exercise 5.12 A ring which is a finite-dimensional algebra over a field is artinian.

Proposition 4.3 If 0→ M ′ → M → M ′′ → 0 is an exact sequence, then M is Artinian
if and only if M ′,M ′′ are.

This is proved in the same way as for noetherianness.

Corollary 4.4 Let R be artinian. Then every finitely generated R-module is artinian.

Proof. Standard. N
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4.2 The main result

This definition is obviously dual to the notion of noetherianness, but it is much more
restrictive. The main result is:

Theorem 4.5 A commutative ring R is artinian if and only if:

1. R is noetherian.

2. Every prime ideal of R is maximal.1

So artinian rings are very simple—small in some sense. They all look kind of like fields.

We shall prove this result in a series of small pieces. We begin with a piece of the
forward implication in Theorem 4.5:

Lemma 4.6 Let R be artinian. Every prime p ⊂ R is maximal.

Proof. Indeed, if p ⊂ R is a prime ideal, R/p is artinian, as it is a quotient of an artinian
ring. We want to show that R/p is a field, which is the same thing as saying that p is
maximal. (In particular, we are essentially proving that an artinian domain is a field.)

Let x ∈ R/p be nonzero. We have a descending chain

R/p ⊃ (x) ⊃ (x2) . . .

which necessarily stabilizes. Then we have (xn) = (xn+1) for some n. In particular, we
have xn = yxn+1 for some y ∈ R/p. But x is a nonzerodivisor, and we find 1 = xy. So x
is invertible. Thus R/p is a field. N

Next, we claim there are only a few primes in an artinian ring:

Lemma 4.7 If R is artinian, there are only finitely many maximal ideals.

Proof. Assume otherwise. Then we have an infinite sequence

m1,m2, . . .

of distinct maximal ideals. Then we have the descending chain

R ⊃ m1 ⊃ m1 ∩m2 ⊃ . . . .

This necessarily stabilizes. So for some n, we have that m1 ∩ · · · ∩mn ⊂ mn+1. However,
this means that mn+1 contains one of the m1, . . . ,mn since these are prime ideals (a familiar
argument). Maximality and distinctness of the mi give a contradiction. N

1This is much different from the Dedekind ring condition—there, zero is not maximal. An artinian
domain is necessarily a field, in fact.
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In particular, we see that SpecR for an artinian ring is just a finite set. In fact, since
each point is closed, as each prime is maximal, the set has the discrete topology. As a
result, SpecR for an artinian ring is Hausdorff. (There are very few other cases.)

This means that R factors as a product of rings. Whenever SpecR can be written as a
disjoint union of components, there is a factoring of R into a product

∏
Ri. So R =

∏
Ri

where each Ri has only one maximal ideal. Each Ri, as a homomorphic image of R, is
artinian. We find, as a result,

TO BE ADDED: mention that disconnections of SpecR are the same thing as
idempotents.

Proposition 4.8 Any artinian ring is a finite product of local artinian rings.

Now, let us continue our analysis. We may as well assume that we are working with
local artinian rings R in the future. In particular, R has a unique prime m, which must
be the radical of R as the radical is the intersection of all primes.

We shall now see that the unique prime ideal m ⊂ R is nilpotent by:

Lemma 4.9 If R is artinian (not necessarily local), then Rad(R) is nilpotent.

It is, of course, always true that any element of the radical Rad(R) is nilpotent, but
it is not true for a general ring R that Rad(R) is nilpotent as an ideal.

Proof. Call J = Rad(R). Consider the decreasing filtration

R ⊃ J ⊃ J2 ⊃ J3 ⊃ . . . .

We want to show that this stabilizes at zero. A priori, we know that it stabilizes somewhere.
For some n, we have

Jn = Jn
′
, n′ ≥ n.

Call the eventual stabilization of these ideals I. Consider ideals I ′ such that

II ′ 6= 0.

There are now two cases:

1. No such I ′ exists. Then I = 0, and we are done: the powers of Jn stabilize at zero.

2. Otherwise, there is a minimal such I ′ (minimal for satisfying II ′ 6= 0) as R is
artinian. Necessarily I ′ is nonzero, and furthermore there is x ∈ I ′ with xI 6= 0.

It follows by minimality that

I ′ = (x),

so I ′ is principal. Then xI 6= 0; observe that xI is also (xI)I as I2 = I from the
definition of I. Since (xI)I 6= 0, it follows again by minimality that

xI = (x).
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Hence, there is y ∈ I such that xy = x; but now, by construction I ⊂ J = Rad(R),
implying that y is nilpotent. It follows that

x = xy = xy2 = · · · = 0

as y is nilpotent. However, x 6= 0 as xI 6= 0. This is a contradiction, which implies
that the second case cannot occur.

We have now proved the lemma. N

Finally, we may prove:

Lemma 4.10 A local artinian ring R is noetherian.

Proof. We have the filtration R ⊃ m ⊃ m2 ⊃ . . . . This eventually stabilizes at zero by
Lemma 4.9. I claim that R is noetherian as an R-module. To prove this, it suffices to
show that mk/mk+1 is noetherian as an R-module. But of course, this is annihilated by
m, so it is really a vector space over the field R/m. But mk/mk+1 is a subquotient of an
artinian module, so is artinian itself. We have to show that it is noetherian. It suffices to
show now that if k is a field, and V a k-vector space, then TFAE:

1. V is artinian.

2. V is noetherian.

3. V is finite-dimensional.

This is evident by linear algebra. N

Now, finally, we have shown that an artinian ring is noetherian. We have to discuss
the converse. Let us assume now that R is noetherian and has only maximal prime ideals.
We show that R is artinian. Let us consider SpecR; there are only finitely many minimal
primes by the theory of associated primes: every prime ideal is minimal in this case. Once
again, we learn that SpecR is finite and has the discrete topology. This means that R is
a product of factors

∏
Ri where each Ri is a local noetherian ring with a unique prime

ideal. We might as well now prove:

Lemma 4.11 Let (R,m) be a local noetherian ring with one prime ideal. Then R is
artinian.

Proof. We know that m = rad(R). So m consists of nilpotent elements, so by finite
generatedness it is nilpotent. Then we have a finite filtration

R ⊃ m ⊃ · · · ⊃ mk = 0.

Each of the quotients are finite-dimensional vector spaces, so artinian; this implies that R
itself is artinian. N
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Remark Note that artinian implies noetherian! This statement is true for rings (even
non-commutative rings), but not for modules. Take the same example M = lim−→Z/pnZ
over Z. However, there is a module-theoretic statement which is related.

Corollary 4.12 For a finitely generated module M over any commutative ring R, the
following are equivalent.

1. M is an artinian module.

2. M has finite length (i.e. is noetherian and artinian).

3. R/AnnM is an artinian ring.

Proof. TO BE ADDED: proof N

Exercise 5.13 If R is an artinian ring, and S is a finite R-algebra (finite as an R-module),
then S is artinian.

Exercise 5.14 Let M be an artinian module over a commutative ring R, f : M → M
an injective homomorphism. Show that f is surjective, hence an isomorphism.

4.3 Vista: zero-dimensional non-noetherian rings

Definition 4.13 (von Neumann) An element a ∈ R is called von Neumann regular if
there is some x ∈ R such that a = axa.

Definition 4.14 (McCoy) A element a ∈ R is π-regular if some power of a is von
Neumann regular.

Definition 4.15 A element a ∈ R is strongly π-regular (in the commutative case) if the
chain aR ⊃ a2R ⊃ a3R ⊃ · · · stabilizes.

A ring R is von Neumann regular (resp. (strongly) π-regular) if every element of R is.

Theorem 4.16 (5.2) For a commutative ring R, the following are equivalent.

1. dimR = 0.

2. R is rad-nil (i.e. the Jacobson radical J(R) is the nilradical ) and R/RadR is von
Neumann regular.

3. R is strongly π-regular.

4. R is π-regular.

And any one of these implies

5. Any non-zero-divisor is a unit.
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Proof. 1⇒ 2⇒ 3⇒ 4⇒ 1 and 4⇒ 5. We will not do 1⇒ 2⇒ 3 here.
(3⇒ 4) Given a ∈ R, there is some n such that anR = an+1R = a2nR, which implies

that an = anxan for some x.
(4 ⇒ 1) Is p maximal? Let a 6∈ p. Since a is π-regular, we have an = a2nx, so

an(1− anx) = 0, so 1− anx ∈ p. It follows that a has an inverse mod p.
(4⇒ 5) Using 1− anx = 0, we get an inverse for a. N

Example 4.17 Any local rad-nil ring is zero dimensional, since 2 holds. In particular,
for a ring S and maximal ideal m, R = S/mn is zero dimensional because it is a rad-nil
local ring.

Example 4.18 (Split-Null Extension) For a ring A and A-module M , let R = A⊕M
with the multiplication (a,m)(a′,m′) = (aa′, am′ + a′m) (i.e. take the multiplication on
M to be zero). In R, M is an ideal of square zero. (A is called a retract of R because it
sits in R and can be recovered by quotienting by some complement.) If A is a field, then
R is a rad-nil local ring, with maximal ideal M .
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Chapter 6

Graded and filtered rings

In algebraic geometry, working in classical affine space AnC of points in Cn turns out to be
insufficient for various reasons. Instead, it is often more convenient to consider varieties in
projective space PnC, which is the set of lines through the origin in Cn+1. In other words,
it is the set of all n+ 1-tuples [z0, . . . , zn] ∈ Cn+1 − {0} modulo the relation that

[z0, . . . , zn] = [λz0, . . . , λzn], λ ∈ C∗. (6.1)

Varieties in projective space have many convenient properties that affine varieties do not:
for instance, intersections work out much more nicely when intersections at the extra
“points at infinity” are included. Moreover, when endowed with the complex topology,
(complex) projective varieties are compact, unlike all but degenerate affine varieties (i.e.
finite sets).

It is when defining the notion of a “variety” in projective space that one encoun-
ters gradedness. Now a variety in Pn must be cut out by polynomials F1, . . . , Fk ∈
C[x0, . . . , xn]; that is, a point represented by [z0, . . . , zn] lies in the associated variety
if and only if Fi(z0, . . . , zn) = 0 for each i. For this to make sense, or to be independent
of the choice of z0, . . . , zn up to rescaling as in (6.1), it is necessary to assume that each
Fi is homogeneous.

Algebraically, AnC is the set of maximal ideals in the polynomial ring Cn. Projective
space is defined somewhat more geometrically (as a set of lines) but it turns out that there
is an algebraic interpretation here too. The points of projective space are in bijection with
the homogeneous maximal ideals of the polynomial ring C[x0, . . . , xn]. We shall define
more generally the Proj of a graded ring in this chapter. Although we shall not repeatedly
refer to this concept in the sequel, it will be useful for readers interested in algebraic
geometry.

We shall also introduce the notion of a filtration. A filtration allows one to endow a
given module with a topology, and one can in fact complete with respect to this topology.
This construction will be studied in Chapter 11.

§1 Graded rings and modules

Much of the material in the present section is motivated by algebraic geometry; see [GD],
volume II for the construction of ProjR as a scheme.
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1.1 Basic definitions

Definition 1.1 A graded ring R is a ring together with a decomposition (as abelian
groups)

R = R0 ⊕R1 ⊕ . . .

such that RmRn ⊂ Rm+n for all m,n ∈ Z≥0, and where R0 is a subring (i.e. 1 ∈ R0).
A Z-graded ring is one where the decomposition is into

⊕
n∈ZRn. In either case, the

elements of the subgroup Rn are called homogeneous of degree n.

The basic example to keep in mind is, of course, the polynomial ring R[x1, . . . , xn] for
R any ring. The graded piece of degree n consists of the homogeneous polynomials of
degree n.

Consider a graded ring R.

Definition 1.2 A graded R-module is an ordinary R-module M together with a decom-
position

M =
⊕
k∈Z

Mk

as abelian groups, such that RmMn ⊂ Mm+n for all m ∈ Z≥0, n ∈ Z. Elements in one of
these pieces are called homogeneous. Any m ∈ M is thus uniquely a finite sum

∑
mni

where each mni ∈Mni is homogeneous of degree ni.

Clearly there is a category of graded R-modules, where the morphisms are the mor-
phisms of R-modules that preserve the grading (i.e. take homogeneous elements to homo-
geneous elements of the same degree).

Since we shall focus on positively graded rings, we shall simply call them graded rings;
when we do have to consider rings with possibly negative gradings, we shall highlight this
explicitly. Note, however, that we allow modules with negative gradings freely.

In fact, we shall note an important construction that will generally shift the graded
pieces such that some of them might be negative:

Definition 1.3 Given a graded module M , we define the twist M(n) as the same R-
module but with the grading

M(n)k = Mn+k.

This is a functor on the category of graded R-modules.

In algebraic geometry, the process of twisting allows one to construct canonical line
bundles on projective space. Namely, a twist of R itself will lead to a line bundle on
projective space that in general is not trivial. See [Har77], II.5.

Here are examples:

Example 1.4 (An easy example) If R is a graded ring, then R is a graded module
over itself.

Example 1.5 (Another easy example) If S is any ring, then S can be considered as a
graded ring with S0 = S and Si = 0 for i > 0. Then a graded S-module is just a Z-indexed
collection of (ordinary) S-modules.
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Example 1.6 (The blowup algebra) This example is a bit more interesting, and will
be used in the sequel. Let S be any ring, and let J ⊂ S be an ideal. We can make
R = S ⊕ J ⊕ J2 ⊕ . . . (the so-called blowup algebra) into a graded ring, by defining
the multiplication the normal way except that something in the ith component times
something in the jth component goes into the i+ jth component.

Given any S-module M , there is a graded R-module M ⊕ JM ⊕ J2M ⊕ . . . , where
multiplication is defined in the obvious way. We thus get a functor from S-modules to
graded R-modules.

Definition 1.7 Fix a graded ring R. Let M be a graded R-module and N ⊂ M an
R-submodule. Then N is called a graded submodule if the homogeneous components
of anything in N are in N . If M = R, then a graded ideal is also called a homogeneous
ideal.

In particular, a graded submodule is automatically a graded module in its own right.

Lemma 1.8 1. The sum of two graded submodules (in particular, homogeneous ideals)
is graded.

2. The intersection of two graded submodules is graded.

Proof. Immediate. N

One can grade the quotients of a graded module by a graded submodule. If N ⊂M is
a graded submodule, then M/N can be made into a graded module, via the isomorphism
of abelian groups

M/N '
⊕
k∈Z

Mk/Nk.

In particular, if a ⊂ R is a homogeneous ideal, then R/a is a graded ring in a natural way.

Exercise 6.1 Let R be a graded ring. Does the category of graded R-modules admit
limits and colimits?

1.2 Homogeneous ideals

Recall that a homogeneous ideal in a graded ring R is simply a graded submodule of R.
We now prove a useful result that enables us tell when an ideal is homogeneous.

Proposition 1.9 Let R be a graded ring, I ⊂ R an ideal. Then I is a homogeneous ideal
if and only if it can be generated by homogeneous elements.

Proof. If I is a homogeneous ideal, then by definition

I =
⊕
i

I ∩Ri,

so I is generated by the sets {I ∩Ri}i∈Z≥0
of homogeneous elements.
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Conversely, let us suppose that I is generated by homogeneous elements {hα}. Let
x ∈ I be arbitrary; we can uniquely decompose x as a sum of homogeneous elements,
x =

∑
xi, where each xi ∈ Ri. We need to show that each xi ∈ I in fact.

To do this, note that x =
∑
qαhα where the qα belong to R. If we take ith homogeneous

components, we find that

xi =
∑

(qα)i−deg hαhα,

where (qα)i−deg hα refers to the homogeneous component of qα concentrated in the degree
i − deg hα. From this it is easy to see that each xi is a linear combination of the hα and
consequently lies in I. N

Example 1.10 If a, b ⊂ R are homogeneous ideals, then so is ab. This is clear from
Proposition 1.9.

Example 1.11 Let k be a field. The ideal (x2+y) in k[x, y] is not homogeneous. However,
we find from Proposition 1.9 that the ideal (x2 + y2, y3) is.

Since we shall need to use them to define ProjR in the future, we now prove a result
about homogeneous prime ideals specifically. Namely, “primeness” can be checked just on
homogeneous elements for a homogeneous ideal.

Lemma 1.12 Let p ⊂ R be a homogeneous ideal. In order that p be prime, it is necessary
and sufficient that whenever x, y are homogeneous elements such that xy ∈ p, then at least
one of x, y ∈ p.

Proof. Necessity is immediate. For sufficiency, suppose a, b ∈ R and ab ∈ p. We must
prove that one of these is in p. Write

a = ak1 + a1 + · · ·+ ak2 , b = bm1 + · · ·+ bm2

as a decomposition into homogeneous components (i.e. ai is the ith component of a),
where ak2 , bm2 are nonzero and of the highest degree.

Let k = k2 − k1,m = m2 −m1. So there are k homogeneous terms in the expression
for a, m in the expression for b. We will prove that one of a, b ∈ p by induction on m+ n.
When m + n = 0, then it is just the condition of the lemma. Suppose it true for smaller
values of m+ n. Then ab has highest homogeneous component ak2bm2 , which must be in
p by homogeneity. Thus one of ak2 , bm2 belongs to p. Say for definiteness it is ak. Then
we have that

(a− ak2)b ≡ ab ≡ 0 mod p

so that (a−ak2)b ∈ p. But the resolutions of a−ak2 , b have a smaller m+n-value: a−ak2
can be expressed with k − 1 terms. By the inductive hypothesis, it follows that one of
these is in p, and since ak ∈ p, we find that one of a, b ∈ p. N
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1.3 Finiteness conditions

There are various finiteness conditions (e.g. noetherianness) that one often wants to
impose in algebraic geometry. Since projective varieties (and schemes) are obtained from
graded rings, we briefly discuss these finiteness conditions for them.

Definition 1.13 For a graded ring R, write R+ = R1 ⊕ R2 ⊕ . . . . Clearly R+ ⊂ R is a
homogeneous ideal. It is called the irrelevant ideal.

When we define the Proj of a ring, prime ideals containing the irrelevant ideal will
be no good. The intuition is that when one is working with PnC, the irrelevant ideal
in the corresponding ring C[x0, . . . , xn] corresponds to all homogeneous polynomials of
positive degree. Clearly these have no zeros except for the origin, which is not included
in projective space: thus the common zero locus of the irrelevant ideal should be ∅ ⊂ PnC.

Proposition 1.14 Suppose R = R0⊕R1⊕ . . . is a graded ring. Then if a subset S ⊂ R+

generates the irrelevant ideal R+ as R-ideal, it generates R as R0-algebra.

The converse is clear as well. Indeed, if S ⊂ R+ generates R as an R0-algebra, clearly it
generates R+ as an R-ideal.

Proof. Let T ⊂ R be the R0-algebra generated by S. We shall show inductively that
Rn ⊂ T . This is true for n = 0. Suppose n > 0 and the assertion true for smaller n. Then,
we have

Rn = RS ∩Rn by assumption

= (R0 ⊕R1 ⊕ · · · ⊕Rn−1)(S) ∩Rn because S ⊂ R+

⊂ (R0[S])(S) ∩Rn by inductive hypothesis

⊂ R0(S). N

Theorem 1.15 The graded ring R is noetherian if and only if R0 is noetherian and R is
finitely generated as R0-algebra.

Proof. One direction is clear by Hilbert’s basis theorem. For the other, suppose R noethe-
rian. Then R0 is noetherian because any sequence I1 ⊂ I2 ⊂ . . . of ideals of R0 leads to
a sequence of ideals I1R ⊂ I2R ⊂ . . . , and since these stabilize, the original I1 ⊂ I2 ⊂ . . .
must stabilize too. (Alternatively, R0 = R/R+, and taking quotients preserves noetherian-
ness.) Moreover, since R+ is a finitely generated R-ideal by noetherianness, it follows that
R is a finitely generated R0-algebra too: we can, by Proposition 1.14, take as R0-algebra
generators for R a set of generators for the ideal R+. N

The basic finiteness condition one often needs is that R should be finitely generated as
an R0-algebra. We may also want to have that R is generated by R1, quite frequently—
in algebraic geometry, this implies a bunch of useful things about certain sheaves being
invertible. (See [GD], volume II.2.) As one example, having R generated as R0-algebra by
R1 is equivalent to having R a graded quotient of a polynomial algebra over R0 (with the
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usual grading). Geometrically, this equates to having ProjR contained as a closed subset
of some projective space over R0.

However, sometimes we have the first condition and not the second, though if we
massage things we can often assure generation by R1. Then the next idea comes in handy.

Definition 1.16 Let R be a graded ring and d ∈ N. We set R(d) =
⊕

k∈Z≥0
Rkd; this is

a graded ring and R0-algebra. If M is a graded R-module and l ∈ {0, 1, . . . , d− 1}, we
write M (d,l) =

⊕
k≡l mod dMk. Then M (d,l) is a graded R(d)-module.

We in fact have a functor ·(d,l) from graded R-modules to graded R(d)-modules.
One of the implications of the next few results is that, by replacing R with R(d), we

can make the condition “generated by terms of degree 1” happen. But first, we show that
basic finiteness is preserved if we filter out some of the terms.

Proposition 1.17 Let R be a graded ring and a finitely generated R0-algebra. Let M be
a finitely generated R-module.

1. Each Mi is finitely generated over R0, and the Mi become zero when i� 0.

2. M (d,l) is a finitely generated R(d) module for each d, l. In particular, M itself is a
finitely generated R(d)-module.

3. R(d) is a finitely generated R0-algebra.

Proof. Choose homogeneous generators m1, . . . ,mk ∈M . For instance, we can choose the
homogeneous components of a finite set of generators for M . Then every nonzero element
of M has degree at least min(degmi). This proves the last part of (1). Moreover, let
r1, . . . , rp be algebra generators of R over R0. We can assume that these are homogeneous
with positive degrees d1, . . . , dp > 0. Then the R0-module Mi is generated by the elements

ra11 . . . r
ap
p ms

where
∑
ajdj + degms = i. Since the dj > 0 and there are only finitely many ms’s, there

are only finitely many such elements. This proves the rest of (1).
To prove (2), note first that it is sufficient to show that M is finitely generated over

R(d), because the M (d,l) are R(d)-homomorphic images (i.e. quotient by the M (d′,l) for
d′ 6= d). Now M is generated as R0-module by the ra11 . . . r

ap
p ms for a1, . . . , ap ≥ 0 and

s = 1, . . . , k. In particular, by the euclidean algorithm in elementary number theory, it
follows that the ra11 . . . r

ap
p ms for a1, . . . , ap ∈ [0, d − 1] and s = 1, . . . , k generate M over

R(d), as each power rdi ∈ R(d). In particular, R is finitely generated over R(d).

When we apply (2) to the finitely generated R-module R+, it follows that R
(d)
+ is a

finitely generated R(d)-module. This implies that R(d) is a finitely generated R0-algebra
by Proposition 1.14. N

In particular, by Proposition 1.10 (later in the book!) R is integral over R(d): this
means that each element of R satisfies a monic polynomial equation with R(d)-coefficients.
This can easily be seen directly. The dth power of a homogeneous element lies in R(d).
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Remark Part (3), the preservation of the basic finiteness condition, could also be proved
as follows, at least in the noetherian case (with S = R(d)). We shall assume familiarity
with the material in Chapter 7 for this brief digression.

Lemma 1.18 Suppose R0 ⊂ S ⊂ R is an inclusion of rings with R0 noetherian. Suppose
R is a finitely generated R0-algebra and R/S is an integral extension. Then S is a finitely
generated R0-algebra.

In the case of interest, we can take S = R(d). The point of the lemma is that finite
generation can be deduced for subrings under nice conditions.

Proof. We shall start by finding a subalgebra S′ ⊂ S such that R is integral over S′, but
S′ is a finitely generated R0-algebra. The procedure will be a general observation of the
flavor of “noetherian descent” to be developed in ??. Then, since R is integral over S′ and
finitely generated as an algebra, it will be finitely generated as a S′-module. S, which is a
sub-S′-module, will equally be finitely generated as a S′-module, hence as an R0-algebra.
So the point is to make S finitely generated as a module over a “good” ring.

Indeed, let r1, . . . , rm be generators of R/R0. Each satisfies an integral equation rnkk +
Pk(rk) = 0, where Pk ∈ S[X] has degree less than nk. Let S′ ⊂ S ⊂ R be the subring
generated over R0 by the coefficients of all these polynomials Pk.

Then R is, by definition, integral over S′. Since R is a finitely generated S′-algebra,
it follows by Proposition 1.10 that it is a finitely generated S′-module. Then S, as a S′-
submodule is a finitely generated S′-module by noetherianness. Therefore, S is a finitely
generated R0-algebra. N

This result implies, incidentally, the following useful corollary:

Corollary 1.19 Let R be a noetherian ring. If a finite group G acts on a finitely generated
R-algebra S, the ring of invariants SG is finitely generated.

Proof. Apply Lemma 1.18 to R,SG, S. One needs to check that S is integral over SG.
But each s ∈ S satisfies the equation∏

σ∈G
(X − σ(s)),

which has coefficients in SG. N

This ends the digression.

We next return to our main goals, and let R be a graded ring, finitely generated as an
R0-algebra, as before; let M be a finitely generated R-module. We show that we can have
R(d) generated by terms of degree d (i.e. “degree 1” if we rescale) for d chosen large.

Lemma 1.20 Hypotheses as above, there is a pair (d, n0) such that

RdMn = Mn+d

for n ≥ n0.
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Proof. Indeed, select R-module generators m1, . . . ,mk ∈ M and R0-algebra generators
r1, . . . , rp ∈ R as in the proof of Proposition 1.17; use the same notation for their degrees,
i.e. dj = deg rj . Let d be the least common multiple of the dj . Consider the family of
elements

si = r
d/di
i ∈ Rd.

Then suppose m ∈ Mn for n > d + sup degmi. We have that m is a sum of products of
powers of the {rj} and the {mi}, each term of which we can assume is of degree n. In this
case, since in each term, at least one of the {rj} must occur to power ≥ d

dj
, we can write

each term in the sum as some sj times something in Mn−d.

In particular, Mn = RdMn−d. N

Proposition 1.21 Suppose R is a graded ring and finitely generated R0-algebra. Then
there is d ∈ N such that R(d) is generated over R0 by Rd.

What this proposition states geometrically is that if we apply the functor R 7→ R(d) for
large d (which, geometrically, is actually harmless), one can arrange things so that ProjR
(not defined yet!) is contained as a closed subscheme of ordinary projective space.

Proof. Consider R as a finitely generated, graded R-module. Suppose d′ is as in the Propo-
sition 1.21 (replacing d, which we reserve for something else), and choose n0 accordingly.
So we have Rd′Rm = Rm+d′ whenever m ≥ n0. Let d be a multiple of d′ which is greater
than n0.

Then, iterating, we have RdRn = Rd+n if n ≥ d since d is a multiple of d′. In
particular, it follows that Rnd = (Rd)

n for each n ∈ N, which implies the statement of the
proposition. N

As we will see below, taking R(d) does not affect the Proj, so this is extremely useful.

Example 1.22 Let k be a field. Then R = k[x2] ⊂ k[x] (with the grading induced from
k[x]) is a finitely generated graded k-algebra, which is not generated by its elements in
degree one (there are none!). However, R(2) = k[x2] is generated by x2.

We next show that taking the R(d) always preserves noetherianness.

Proposition 1.23 If R is noetherian, then so is R(d) for any d > 0.

Proof. If R is noetherian, then R0 is noetherian and R is a finitely generated R0-algebra
by Theorem 1.15. Proposition 1.17 now implies that R(d) is also a finitely generated
R0-algebra, so it is noetherian. N

The converse is also true, since R is a finitely generated R(d)-module.
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1.4 Localization of graded rings

Next, we include a few topics that we shall invoke later on. First, we discuss the interaction
of homogeneity and localization. Under favorable circumstances, we can give Z-gradings
to localizations of graded rings.

Definition 1.24 If S ⊂ R is a multiplicative subset of a graded (or Z-graded) ring R
consisting of homogeneous elements, then S−1R is a Z-graded ring: we let the homoge-
neous elements of degree n be of the form r/s where r ∈ Rn+deg s. We write R(S) for the
subring of elements of degree zero; there is thus a map R0 → R(S).

If S consists of the powers of a homogeneous element f , we write R(f) for RS . If p is
a homogeneous ideal and S the set of homogeneous elements of R not in p, we write R(p)

for R(S).

Of course, R(S) has a trivial grading, and is best thought of as a plain, unadorned ring.
We shall show that R(f) is a special case of something familiar.

Proposition 1.25 Suppose f is of degree d. Then, as plain rings, there is a canonical
isomorphism R(f) ' R(d)/(f − 1).

Proof. The homomorphism R(d) → R(f) is defined to map g ∈ Rkd to g/fd ∈ R(f).
This is then extended by additivity to non-homogeneous elements. It is clear that this is
multiplicative, and that the ideal (f − 1) is annihilated by the homomorphism. Moreover,
this is surjective.

We shall now define an inverse map. Let x/fn ∈ R(f); then x must be a homogeneous

element of degree divisible by d. We map this to the residue class of x in R(d)/(f − 1).
This is well-defined; if x/fn = y/fm, then there is N with

fN (xfm − yfn) = 0,

so upon reduction (note that f gets reduced to 1!), we find that the residue classes of x, y
are the same, so the images are the same.

Clearly this defines an inverse to our map. N

Corollary 1.26 Suppose R is a graded noetherian ring. Then each of the R(f) is noethe-
rian.

Proof. This follows from the previous result and the fact that R(d) is noetherian (Propo-
sition 1.23).

More generally, we can define the localization procedure for graded modules.

Definition 1.27 Let M be a graded R-module and S ⊂ R a multiplicative subset con-
sisting of homogeneous elements. Then we define M(S) as the submodule of the graded
module S−1M consisting of elements of degree zero. When S consists of the powers of a
homogeneous element f ∈ R, we write M(f) instead of M(S). We similarly define M(p) for
a homogeneous prime ideal p.
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Then clearly M(S) is a R(S)-module. This is evidently a functor from graded R-modules
to R(S)-modules.

We next observe that there is a generalization of Proposition 1.25.

Proposition 1.28 Suppose M is a graded R-module, f ∈ R homogeneous of degree d.
Then there is an isomorphism

M(f) 'M (d)/(f − 1)M (d)

of R(d)-modules.

Proof. This is proved in the same way as Proposition 1.25. Alternatively, both are right-
exact functors that commute with arbitrary direct sums and coincide on R, so must be
naturally isomorphic by a well-known bit of abstract nonsense.1 N

In particular:

Corollary 1.29 Suppose M is a graded R-module, f ∈ R homogeneous of degree 1. Then
we have

M(f) 'M/(f − 1)M 'M ⊗R R/(f − 1).

1.5 The Proj of a ring

Let R = R0 ⊕R1 ⊕ . . . be a graded ring.

Definition 1.30 Let ProjR denote the set of homogeneous prime ideals of R that do not
contain the irrelevant ideal R+.2

We can put a topology on ProjR by setting, for a homogeneous ideal b,

V (b) = {p ∈ ProjR : p ⊃ b}

. These sets satisfy

1. V (
∑

bi) =
⋂
V (bi).

2. V (ab) = V (a) ∪ V (b).

3. V (Rad a) = V (a).

Note incidentally that we would not get any more closed sets if we allowed all ideals b,
since to any b we can consider its “homogenization.” We could even allow all sets.

In particular, the V ’s do in fact yield a topology on ProjR (setting the open sets to
be complements of the V ’s). As with the affine case, we can define basic open sets. For f
homogeneous of positive degree, define D′(f) to be the collection of homogeneous ideals
(not containing R+) that do not contain f ; clearly these are open sets.

Let a be a homogeneous ideal. Then we claim that:

1Citation needed.
2Recall that an ideal a ⊂ R for R graded is homogeneous if the homogeneous components of a belong

to a.
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Lemma 1.31 V (a) = V (a ∩R+).

Proof. Indeed, suppose p is a homogeneous prime not containing S+ such that all homo-
geneous elements of positive degree in a (i.e., anything in a ∩ R+) belongs to p. We will
show that a ⊂ p.

Choose a ∈ a ∩ R0. It is sufficient to show that any such a belongs to p since we are
working with homogeneous ideals. Let f be a homogeneous element of positive degree
that is not in p. Then af ∈ a ∩R+, so af ∈ p. But f /∈ p, so a ∈ p. N

Thus, when constructing these closed sets V (a), it suffices to work with ideals contained
in the irrelevant ideal. In fact, we could take a in any prescribed power of the irrelevant
ideal, since taking radicals does not affect V .

Proposition 1.32 We have D′(f) ∩ D′(g) = D′(fg). Also, the D′(f) form a basis for
the topology on ProjR.

Proof. The first part is evident, by the definition of a prime ideal. We prove the second.
Note that V (a) is the intersection of the V ((f)) for the homogeneous f ∈ a ∩ R+. Thus
ProjR−V (a) is the union of these D′(f). So every open set is a union of sets of the form
D′(f). N

We shall now show that the topology is actually rather familiar from the affine case,
which is not surprising, since the definition is similar.

Proposition 1.33 D′(f) is homeomorphic to SpecR(f) under the map

p→ pRf ∩R(f)

sending homogeneous prime ideals of R not containing f into primes of R(f).

Proof. Indeed, let p be a homogeneous prime ideal of R not containing f . Consider
φ(p) = pRf ∩ R(f) as above. This is a prime ideal, since pRf is a prime ideal in Rf
by basic properties of localization, and R(f) ⊂ Rf is a subring. (It cannot contain the
identity, because that would imply that a power of f lay in p.)

So we have defined a map φ : D′(f) → SpecR(f). We can define its inverse ψ as
follows. Given q ⊂ R(f) prime, we define a prime ideal p = ψ(q) of R by saying that a

homogeneous element x ∈ R belongs to p if and only if xdeg f/fdeg x ∈ q. It is easy to see
that this is indeed an ideal, and that it is prime by Lemma 1.12.

Furthermore, it is clear that φ ◦ψ and ψ ◦φ are the identity. This is because x ∈ p for
p ∈ D′(f) if and only if fnx ∈ p for some n.

We next need to check that these are continuous, hence homeomorphisms. If a ⊂ R
is a homogeneous ideal, then V (a) ∩D′(f) is mapped to V (aRf ∩R(f)) ⊂ SpecR(f), and
vice versa. N

§2 Filtered rings

In practice, one often has something weaker than a grading. Instead of a way of saying
that an element is of degree d, one simply has a way of saying that an element is “of degree
at most d.” This leads to the definition of a filtered ring (and a filtered module). We shall
use this definition in placing topologies on rings and modules and, later, completing them.
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2.1 Definition

Definition 2.1 A filtration on a ring R is a sequence of ideals R = I0 ⊃ I1 ⊃ . . . such
that ImIn ⊂ Im+n for each m,n ∈ Z≥0. A ring with a filtration is called a filtered ring.

A filtered ring is supposed to be a generalization of a graded ring. If R =
⊕
Rk is

graded, then we can make R into a filtered ring in a canonical way by taking the ideal
Im =

⊕
k≥mRk (notice that we are using the fact that R has only pieces in nonnegative

gradings!).

We can make filtered rings into a category: a morphism of filtered rings φ : R→ S is
a ring-homomorphism preserving the filtration.

Example 2.2 (The I-adic filtration) Given an ideal I ⊂ R, we can take powers of I
to generate a filtration. This filtration R ⊃ I ⊃ I2 ⊃ . . . is called the I-adic filtration,
and is especially important when R is local and I the maximal ideal.

If one chooses the polynomial ring k[x1, . . . , xn] over a field with n variables and takes
the (x1, . . . , xn)-adic filtration, one gets the same as the filtration induced by the usual
grading.

Example 2.3 As a specialization of the previous example, consider the power series ring
R = k[[x]] over a field k with one indeterminate x. This is a local ring (with maximal ideal
(x)), and it has a filtration with Ri = (xi). Note that this ring, unlike the polynomial
ring, is not a graded ring in any obvious way.

When we defined graded rings, the first thing we did thereafter was to define the notion
of a graded module over a graded ring. We do the analogous thing for filtered modules.

Definition 2.4 Let R be a filtered ring with a filtration I0 ⊃ I1 ⊃ . . . . A filtration on
an R-module M is a decreasing sequence of submodules

M = M0 ⊃M1 ⊃M2 ⊃ . . .

such that ImMn ⊂ Mn+m for each m,n. A module together with a filtration is called a
filtered module.

As usual, there is a category of filtered modules over a fixed filtered ring R, with
morphisms the module-homomorphisms that preserve the filtrations.

Example 2.5 (The I-adic filtration for modules) Let R be any ring and I ⊂ R any
ideal. Then if we make R into a filtered ring with the I-adic filtration, we can make any
R-module M into a filtered R-module by giving M the filtration

M ⊃ IM ⊃ I2M ⊃ . . . ,

which is also called the I-adic filtration.
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2.2 The associated graded

We shall now describe a construction that produces graded things from filtered ones.

Definition 2.6 Given a filtered ring R (with filtration {In}), the associated graded
ring gr(R) is the graded ring

gr(R) =
∞⊕
n=0

In/In+1.

This is made into a ring by the following procedure. Given a ∈ In representing a class
a ∈ In/In+1 and b ∈ Im representing a class b ∈ Im/Im+1, we define ab to be the class in
In+m/In+m+1 represented by ab.

It is easy to check that if different choices of representing elements a, b were made in
the above description, the value of ab thus defined would still be the same, so that the
definition is reasonable.

Example 2.7 Consider R = Z(p) (the localization at (p)) with the (p)-adic topology.
Then gr(R) = Z/p[t], as a graded ring. For the successive quotients of ideals are of the
form Z/p, and it is easy to check that multiplication lines up in the appropriate form.

In general, as we will see below, when one takes the gr of a noetherian ring with the
I-adic topology for some ideal I, one always gets a noetherian ring.

Definition 2.8 LetR be a filtered ring, andM a filteredR-module (with filtration {Mn}).
We define the associated graded module gr(M) as the graded gr(R)-module

gr(M) =
⊕
n

Mn/Mn+1

where multiplication by an element of gr(R) is defined in a similar manner as above.

In other words, we have defined a functor gr from the category of filtered R-modules
to the category of graded gr(R) modules.

Let R be a filtered ring, and M a finitely generated filtered R-module. In general,
gr(M) cannot be expected to be a finitely generated gr(R)-module.

Example 2.9 Consider the ring Z(p) (the localization of Z at p), which we endow with
the p2-adic (i.e., (p2)-adic) filtration. The associated graded is Z/p2[t].

Consider M = Z(p) with the filtration Mm = (pm), i.e. the usual (p)-adic topology.
The claim is that gr(M) is not a finitely generated Z/p2[t]-module. This will follow from
?? below, but we can see it directly: multiplication by t acts by zero on gr(M) (because
this corresponds to multiplying by p2 and shifting the degree by one). However, gr(M) is
nonzero in every degree. If gr(M) were finitely generated, it would be a finitely generated
Z/p2Z-module, which it is not.
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2.3 Topologies

We shall now see that filtered rings and modules come naturally with topologies on them.

Definition 2.10 A topological ring is a ring R together with a topology such that the
natural maps

R×R→ R, (x, y) 7→ x+ y

R×R→ R, (x, y) 7→ xy

R→ R, x 7→ −x

are continuous (where R×R has the product topology).

TO BE ADDED: discussion of algebraic objects in categories
In practice, the topological rings that we will be interested will exclusively be linearly

topologized rings.

Definition 2.11 A topological ring is linearly topologized if there is a neighborhood
basis at 0 consisting of open ideals.

Given a filtered ring R with a filtration of ideals {In}, we can naturally linearly topol-
ogize R. Namely, we take as a basis the cosets x+ In for x ∈ R,n ∈ Z≥0. It is then clear
that the {In} form a neighborhood basis at the origin (because any neighborhood x+ In
containing 0 must just be In!).

Example 2.12 For instance, given any ring R and any ideal I ⊂ R, we can consider the
I-adic topology on R. Here an element is “small” (i.e., close to zero) if it lies in a high
power of I.

Proposition 2.13 A topology on R defined by the filtration {In} is Hausdorff if and only
if
⋂
In = 0.

Proof. Indeed, to say that R is Hausdorff is to say that any two distinct elements x, y ∈ R
can be separated by disjoint neighborhoods. If

⋂
In = 0, we can find N large such that

x−y /∈ IN . Then x+IN , y+IN are disjoint neighborhoods of x, y. The converse is similar:
if
⋂
In 6= 0, then no neighborhoods can separate a nonzero element in

⋂
In from 0. N

Similarly, if M is a filtered R-module with a filtration {Mn}, we can topologize M by
choosing the {Mn} to be a neighborhood basis at the origin. Then M becomes a topological
group, that is a group with a topology such that the group operations are continuous. In
the same way, we find:

Proposition 2.14 The topology on M is Hausdorff if and only if
⋂
Mn = 0.

Moreover, because of the requirement that RmMn ⊂Mn+m, it is easy to see that the
map

R×M →M
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is itself continuous. Thus, M is a topological module.

Here is another example. Suppose M is a linearly topologized module with a basis
of submodules {Mα} at the origin. Then any submodule N ⊂ M becomes a linearly
topologized module with a basis of submodules {N ∩Mα} at the origin with the relative
topology.

Proposition 2.15 Suppose M is filtered with the {Mn}. If N ⊂ M is any submodule,
then the closure N is the intersection

⋂
N +Mn.

Proof. Recall that x ∈ N is the same as stipulating that every neighborhood of x intersect
N . In other words, any basic neighborhood of x has to intersect N . This means that for
each n, x+Mn ∩N 6= ∅, or in other words x ∈Mn +N . N

§3 The Artin-Rees Lemma

We shall now show that for noetherian rings and modules, the I-adic topology is sta-
ble under passing to submodules; this useful result, the Artin-Rees lemma, will become
indispensable in our analysis of dimension theory in the future.

More precisely, consider the following problem. Let R be a ring and I ⊂ R an ideal.
Then for any R-module M , we can endow M with the I-adic filtration {InM}, which
defines a topology on M . If N ⊂ M is a submodule, then N inherits the subspace
topology from M (i.e. that defined by the filtration {InM ∩N}). But N can also be
topologized by simply taking the I-adic topology on it. The Artin-Rees lemma states that
these two approaches give the same result.

3.1 The Artin-Rees Lemma

Theorem 3.1 (Artin-Rees lemma) Let R be noetherian, I ⊂ R an ideal. Suppose M
is a finitely generated R-module and M ′ ⊂ M a submodule. Then the I-adic topology on
M induces the I-adic topology on M ′. More precisely, there is a constant c such that

In+cM ∩M ′ ⊂ InM ′.

So the two filtrations {InM ∩M ′}, {InM ′} on M ′ are equivalent up to a shift.

Proof. The strategy to prove Artin-Rees will be as follows. Call a filtration {Mn} on an
R-module M (which is expected to be compatible with the I-adic filtration on R, i.e.
InMm ⊂Mm+n for all n,m) I-good if IMn = Mn+1 for large n� 0. Right now, we have
the very I-good filtration {InM} on M , and the induced filtration {InM ∩M ′} on M ′.
The Artin-Rees lemma can be rephrased as saying that this filtration on M ′ is I-good: in
fact, this is what we shall prove. It follows that if one has an I-good filtration on M , then
the induced filtration on M ′ is itself I-good.

To do this, we shall give an interpretation of I-goodness in terms of the blowup algebra,
and use its noetherianness. Recall that this is defined as S = R ⊕ I ⊕ I2 + . . . , where
multiplication is defined in the obvious manner (see Example 1.6). It can be regarded as
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a subring of the polynomial ring R[t] where the coefficient of ti is required to be in Ii.
The blowup algebra is clearly a graded ring.

Given a filtration {Mn} on an R-module M (compatible with the I-adic filtration of
M), we can make

⊕∞
n=0Mn into a graded S-module in an obvious manner.

Here is the promised interpretation of I-goodness:

Lemma 3.2 Then the filtration {Mn} of the finitely generated R-module M is I-good if
and only if

⊕
Mn is a finitely generated S-module.

Proof. Let S1 ⊂ S be the subset of elements of degree one. If
⊕
Mn is finitely generated as

an S-module, then S1(
⊕
Mn) and

⊕
Mn agree in large degrees by Lemma 1.20; however,

this means that IMn−1 = Mn for n� 0, which is I-goodness.
Conversely, if {Mn} is an I-good filtration, then once the I-goodness starts (say, for

n > N , we have IMn = Mn+1), there is no need to add generators beyond MN . In fact,
we can use R-generators for M0, . . . ,MN in the appropriate degrees to generate

⊕
Mn as

an R′-module. N

Finally, let {Mn} be an I-good filtration on the finitely generated R-module M . Let
M ′ ⊂M be a submodule; we will, as promised, show that the induced filtration on M ′ is
I-good. Now the associated module

⊕∞
n=0(InM ∩M ′) is an S-submodule of

⊕∞
n=0Mn,

which by Lemma 3.2 is finitely generated. We will show next that S is noetherian, and
consequently submodules of finitely generated modules are finitely generated. Applying
Lemma 3.2 again, we will find that the induced filtration must be I-good.

Lemma 3.3 Hypotheses as above, the blowup algebra R′ is noetherian.

Proof. Choose generators x1, . . . , xn ∈ I; then there is a map R[y1, . . . , yn] → S sending
yi → xi (where xi is in degree one). This is surjective. Hence by the basis theorem
(Corollary 1.11), R′ is noetherian. N

3.2 The Krull intersection theorem

We now prove a useful consequence of the Artin-Rees lemma and Nakayama’s lemma. In
fancier language, this states that the map from a noetherian local ring into its completion
is an embedding. A priori, this might not be obvious. For instance, it might be surprising
that the inverse limit of the highly torsion groups Z/pn turns out to be the torsion-free
ring of p-adic integers.

Theorem 3.4 (Krull intersection theorem) Let R be a local noetherian ring with
maximal ideal m. Then, ⋂

mi = (0).

Proof. Indeed, the m-adic topology on
⋂
mi is the restriction of the m-adic topology of R

on
⋂
mi by the Artin-Rees lemma (Theorem 3.1). However,

⋂
mi is contained in every m-

adic neighborhood of 0 in R; the induced topology on
⋂
mi is thus the indiscrete topology.

But to say that the m-adic topology on a module N is indiscrete is to say that mN = N ,
so N = 0 by Nakayama. The result is thus clear.
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By similar logic, or by localizing at each maximal ideal, we find:

Corollary 3.5 If R is a commutative ring and I is contained in the Jacobson radical of
R, then

⋂
In = 0.

It turns out that the Krull intersection theorem can be proved in the following ele-
mentary manner, due to Perdry in [Per04]. The argument does not use the Artin-Rees
lemma. One can prove:

Theorem 3.6 ([Per04]) Suppose R is a noetherian ring, I ⊂ R an ideal. Suppose b ∈⋂
In. Then as ideals (b) = (b)I.

In particular, it follows easily that
⋂
In = 0 under either of the following conditions:

1. I is contained in the Jacobson radical of R.

2. R is a domain and I is proper.

Proof. Let a1, . . . , ak ∈ I be generators. For each n, the ideal In consists of the values of all
homogeneous polynomials in R[x1, . . . , xk] of degree n evaluated on the tuple (a1, . . . , ak),
as one may easily see.

It follows that if b ∈
⋂
In, then for each n there is a polynomial Pn ∈ R[x1, . . . , xk]

which is homogeneous of degree n and which satisfies

Pn(a1, . . . , ak) = b.

The ideal generated by all the Pn in R[x1, . . . , xk] is finitely generated by the Hilbert basis
theorem. Thus there is N such that

PN = Q1P1 +Q2P2 + · · ·+QN−1PN−1

for some polynomials Qi ∈ R[x1, . . . , xk]. By taking homogeneous components, we can
assume moreover that Qi is homogeneous of degree N − i for each i. If we evaluate each
at (a1, . . . , ak) we find

b = b(Q1(a1, . . . , ak) + · · ·+QN−1(a1, . . . , ak)).

But the Qi(a1, . . . , ak) lie in I as all the ai do and Qi is homogeneous of positive degree.
Thus b equals b times something in I. N
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Chapter 7

Integrality and valuation rings

The notion of integrality is familiar from number theory: it is similar to “algebraic” but
with the polynomials involved are required to be monic. In algebraic geometry, integral
extensions of rings correspond to correspondingly nice morphisms on the Spec’s—when
the extension is finitely generated, it turns out that the fibers are finite. That is, there
are only finitely many ways to lift a prime ideal to the extension: if A→ B is integral and
finitely generated, then SpecB → SpecA has finite fibers.

Integral domains that are integrally closed in their quotient field will play an important
role for us. Such “normal domains” are, for example, regular in codimension one, which
means that the theory of Weil divisors (see Section 2) applies to them. It is particularly
nice because Weil divisors are sufficient to determine whether a function is regular on a
normal variety.

A canonical example of an integrally closed ring is a valuation ring; we shall see in this
chapter that any integrally closed ring is an intersection of such.

§1 Integrality

1.1 Fundamentals

As stated in the introduction to the chapter, integrality is a condition on rings parallel to
that of algebraicity for field extensions.

Definition 1.1 Let R be a ring, and R′ an R-algebra. An element x ∈ R′ is said to be
integral over R if x satisfies a monic polynomial equation in R[X], say

xn + r1x
n−1 + · · ·+ rn = 0, r1, . . . , rn ∈ R.

We can say that R′ is integral over R if every x ∈ R′ is integral over R.

Note that in the definition, we are not requiring R to be a subring of R′.

Example 1.2 1+
√
−3

2 is integral over Z; it is in fact a sixth root of unity, thus satisfying

the equation X6− 1 = 0. However, 1+
√

5
2 is not integral over Z. To explain this, however,

we will need to work a bit more (see Proposition 1.5 below).
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Example 1.3 Let L/K be a field extension. Then L/K is integral if and only if it
is algebraic, since K is a field and we can divide polynomial equations by the leading
coefficient to make them monic.

Example 1.4 Let R be a graded ring. Then the subring R(d) ⊂ R was defined in Def-
inition 1.16; recall that this consists of elements of R all of whose nonzero homogeneous
components live in degrees that are multiples of d. Then the dth power of any homoge-
neous element in R is in R(d). As a result, every homogeneous element of R is integral
over R(d).

We shall now interpret the condition of integrality in terms of finite generation of
certain modules. Suppose R is a ring, and R′ an R-algebra. Let x ∈ R′.

Proposition 1.5 x ∈ R′ is integral over R if and only if the subalgebra R[x] ⊂ R′ (gen-
erated by R, x) is a finitely generated R-module.

This notation is an abuse of notation (usually R[x] refers to a polynomial ring), but it
should not cause confusion.

This result for instance lets us show that 1+
√
−5

2 is not integral over Z, because when
you keep taking powers, you get arbitrarily large denominators: the arbitrarily large
denominators imply that it cannot be integral.

Proof. If x ∈ R′ is integral, then x satisfies

xn + r1x
n−1 + · · ·+ rn = 0, ri ∈ R.

Then R[x] is generated as an R-module by 1, x, . . . , xn−1. This is because the submodule
of R′ generated by 1, x, . . . , xn−1 is closed under multiplication by R and by multiplication
by x (by the above equation).

Now suppose x generates a subalgebra R[x] ⊂ R′ which is a finitely generated R-
module. Then the increasing sequence ofR-modules generated by {1}, {1, x} ,

{
1, x, x2

}
, . . .

must stabilize, since the union is R[x].1 It follows that some xn can be expressed as a
linear combination of smaller powers of x. Thus x is integral over R. N

So, if R′ is an R-module, we can say that an element x ∈ R′ is integral over R if
either of the following equivalent conditions are satisfied:

1. There is a monic polynomial in R[X] which vanishes on x.

2. R[x] ⊂ R′ is a finitely generated R-module.

Example 1.6 Let F be a field, V a finite-dimensional F -vector space, T : V → V a
linear transformation. Then the ring generated by T and F inside EndF (V ) (which is a
noncommutative ring) is finite-dimensional over F . Thus, by similar reasoning, T must
satisfy a polynomial equation with coefficients in F (e.g. the characteristic polynomial).

1As an easy exercise, one may see that if a finitely generated module M is the union of an increasing
sequence of submodules M1 ⊂ M2 ⊂ M3 ⊂ . . . , then M = Mn for some n; we just need to take n large
enough such that Mn contains each of the finitely many generators of M .
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Of course, if R′ is integral over R, R′ may not be a finitely generated R-module. For
instance, Q is not a finitely generated Q-module, although the extension is integral. As we
shall see in the next section, this is always the case if R′ is a finitely generated R-algebra.

We now will add a third equivalent condition to this idea of “integrality,” at least in
the case where the structure map is an injection.

Proposition 1.7 Let R be a ring, and suppose R is a subring of R′. x ∈ R′ is integral if
and only if there exists a finitely generated faithful R-module M ⊂ R′ such that R ⊂ M
and xM ⊂M .

A module M is faithful if xM = 0 implies x = 0. That is, the map from R into the
Z-endomorphisms of M is injective. If R is a subring of R′ (i.e. the structure map R→ R′

is injective), then R′ for instance is a faithful R-module.

Proof. It’s obvious that the second condition above (equivalent to integrality) implies the
condition of this proposition. Indeed, one could just take M = R[x].

Now let us prove that if there exists such an M which is finitely generated, then x is
integral. Just because M is finitely generated, the submodule R[x] is not obviously finitely
generated. In particular, this implication requires a bit of proof.

We shall prove that the condition of this proposition implies integrality. Suppose
y1, . . . , yk ∈ M generate M as R-module. Then multiplication by x gives an R-module
map M →M . In particular, we can write

xyi =
∑

aijyj

where each aij ∈ R. These {aij} may not be unique, but let us make some choices; we get
a k-by-k matrix A ∈Mk(R). The claim is that x satisfies the characteristic polynomial of
A.

Consider the matrix

(x1−A) ∈Mn(R′).

Note that (x1 − A) annihilates each yi, by the choice of A. We can consider the adjoint
B = (x1−A)adj . Then

B(x1−A) = det(x1−A)1.

This product of matrices obviously annihilates each vector yi. It follows that

(det(x1−A)yi = 0, ∀i,

which implies that det(x1 − A) kills M . This implies that det(x1 − A) = 0 since M is
faithful.

As a result, x satisfies the characteristic polynomial. N

Exercise 7.1 Let R be a noetherian local domain with maximal ideal m. As we will
define shortly, R is integrally closed if every element of the quotient field K = K(R)
integral over R belongs to R itself. Then if x ∈ K and xm ⊂ m, we have x ∈ R.
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Exercise 7.2 Let us say that an A-module is n-generated if it is generated by at most n
elements.

Let A and B be two rings such that A ⊂ B, so that B is an A-module.

Let n ∈ N. Let u ∈ B. Then, the following four assertions are equivalent:

1. There exists a monic polynomial P ∈ A [X] with degP = n and P (u) = 0.

2. There exist a B-module C and an n-generated A-submodule U of C such that
uU ⊂ U and such that every v ∈ B satisfying vU = 0 satisfies v = 0. (Here, C is an
A-module, since C is a B-module and A ⊂ B.)

3. There exists an n-generated A-submodule U of B such that 1 ∈ U and uU ⊂ U .

4. As an A-module, A[u] is spanned by 1, u, . . . , un−1.

We proved this to show that the set of integral elements is well behaved.

Proposition 1.8 Let R ⊂ R′. Let S = {x ∈ R′ : x is integral over R}. Then S is a
subring of R′. In particular, it is closed under addition and multiplication.

Proof. Suppose x, y ∈ S. We can consider the finitely generated modules R[x], R[y] ⊂ R′

generated (as algebras) by x over R. By assumption, these are finitely generated R-
modules. In particular, the tensor product

R[x]⊗R R[y]

is a finitely generated R-module (by Proposition 3.10).

We have a ring-homomorphism R[x] ⊗R R[y] → R′ which comes from the inclusions
R[x], R[y]� R′. Let M be the image of R[x]⊗RR[y] in R′. Then M is an R-submodule of
R′, indeed an R-subalgebra containing x, y. Also, M is finitely generated. Since x+y, xy ∈
M and M is a subalgebra, it follows that

(x+ y)M ⊂M, xyM ⊂M.

Thus x+ y, xy are integral over R. N

Let us consider the ring Z[
√
−5]; this is the canonical example of a ring where unique

factorization fails. This is because 6 = 2×3 = (1+
√
−5)(1−

√
−5). One might ask: what

about Z[
√
−3]? It turns out that Z[

√
−3] lacks unique factorization as well. Indeed, here

we have

(1−
√
−3)(1 +

√
−3) = 4 = 2× 2.

These elements can be factored no more, and 1 −
√
−3 and 2 do not differ by units. So

in this ring, we have a failure of unique factorization. Nonetheless, the failure of unique
factorization in Z[

√
−3] is less noteworthy, because Z[

√
−3] is not integrally closed. Indeed,

it turns out that Z[
√
−3] is contained in the larger ring Z

[
1+
√
−3

2

]
, which does have unique
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factorization, and this larger ring is finite over Z[
√
−3].2 Since being integrally closed is

a prerequisite for having unique factorization (see ?? below), the failure in Z[
√
−3] is not

particularly surprising.

Note that, by contrast, Z[1+
√
−5

2 ] does not contain Z[
√
−5] as a finite index subgroup—

it cannot be slightly enlarged in the same sense. When one enlarges Z[
√
−5], one has to

add a lot of stuff. We will see more formally that Z[
√
−5] is integrally closed in its quotient

field, while Z[
√
−3] is not. Since unique factorization domains are automatically integrally

closed, the failure of Z[
√
−5] to be a UFD is much more significant than that of Z[

√
−3].

1.2 Le sorite for integral extensions

In commutative algebra and algebraic geometry, there are a lot of standard properties that
a morphism of rings φ : R → S can have: it could be of finite type (that is, S is finitely
generated over φ(R)), it could be finite (that is, S is a finite R-module), or it could be
integral (which we have defined in Definition 1.1). There are many more examples that
we will encounter as we dive deeper into commutative algebra. In algebraic geometry,
there are corresponding properties of morphisms of schemes, and there are many more
interesting ones here.

In these cases, there is usually—for any reasonable property—a standard and familiar
list of properties that one proves about them. We will refer to such lists as “sorites,” and
prove our first one now.

Proposition 1.9 (Le sorite for integral morphisms) 1. For any ring R and any
ideal I ⊂ R, the map R→ R/I is integral.

2. If φ : R→ S and ψ : S → T are integral morphisms, then so is ψ ◦ φ : R→ T .

3. If φ : R → S is an integral morphism and R′ is an R-algebra, then the base-change
R′ → R′ ⊗R S is integral.

Proof. The first property is obvious. For the second, the condition of integrality in a
morphism of rings depends on the inclusion of the image in the codomain. So we can
suppose that R ⊂ S ⊂ T . Suppose t ∈ T . By assumption, there is a monic polynomial
equation

tn + s1t
n−1 + · · ·+ sn = 0

that t satisfies, where each si ∈ S.
In particular, we find that t is integral over R[s1, . . . , sn]. As a result, the module

R[s1, . . . , sn, t] is finitely generated over the ring R′ = R[s1, . . . , sn]. By the following
Proposition 1.10, R′ is a finitely generated R-module. In particular, R[s1, . . . , sn, t] is a
finitely generated R-module (not just a finitely generated R′-module).

Thus the R-module R[s1, . . . , sn, t] is a faithful R′ module, finitely generated over R,
which is preserved under multiplication by t. N

2In fact, Z[
√
−3] is an index two subgroup of Z

[
1+
√
−3

2

]
, as the ring Z[ 1+

√
−3

2
] can be described as the

set of elements a+ b
√
−3 where a, b are either both integers or both integers plus 1

2
, as is easily seen: this

set is closed under addition and multiplication.
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We now prove a result that can equivalently be phrased as “finite type plus integral
implies finite” for a map of rings.

Proposition 1.10 Let R′ be a finitely generated, integral R-algebra. Then R′ is a finitely
generated R-module: that is, the map R→ R′ is finite.

Proof. Induction on the number of generators of R′ as R-algebra. For one generator,
this follows from Proposition 1.5. In general, we will have R′ = R[α1, . . . , αn] for some
αi ∈ R′. By the inductive hypothesis, R[α1, . . . , αn−1] is a finite R-module; by the case
of one generator, R′ is a finite R[α1, . . . , αn−1]-module. This establishes the result by the
next exercise. N

Exercise 7.3 Let R→ S, S → T be morphisms of rings. Suppose S is a finite R-module
and T a finite T -module. Then T is a finite R-module.

1.3 Integral closure

Let R,R′ be rings.

Definition 1.11 If R ⊂ R′, then the set S = {x ∈ R′ : x is integral} is called the integral
closure of R in R′. We say that R is integrally closed in R′ if S = R′.

When R is a domain, and K is the quotient field, we shall simply say that R is
integrally closed if it is integrally closed in K. Alternatively, some people say that R is
normal in this case.

Integral closure (in, say, the latter sense) is thus an operation that maps integral
domains to integral domains. It is easy to see that the operation is idempotent: the
integral closure of the integral closure is the integral closure.

Example 1.12 The integers Z ⊂ C have as integral closure (in C) the set of complex
numbers satisfying a monic polynomial with integral coefficients. This set is called the set
of algebraic integers.

For instance, i is an algebraic integer because it satisfies the equation X2 + 1 = 0.
1−
√
−3

2 is an algebraic integer, as we talked about last time; it is a sixth root of unity. On

the other hand, 1+
√
−5

2 is not an algebraic integer.

Example 1.13 Take Z ⊂ Q. The claim is that Z is integrally closed in its quotient field
Q, or simply—integrally closed.

Proof. We will build on this proof later. Here is the point. Suppose a
b ∈ Q satisfying an

equation

P (a/b) = 0, P (t) = tn + c1t
n−1 + · · ·+ c0, ∀ci ∈ Z.

Assume that a, b have no common factors; we must prove that b has no prime factors, so
is ±1. If b had a prime factor, say q, then we must obtain a contradiction.

We interrupt with a definition.
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Definition 1.14 The valuation at q (or q-adic valuation) is the map vq : Q∗ → Z is
the function sending qk(a/b) to k if q - a, b. We extend this to all rational numbers via
v(0) =∞.

In general, this just counts the number of factors of q in the expression.

Note the general property that

vq(x+ y) ≥ min(vq(x), vq(y)). (7.1)

If x, y are both divisible by some power of q, so is x+ y; this is the statement above. We
also have the useful property

vq(xy) = vq(x) + vq(y). (7.2)

Now return to the proof that Z is normal. We would like to show that vq(a/b) ≥ 0.
This will prove that b is not divisible by q. When we show this for all q, it will follow that
a/b ∈ Z.

We are assuming that P (a/b) = 0. In particular,(a
b

)n
= −c1

(a
b

)n−1
− · · · − c0.

Apply vq to both sides:

nvq(a/b) ≥ min
i>0

vq(ci(a/b)
n−i).

Since the ci ∈ Z, their valuations are nonnegative. In particular, the right hand side is at
least

min
i>0

(n− i)vq(a/b).

This cannot happen if vq(a/b) < 0, because n− i < n for each i > 0. N

This argument applies more generally. If K is a field, and R ⊂ K is a subring “defined
by valuations,” such as the vq, then R is integrally closed in its quotient field. More
precisely, note the reasoning of the previous example: the key idea was that Z ⊂ Q was
characterized by the rational numbers x such that vq(x) ≥ 0 for all primes q. We can
abstract this idea as follows. If there exists a family of functions V from K∗ → Z (such
as {vq : Q∗ → Z}) satisfying (7.1) and (7.2) above such that R is the set of elements such
that v(x) ≥ 0, v ∈ V (along with 0), then R is integrally closed in K. We will talk more
about this, and about valuation rings, below.

Example 1.15 We saw earlier (Example 1.2) that Z[
√
−3] is not integrally closed, as

1+
√
−3

2 is integral over this ring and in the quotient field, but not in the ring.

We shall give more examples in the next subsection.
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1.4 Geometric examples

Let us now describe the geometry of a non-integrally closed ring. Recall that finitely
generated (reduced) C-algebras are supposed to correspond to affine algebraic varieties. A
smooth variety (i.e., one that is a complex manifold) will always correspond to an integrally
closed ring (though this relies on a deep result that a regular local ring is a factorization
domain, and consequently integrally closed): non-normality is a sign of singularities.

Example 1.16 Here is a ring which is not integrally closed. Take C[x, y]/(x2 − y3).
Algebraically, this is the subring of the polynomial ring C[t] generated by t2 and t3.

In the complex plane, C2, this corresponds to the subvariety C ⊂ C2 defined by
x2 = y3. In R2, this can be drawn: it has a singularity at (x, y) = 0.

Note that x2 = y3 if and only if there is a complex number z such that x = z3, y = z2.
This complex number z can be recovered via x/y when x, y 6= 0. In particular, there is a
map C → C which sends z → (z3, z2). At every point other than the origin, the inverse
can be recovered using rational functions. But this does not work at the origin.

We can think of C[x, y]/(x2 − y3) as the subring R′ of C[z] generated by {zn, n 6= 1}.
There is a map from C[x, y]/(x2 − y3) sending x → z3, y → z2. Since these two domains
are isomorphic, and R′ is not integrally closed, it follows that C[x, y]/(x2 − y3) is not
integrally closed. The element z can be thought of as an element of the fraction field of
R′ or of C[x, y]/(x2 − y3). It is integral, though.

The failure of the ring to be integrally closed has to do with the singularity at the
origin.

We now give a generalization of the above example.

Example 1.17 This example is outside the scope of the present course. Say that X ⊂ Cn
is given as the zero locus of some holomorphic functions {fi : Cn → C}. We just gave an
example when n = 2. Assume that 0 ∈ X, i.e. each fi vanishes at the origin.

Let R be the ring of germs of holomorphic functions 0, in other words holomorphic
functions from small open neighborhoods of zero. Each of these fi becomes an element of
R. The ring R/({fi}) is called the ring of germs of holomorphic functions on X at zero.

Assume that R is a domain. This assumption, geometrically, means that near the
point zero in X, X can’t be broken into two smaller closed analytic pieces. The fraction
field of R is to be thought of as the ring of germs of meromorphic functions on X at zero.

We state the following without proof:

Theorem 1.18 Let g/g′ be an element of the fraction field, i.e. g, g′ ∈ R. Then g/g′ is
integral over R if and only if g/g′ is bounded near zero.

In the previous example of X defined by x2 = y3, the function x/y (defined near the
origin on the curve) is bounded near the origin, so it is integral over the ring of germs of
regular functions. The reason it is not defined near the origin is not that it blows up. In
fact, it extends continuously, but not holomorphically, to the rest of the variety X.
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§2 Lying over and going up

We now interpret integrality in terms of the geometry of Spec. In general, for R → S a
ring-homomorphism, the induced map SpecS → SpecR need not be topologically nice;
for instance, even if S is a finitely generated R-algebra, the image of SpecS in SpecR
need not be either open or closed.3

We shall see that under conditions of integrality, more can be said.

2.1 Lying over

In general, given a morphism of algebraic varieties f : X → Y , the image of a closed subset
Z ⊂ X is far from closed. For instance, a regular function f : X → C that is a closed
map would have to be either surjective or constant (if X is connected, say). Nonetheless,
under integrality hypotheses, we can say more.

Proposition 2.1 (Lying over) If φ : R→ R′ is an integral morphism, then the induced
map

SpecR′ → SpecR

is a closed map; it is surjective if φ is injective.

Another way to state the last claim, without mentioning SpecR′, is the following.
Assume φ is injective and integral. Then if p ⊂ R is prime, then there exists q ⊂ R′ such
that p is the inverse image φ−1(q).

Proof. First suppose φ injective, in which case we must prove the map SpecR′ → SpecR
surjective. Let us reduce to the case of a local ring. For a prime p ∈ SpecR, we must
show that p arises as the inverse image of an element of SpecR′. So we replace R with
Rp. We get a map

φp : Rp → (R− p)−1R′

which is injective if φ is, since localization is an exact functor. Here we have localized
both R,R′ at the multiplicative subset R− p.

Note that φp is an integral extension too. This follows because integrality is preserved
by base-change. We will now prove the result for φp; in particular, we will show that there
is a prime ideal of (R−p)−1R′ that pulls back to pRp. These will imply that if we pull this
prime ideal back to R′, it will pull back to p in R. In detail, we can consider the diagram

Spec(R− p)−1R′

��

// SpecRp

��
SpecR′ // SpecR

3It is, however, true that if R is noetherian (see Chapter 5) and S finitely generated over R, then the
image of SpecS is constructible, that is, a finite union of locally closed subsets. TO BE ADDED: this
result should be added sometime.
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which shows that if pRp appears in the image of the top map, then p arises as the image of
something in SpecR′. So it is sufficient for the proposition (that is, the case of φ injective)
to handle the case of R local, and p the maximal ideal.

In other words, we need to show that:

If R is a local ring, φ : R ↪→ R′ an injective integral morphism, then the
maximal ideal of R is the inverse image of something in SpecR′.

Assume R is local with maximal ideal p. We want to find a prime ideal q ⊂ R′ such
that p = φ−1(q). Since p is already maximal, it will suffice to show that p ⊂ φ−1(q). In
particular, we need to show that there is a prime ideal q such that pR′ ⊂ q. The pull-back
of this will be p.

If pR′ 6= R′, then q exists, since every proper ideal of a ring is contained in a maximal
ideal. We will in fact show

pR′ 6= R′, (7.3)

or that p does not generate the unit ideal in R′. If we prove (7.3), we will thus be able to
find our q, and we will be done.

Suppose the contrary, i.e. pR′ = R′. We will derive a contradiction using Nakayama’s
lemma (Lemma 1.18). Right now, we cannot apply Nakayama’s lemma directly because
R′ is not a finite R-module. The idea is that we will “descend” the “evidence” that (7.3)
fails to a small subalgebra of R′, and then obtain a contradiction. To do this, note that
1 ∈ pR′, and we can write

1 =
∑

xiφ(yi)

where xi ∈ R′, yi ∈ p. This is the “evidence” that (7.3) fails, and it involves only a finite
amount of data.

Let R′′ be the subalgebra of R′ generated by φ(R) and the xi. Then R′′ ⊂ R′ and
is finitely generated as an R-algebra, because it is generated by the xi. However, R′′ is
integral over R and thus finitely generated as an R-module, by Proposition 1.10. This is
where integrality comes in.

So R′′ is a finitely generated R-module. Also, the expression 1 =
∑
xiφ(yi) shows that

pR′′ = R′′. However, this contradicts Nakayama’s lemma. That brings the contradiction,
showing that p cannot generate (1) in R′, and proving the surjectivity part of lying over
theorem.

Finally, we need to show that if φ : R→ R′ is any integral morphism, then SpecR′ →
SpecR is a closed map. Let X = V (I) be a closed subset of SpecR′. Then the image of
X in SpecR is the image of the map

SpecR′/I → SpecR

obtained from the morphism R → R′ → R′/I, which is integral; thus we are reduced to
showing that any integral morphism φ has closed image on the Spec. Thus we are reduced
to X = SpecR′, if we throw out R′ and replace it by R′/I.

In other words, we must prove the following statement. Let φ : R→ R′ be an integral
morphism; then the image of SpecR′ in SpecR is closed. But, quotienting by kerφ and
taking the map R/ kerφ → R′, we may reduce to the case of φ injective; however, then
this follows from the surjectivity result already proved. N
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In general, there will be many lifts of a given prime ideal. Consider for instance the
inclusion Z ⊂ Z[i]. Then the prime ideal (5) ∈ SpecZ can be lifted either to (2 + i) ∈
SpecZ[i] or (2− i) ∈ SpecZ[i]. These are distinct prime ideals: 2+i

2−i /∈ Z[i]. But note that
any element of Z divisible by 2 + i is automatically divisible by its conjugate 2 − i, and
consequently by their product 5 (because Z[i] is a UFD, being a euclidean domain).

Nonetheless, the different lifts are incomparable.

Proposition 2.2 Let φ : R→ R′ be an integral morphism. Then given p ∈ SpecR, there
are no inclusions among the elements q ∈ SpecR′ lifting p.

In other words, if q, q′ ∈ SpecR′ lift p, then q 6⊂ q′.

Proof. We will give a “slick” proof by various reductions. Note that the operations of lo-
calization and quotienting only shrink the Spec’s: they do not “merge” heretofore distinct
prime ideals into one. Thus, by quotienting R by p, we may assume R is a domain and
that p = 0. Suppose we had two primes q ( q′ of R′ lifting (0) ∈ SpecR. Quotienting
R′ by q, we may assume that q = 0. We could even assume R ⊂ R′, by quotienting by
the kernel of φ. The next lemma thus completes the proof, because it shows that q′ = 0,
contradiction. N

Lemma 2.3 Let R ⊂ R′ be an inclusion of integral domains, which is an integral mor-
phism. If q ∈ SpecR′ is a nonzero prime ideal, then q ∩R is nonzero.

Proof. Let x ∈ q′ be nonzero. There is an equation

xn + r1x
n−1 + · · ·+ rn = 0, ri ∈ R, N

that x satisfies, by assumption. Here we can assume rn 6= 0; then rn ∈ q′∩R by inspection,
though. So this intersection is nonzero.

Corollary 2.4 Let R ⊂ R′ be an inclusion of integral domains, such that R′ is integral
over R. Then if one of R,R′ is a field, so is the other.

Proof. Indeed, SpecR′ → SpecR is surjective by Proposition 2.1: so if SpecR′ has one
element (i.e., R′ is a field), the same holds for SpecR (i.e., R is a field). Conversely,
suppose R a field. Then any two prime ideals in SpecR′ pull back to the same element
of SpecR. So, by Proposition 2.2, there can be no inclusions among the prime ideals of
SpecR′. But R′ is a domain, so it must then be a field. N

Exercise 7.4 Let k be a field. Show that k[Q≥0] is integral over the polynomial ring
k[T ]. Although this is a huge extension, the prime ideal (T ) lifts in only one way to
Spec k[Q≥0].

Exercise 7.5 Suppose A ⊂ B is an inclusion of rings over a field of characteristic p.
Suppose Bp ⊂ A, so that B/A is integral in a very strong sense. Show that the map
SpecB → SpecA is a homeomorphism.
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2.2 Going up

Let R ⊂ R′ be an inclusion of rings with R′ integral over R. We saw in the lying over
theorem (Proposition 2.1) that any prime p ∈ SpecR has a prime q ∈ SpecR′ “lying over”
p, i.e. such that R ∩ q = p. We now want to show that we can lift finite inclusions of
primes to R′.

Proposition 2.5 (Going up) Let R ⊂ R′ be an integral inclusion of rings. Suppose
p1 ⊂ p2 ⊂ · · · ⊂ pn ⊂ R is a finite ascending chain of prime ideals in R. Then there is an
ascending chain q1 ⊂ q2 ⊂ · · · ⊂ qn in SpecR′ lifting this chain.

Moreover, q1 can be chosen arbitrarily so as to lift p1.

Proof. By induction and lying over (Proposition 2.1), it suffices to show:

Let p1 ⊂ p2 be an inclusion of primes in SpecR. Let q1 ∈ SpecR′ lift p1.
Then there is q2 ∈ SpecR′, which satisfies the dual conditions of lifting p2 and
containing q1.

To show that this is true, we apply Proposition 2.1 to the inclusion R/p1 ↪→ R′/q1. There
is an element of SpecR′/q1 lifting p2/p1; the corresponding element of SpecR′ will do for
q2. N

§3 Valuation rings

A valuation ring is a special type of local ring. Its distinguishing characteristic is that
divisibility is a “total preorder.” That is, two elements of the quotient field are never
incompatible under divisibility. We shall see in this section that integrality can be detected
using valuation rings only.

Geometrically, the valuation ring is something like a local piece of a smooth curve. In
fact, in algebraic geometry, a more compelling reason to study valuation rings is provided
by the valuative criteria for separatedness and properness (cf. [GD] or [Har77]). One
key observation about valuation rings that leads the last results is that any local domain
can be “dominated” by a valuation ring with the same quotient field (i.e. mapped into a
valuation ring via local homomorphism), but valuation rings are the maximal elements in
this relation of domination.

3.1 Definition

Definition 3.1 A valuation ring is a domain R such that for every pair of elements
a, b ∈ R, either a | b or b | a.

Example 3.2 Z is not a valuation ring. It is neither true that 2 divides 3 nor that 3
divides 2.

Example 3.3 Z(p), which is the set of all fractions of the form a/b ∈ Q where p - b, is
a valuation ring. To check whether a/b divides a′/b′ or vice versa, one just has to check
which is divisible by the larger power of p.
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Proposition 3.4 Let R be a domain with quotient field K. Then R is a valuation ring
if and only if for every x ∈ K, either x or x−1 lies in R.

Proof. Indeed, if x = a/b, a, b ∈ R, then either a | b or b | a, so either x or x−1 ∈ R. This
condition is equivalent to R’s being a valuation ring. N

3.2 Valuations

The reason for the name “valuation ring” is provided by the next definition. As we shall
see, any valuation ring comes from a “valuation.”

By definition, an ordered abelian group is an abelian group A together with a set of
positive elements A+ ⊂ A. This set is required to be closed under addition and satisfy
the property that if x ∈ A, then precisely one of the following is true: x ∈ A+, −x ∈ A+,
and x = 0. This allows one to define an ordering < on A by writing x < y if y − x ∈ A+.
Given A, we often formally adjoin an element ∞ which is bigger than every element in A.

Definition 3.5 Let K be a field. A valuation on K is a map v : K → A∪{∞} for some
ordered abelian group A satisfying:

1. v(0) =∞ and v(K∗) ⊂ A.

2. For x, y ∈ K∗, v(xy) = v(x) + v(y). That is, v|K∗ is a homomorphism.

3. For x, y ∈ K, v(x+ y) ≥ min(v(x), v(y)).

Suppose that K is a field and v : K → A ∪ {∞} is a valuation (i.e. v(0) = ∞). Define
R = {x ∈ K : v(x) ≥ 0}.

Proposition 3.6 R as just defined is a valuation ring.

Proof. First, we prove that R is a ring. R is closed under addition and multiplication by
the two conditions

v(xy) = v(x) + v(y)

and

v(x+ y) ≥ min v(x), v(y),

so if x, y ∈ R, then x+ y, xy have nonnegative valuations.

Note that 0 ∈ R because v(0) = ∞. Also v(1) = 0 since v : K∗ → A is a homomor-
phism. So 1 ∈ R too. Finally, −1 ∈ R because v(−1) = 0 since A is totally ordered. It
follows that R is also a group.

Let us now show that R is a valuation ring. If x ∈ K∗, either v(x) ≥ 0 or v(x−1) ≥ 0
since A is totally ordered.4 So either x, x−1 ∈ R. N

In particular, the set of elements with nonnegative valuation is a valuation ring. The
converse also holds. Whenever you have a valuation ring, it comes about in this manner.

4Otherwise 0 = v(x) + v(x−1) < 0, contradiction.
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Proposition 3.7 Let R be a valuation ring with quotient field K. There is an ordered
abelian group A and a valuation v : K∗ → A such that R is the set of elements with
nonnegative valuation.

Proof. First, we construct A. In fact, it is the quotient of K∗ by the subgroup of units
R∗ of R. We define an ordering by saying that x ≤ y if y/x ∈ R—this doesn’t depend
on the representatives in K∗ chosen. Note that either x ≤ y or y ≤ x must hold, since R
is a valuation ring. The combination of x ≤ y and y ≤ x implies that x, y are equivalent
classes. The nonnegative elements in this group are those whose representatives in K∗

belong to R.

It is easy to see that K∗/R∗ in this way is a totally ordered abelian group with the
image of 1 as the unit. The reduction map K∗ → K∗/R∗ defines a valuation whose
corresponding ring is just R. We have omitted some details; for instance, it should be
checked that the valuation of x+ y is at least the minimum of v(x), v(y). N

To summarize:

Every valuation ring R determines a valuation v from the fraction field of R
into A ∪ {∞} for A a totally ordered abelian group such that R is just the
set of elements of K with nonnegative valuation. As long as we require that
v : K∗ → A is surjective, then A is uniquely determined as well.

Definition 3.8 A valuation ring R is discrete if we can choose A to be Z.

Example 3.9 Z(p) is a discrete valuation ring.

The notion of a valuation ring is a useful one.

3.3 General remarks

Let R be a commutative ring. Then SpecR is the set of primes of R, equipped with
a certain topology. The space SpecR is almost never Hausdorff. It is almost always
a bad idea to apply the familiar ideas from elementary topology (e.g. the fundamental
group) to SpecR. Nonetheless, it has some other nice features that substitute for its
non-Hausdorffness.

For instance, if R = C[x, y], then SpecR corresponds to C2 with some additional
nonclosed points. The injection of C2 with its usual topology into SpecR is continuous.
While in SpecR you don’t want to think of continuous paths, you can in C2.

Suppose you had two points x, y ∈ C2 and their images in SpecR. Algebraically, you
can still think about algebraic curves passing through x, y. This is a subset of x, y defined
by a single polynomial equation. This curve will have what’s called a “generic point,”
since the ideal generated by this curve will be a prime ideal. The closure of this generic
point will be precisely this algebraic curve—including x, y.

Remark If p, p′ ∈ SpecR, then

p′ ∈ {p}
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iff

p′ ⊃ p.

Why is this? Well, the closure of {p} is just V (p), since this is the smallest closed subset
of SpecR containing p.

The point of this discussion is that instead of paths, one can transmit information
from point to point in SpecR by having one point be in a closure of another. However,
we will show that this relation is contained by the theory of valuation rings.

Theorem 3.10 Let R be a domain containing a prime ideal p. Let K be the fraction field
of R.

Then there is a valuation v on K defining a valuation ring R′ ⊂ K such that

1. R ⊂ R′.

2. p = {x ∈ R : v(x) > 0}.

Let us motivate this by the remark:

Remark A valuation ring is automatically a local ring. A local ring is a ring where either
x, 1−x is invertible for all x in the ring. Let us show that this is true for a valuation ring.

If x belongs to a valuation ring R with valuation v, it is invertible if v(x) = 0. So if
x, 1− x were both noninvertible, then both would have positive valuation. However, that
would imply that v(1) ≥ min v(x), v(1− x) is positive, contradiction.

If R′ is any valuation ring (say defined by a valuation v), then R′ is local with
maximal ideal consisting of elements with positive valuation.

The theorem above says that there’s a good supply of valuation rings. In particular,
if R is any domain, p ⊂ R a prime ideal, then we can choose a valuation ring R′ ⊃ R
such that p is the intersection of the maximal ideal of R′ intersected with R. So the map
SpecR′ → SpecR contains p.

Proof. Without loss of generality, replace R by Rp, which is a local ring with maximal
ideal pRp. The maximal ideal intersects R only in p.

So, we can assume without loss of generality that

1. R is local.

2. p is maximal.

Let P be the collection of all subrings R′ ⊂ K such that R′ ⊃ R but pR′ 6= R′. Then
P is a poset under inclusion. The poset is nonempty, since R ∈ P . Every totally ordered
chain in P has an upper bound. If you have a totally ordered subring of elements in P ,
then you can take the union. We invoke:

Lemma 3.11 Let Rα be a chain in P and R′ =
⋃
Rα. Then R′ ∈ P .
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Proof. Indeed, it is easy to see that this is a subalgebra of K containing R. The thing to
observe is that

pR′ =
⋃
α

pRα;

since by assumption, 1 /∈ pRα (because each Rα ∈ P ), 1 /∈ pR′. In particular, R′ /∈ P . N

By the lemma, Zorn’s lemma to the poset P . In particular, P has a maximal element
R′. By construction, R′ is some subalgebra of K and pR′ 6= R′. Also, R′ is maximal with
respect to these properties.

We show first that R′ is local, with maximal ideal m satisfying

m ∩R = p. N

The second part is evident from locality of R′, since m must contain the proper ideal pR′,
and p ⊂ R is a maximal ideal.

Suppose that x ∈ R′; we show that either x, 1 − x belongs to R′∗ (i.e. is invertible).
Take the ring R′[x−1]. If x is noninvertible, this properly contains R′. By maximality, it
follows that pR′[x−1] = R′[x−1].

And we’re out of time. We’ll pick this up on Monday.

Let us set a goal.

First, recall the notion introduced last time. A valuation ring is a domain R where
for all x in the fraction field of R, either x or x−1 lies in R. We saw that if R is a valuation
ring, then R is local. That is, there is a unique maximal ideal m ⊂ R, automatically
prime. Moreover, the zero ideal (0) is prime, as R is a domain. So if you look at the
spectrum SpecR of a valuation ring R, there is a unique closed point m, and a unique
generic point (0). There might be some other prime ideals in SpecR; this depends on
where the additional valuation lives.

Example 3.12 Suppose the valuation defining the valuation ring R takes values in R.
Then the only primes are m and zero.

Let R now be any ring, with SpecR containing prime ideals p ⊂ q. In particular, q
lies in the closure of p. As we will see, this implies that there is a map

φ : R→ R′

such that p = φ−1(0) and q = φ−1(m), where m is the maximal ideal of R′. This statement
says that the relation of closure in SpecR is always controlled by valuation rings. In yet
another phrasing, in the map

SpecR′ → SpecR

the closed point goes to q and the generic point to p. This is our eventual goal.

To carry out this goal, we need some more elementary facts. Let us discuss things that
don’t have any obvious relation to it.
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3.4 Back to the goal

Now we return to the goal of the lecture. Again, R was any ring, and we had primes
p ⊂ q ⊂ R. We wanted a valuation ring R′ and a map φ : R → R′ such that zero pulled
back to p and the maximal ideal pulled back to q.

What does it mean for p to be the inverse image of (0) ⊂ R′? This means that
p = kerφ. So we get an injection

R/p� R′.

We will let R′ be a subring of the quotient field K of the domain R/p. Of course, this
subring will contain R/p.

In this case, we will get a map R→ R′ such that the pull-back of zero is p. What we
want, further, to be true is that R′ is a valuation ring and the pull-back of the maximal
ideal is q.

This is starting to look at the problem we discussed last time. Namely, let’s throw out
R, and replace it with R/p. Moreover, we can replace R with Rq and assume that R is
local with maximal ideal q. What we need to show is that a valuation ring R′ contained
in the fraction field of R, containing R, such that the intersection of the maximal ideal of
R′ with R is equal to q ⊂ R. If we do this, then we will have accomplished our goal.

Lemma 3.13 Let R be a local domain. Then there is a valuation subring R′ of the
quotient field of R that dominates R, i.e .the map R→ R′ is a local homomorphism.

Let’s find R′ now.
Choose R′ maximal such that qR′ 6= R′. Such a ring exists, by Zorn’s lemma. We gave

this argument at the end last time.

Lemma 3.14 R′ as described is local.

Proof. Look at qR′ ⊂ R′; it is a proper subset, too, by assumption. In particular, qR′ is
contained in some maximal ideal m ⊂ R′. Replace R′ by R′′ = R′m. Note that

R′ ⊂ R′′

and
qR′′ 6= R′′

because mR′′ 6= R′′. But R′ is maximal, so R′ = R′′, and R′′ is a local ring. So R′ is a
local ring. N

Let m be the maximal ideal of R′. Then m ⊃ qR, so m ∩ R = q. All that is left to
prove now is that R′ is a valuation ring.

Lemma 3.15 R′ is integrally closed.

Proof. Let R′′ be its integral closure. Then mR′′ 6= R′′ by lying over, since m (the maximal
ideal of R′) lifts up to R′′. So R′′ satisfies

qR′′ 6= R′′

and by maximality, we have R′′ = R′. N
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To summarize, we know that R′ is a local, integrally closed subring of the quotient
field of R, such that the maximal ideal of R′ pulls back to q in R. All we now need is:

Lemma 3.16 R′ is a valuation ring.

Proof. Let x lie in the fraction field. We must show that either x or x−1 ∈ R′. Say x /∈ R′.
This means by maximality of R′ that R′′ = R′[x] satisfies

qR′′ = R′′.

In particular, we can write

1 =
∑

qix
i, qi ∈ qR′ ⊂ R′.

This implies that

(1− q0) +
∑
i>0

−qixi = 0.

But 1− q0 is invertible in R′, since R′ is local. We can divide by the highest power of x:

x−N +
∑
i>0

−qi
1− q0

x−N+i = 0.

In particular, 1/x is integral over R′; this implies that 1/x ∈ R′ since R′ is integrally
closed and q0 is a nonunit. So R′ is a valuation ring. N

We can state the result formally.

Theorem 3.17 Let R be a ring, p ⊂ q prime ideals. Then there is a homomorphism
φ : R→ R′ into a valuation ring R′ with maximal ideal m such that

φ−1(0) = p

and
φ−1(m) = q.

There is a related fact which we now state.

Theorem 3.18 Let R be any domain. Then the integral closure of R in the quotient field
K is the intersection ⋂

Rα

of all valuation rings Rα ⊂ K containing R.

So an element of the quotient field is integral over R if and only if its valuation is nonneg-
ative at every valuation which is nonnegative on R.

Proof. The ⊂ argument is easy, because one can check that a valuation ring is integrally
closed. (Exercise.) The interesting direction is to assume that v(x) ≥ 0 for all v nonneg-
ative on R.

Let us suppose x is nonintegral. Suppose R′ = R[1/x] and I be the ideal (x−1) ⊂ R′.
There are two cases:
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1. I = R′. Then in the ring R′, x−1 is invertible. In particular, x−1P (x−1) = 1.
Multiplying by a high power of x shows that x is integral over R. Contradiction.

2. Suppose I ( R′. Then I is contained in a maximal ideal q ⊂ R′. There is a
valuation subring R′′ ⊂ K , containing R′, such that the corresponding valuation is
positive on q. In particular, this valuation is positive on x−1, so it is negative on x,
contradiction. N

So the integral closure has this nice characterization via valuation rings. In some sense,
the proof that Z is integrally closed has the property that every integrally closed ring is
integrally closed for that reason: it’s the common nonnegative locus for some valuations.

§4 The Hilbert Nullstellensatz

The Nullstellensatz is the basic algebraic fact, which we have invoked in the past to
justify various examples, that connects the idea of the Spec of a ring to classical algebraic
geometry.

4.1 Statement and initial proof of the Nullstellensatz

There are several ways in which the Nullstellensatz can be stated. Let us start with the
following very concrete version.

Theorem 4.1 All maximal ideals in the polynomial ring R = C[x1, . . . , xn] come from
points in Cn. In other words, if m ⊂ R is maximal, then there exist a1, . . . , an ∈ C such
that m = (x1 − a1, . . . , xn − an).

The maximal spectrum of R = C[x1, . . . , xn] is thus identified with Cn.

We shall now reduce Theorem 4.1 to an easier claim. Let m ⊂ R be a maximal ideal.
Then there is a map

C→ R→ R/m

where R/m is thus a finitely generated C-algebra, as R is. The ring R/m is also a field by
maximality.

We would like to show that R/m is a finitely generated C-vector space. This would
imply that R/m is integral over C, and there are no proper algebraic extensions of C.
Thus, if we prove this, it will follow that the map C→ R/m is an isomorphism. If ai ∈ C
(1 ≤ i ≤ n) is the image of xi in R/m = C, it will follow that (x1 − a1, . . . , xn − an) ⊂ m,
so (x1 − a1, . . . , xn − an) = m.

Consequently, the Nullstellensatz in this form would follow from the next claim:

Proposition 4.2 Let k be a field, L/k an extension of fields. Suppose L is a finitely
generated k-algebra. Then L is a finite k-vector space.

This is what we will prove.

We start with an easy proof in the special case:
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Lemma 4.3 Assume k is uncountable (e.g. C, the original case of interest). Then the
above proposition is true.

Proof. Since L is a finitely generated k-algebra, it suffices to show that L/k is algebraic. If
not, there exists x ∈ L which isn’t algebraic over k. So x satisfies no nontrivial polynomials.
I claim now that the uncountably many elements 1

x−λ , λ ∈ K are linearly independent
over K. This will be a contradiction as L is a finitely generated k-algebra, hence at most
countably dimensional over k. (Note that the polynomial ring is countably dimensional
over k, and L is a quotient.)

So let’s prove this. Suppose not. Then there is a nontrivial linear dependence∑ ci
x− λi

= 0, ci, λi ∈ K.

Here the λj are all distinct to make this nontrivial. Clearing denominators, we find∑
i

ci
∏
j 6=i

(x− λj) = 0.

Without loss of generality, c1 6= 0. This equality was in the field L. But x is transcendental
over k. So we can think of this as a polynomial ring relation. Since we can think of this as
a relation in the polynomial ring, we see that doing so, all but the i = 1 term in the sum
is divisible by x−λ1 as a polynomial. It follows that, as polynomials in the indeterminate
x,

x− λ1 | c1

∏
j 6=1

(x− λj).

This is a contradiction since all the λi are distinct. N

This is kind of a strange proof, as it exploits the fact that C is uncountable. This
shouldn’t be relevant.

4.2 The normalization lemma

Let’s now give a more algebraic proof. We shall exploit the following highly useful fact in
commutative algebra:

Theorem 4.4 (Noether normalization lemma) Let k be a field, and R = k[x1, . . . , xn]/p
be a finitely generated domain over k (where p is a prime ideal in the polynomial ring).

Then there exists a polynomial subalgebra k[y1, . . . , ym] ⊂ R such that R is integral
over k[y1, . . . , ym].

Later we will see that m is the dimension of R.
There is a geometric picture here. Then SpecR is some irreducible algebraic variety

in kn (plus some additional points), with a smaller dimension than n if p 6= 0. Then there
exists a finite map to km. In particular, we can map surjectively SpecR → km which is
integral. The fibers are in fact finite, because integrality implies finite fibers. (We have
not actually proved this yet.)
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How do we actually find such a finite projection? In fact, in characteristic zero, we just
take a vector space projection Cn → Cm. For a “generic” projection onto a subspace of
the appropriate dimension, the projection will will do as our finite map. In characteristic
p, this may not work.

Proof. First, note that m is uniquely determined as the transcendence degree of the quo-
tient field of R over k.

Among the variables x1, . . . , xn ∈ R (which we think of as inR by an abuse of notation),
choose a maximal subset which is algebraically independent. This subset has no nontrivial
polynomial relations. In particular, the ring generated by that subset is just the polynomial
ring on that subset. We can permute these variables and assume that

{x1, . . . , xm}

is the maximal subset. In particular, R contains the polynomial ring k[x1, . . . , xm] and is
generated by the rest of the variables. The rest of the variables are not adjoined freely
though.

The strategy is as follows. We will implement finitely many changes of variable so that
R becomes integral over k[x1, . . . , xm].

The essential case is where m = n− 1. Let us handle this. So we have

R0 = k[x1, . . . , xm] ⊂ R = R0[xn]/p.

Since xn is not algebraically independent, there is a nonzero polynomial f(x1, . . . , xm, xn) ∈
p.

We want f to be monic in xn. This will buy us integrality. A priori, this might not
be true. We will modify the coordinate system to arrange that, though. Choose N � 0.
Define for 1 ≤ i ≤ m,

x′i = xi + xN
i

n .

Then the equation becomes:

0 = f(x1, . . . , xm, xn) = f(
{
x′i − xN

i

n

}
, xn).

Now f(x1, . . . , xn, xn+1) looks like some sum∑
λa1...bx

a1
1 . . . xamm xbn, λa1...b ∈ k.

But N is really really big. Let us expand this expression in the x′i and pay attention to
the largest power of xn we see. We find that

f(
{
x′i − xNin

}
, xn)

has the largest power of xn precisely where, in the expression for f , am is maximized first,
then am−1, and so on. The largest exponent would have the form

xamN
m+am−1Nm−1+···+b

n .
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We can’t, however, get any exponents of xn in the expression f(
{
x′i − xNin

}
, xn) other

than these. If N is super large, then all these exponents will be different from each other.
In particular, each power of xn appears precisely once in the expansion of f . We see in
particular that xn is integral over x′1, . . . , x

′
n. Thus each xi is as well.

So we find

R is integral over k[x′1, . . . , x
′
m].

We have thus proved the normalization lemma in the codimension one case. What
about the general case? We repeat this. Say we have

k[x1, . . . , xm] ⊂ R.

Let R′ be the subring of R generated by x1, . . . , xm, xm+1. The argument we just gave
implies that we can choose x′1, . . . , x

′
m such that R′ is integral over k[x′1, . . . , x

′
m], and the

x′i are algebraically independent. We know in fact that R′ = k[x′1, . . . , x
′
m, xm+1].

Let us try repeating the argument while thinking about xm+2. LetR′′ = k[x′1, . . . , x
′
m, xm+2]

modulo whatever relations that xm+2 has to satisfy. So this is a subring of R. The same ar-
gument shows that we can change variables such that x′′1, . . . , x

′′
m are algebraically indepen-

dent andR′′ is integral over k[x′′1, . . . , x
′′
m]. We have furthermore that k[x′′1, . . . , x

′′
m, xm+2] =

R′′.
Having done this, let us give the argument where m = n − 2. You will then see how

to do the general case. Then I claim that:

R is integral over k[x′′1, . . . , x
′′
m].

For this, we need to check that xm+1, xm+2 are integral (because these together with the
x′′i generate R′′[xm+2][xm+2] = R. But xm+2 is integral over this by construction. The
integral closure of k[x′′1, . . . , x

′′
m] in R thus contains

k[x′′1, . . . , x
′′
m, xm+2] = R′′. N

However, R′′ contains the elements x′1, . . . , x
′
m. But by construction, xm+1 is integral over

the x′1, . . . , x
′
m. The integral closure of k[x′′1, . . . , x

′′
m] must contain xm+2. This completes

the proof in the case m = n− 2. The general case is similar; we just make several changes
of variables, successively.

4.3 Back to the Nullstellensatz

Consider a finitely generated k-algebra R which is a field. We need to show that R is
a finite k-module. This will prove the proposition. Well, note that R is integral over a
polynomial ring k[x1, . . . , xm] for some m. If m > 0, then this polynomial ring has more
than one prime. For instance, (0) and (x1, . . . , xm). But these must lift to primes in R.
Indeed, we have seen that whenever you have an integral extension, the induced map on
spectra is surjective. So

SpecR→ Spec k[x1, . . . , xm]
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is surjective. If R is a field, this means Spec k[x1, . . . , xm] has one point and m = 0. So R
is integral over k, thus algebraic. This implies that R is finite as it is finitely generated.
This proves one version of the Nullstellensatz.

Another version of the Nullstellensatz, which is more precise, says:

Theorem 4.5 Let I ⊂ C[x1, . . . , xn]. Let V ⊂ Cn be the subset of Cn defined by the ideal
I (i.e. the zero locus of I).

Then Rad(I) is precisely the collection of f such that f |V = 0. In particular,

Rad(I) =
⋂

m⊃I,m maximal

m.

In particular, there is a bijection between radical ideals and algebraic subsets of Cn.
The last form of the theorem, which follows from the expression of maximal ideals in

the polynomial ring, is very similar to the result

Rad(I) =
⋂

p⊃I,p prime

p,

true in any commutative ring. However, this general result is not necessarily true.

Example 4.6 The intersection of all primes in a DVR is zero, but the intersection of all
maximals is nonzero.

Proof (Proof of Theorem 4.5). It now suffices to show that for every p ⊂ C[x1, . . . , xn]
prime, we have

p =
⋂

m⊃I maximal

m

since every radical ideal is an intersection of primes.
Let R = C[x1, . . . , xn]/p. This is a domain finitely generated over C. We want to

show that the intersection of maximal ideals in R is zero. This is equivalent to the above
displayed equality.

So fix f ∈ R − {0}. Let R′ be the localization R′ = Rf . Then R′ is also an integral
domain, finitely generated over C. R′ has a maximal ideal m (which a priori could be
zero). If we look at the map R′ → R′/m, we get a map into a field finitely generated over
C, which is thus C. The composite map

R→ R′ → R′/m

is just given by an n-tuple of complex numbers, i.e. to a point in Cn which is even in V
as it is a map out of R. This corresponds to a maximal ideal in R. This maximal ideal
does not contain f by construction. N

Exercise 7.6 Prove the following result, known as “Zariski’s lemma” (which easily im-
plies the Nullstellensatz): if k is a field, k′ a field extension of k which is a finitely generated
k-algebra, then k′ is finite algebraic over k. Use the following argument of McCabe (in
[McC76]):
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1. k′ contains a subring S of the form S = k[x1, . . . , xt] where the x1, . . . , xt are alge-
braically independent over k, and k′ is algebraic over the quotient field of S (which
is a polynomial ring).

2. If k′ is not algebraic over k, then S 6= k is not a field.

3. Show that there is y ∈ S such that k′ is integral over Sy. Deduce that Sy is a field.

4. Since Spec(Sy) = {0}, argue that y lies in every non-zero prime ideal of SpecS.
Conclude that 1 + y ∈ k, and S is a field—contradiction.

4.4 A little affine algebraic geometry

In what follows, let k be algebraically closed, and let A be a finitely generated k-algebra.
Recall that SpecmA denotes the set of maximal ideals in A. Consider the natural k-algebra
structure on Funct(SpecmA, k). We have a map

A→ Funct(SpecmA, k)

which comes from the Weak Nullstellensatz as follows. Maximal ideals m ⊂ A are in
bijection with maps ϕm : A→ k where ker(ϕm) = m, so we define a 7−→ [m 7−→ ϕm(a)]. If
A is reduced, then this map is injective because if a ∈ A maps to the zero function, then
a ∈ ∩m → a is nilpotent → a = 0.

Definition 4.7 A function f ∈ Funct(SpecmA, k) is called algebraic if it is in the image
of A under the above map. (Alternate words for this are polynomial and regular.)

Let A and B be finitely generated k-algebras and φ : A → B a homomorphism. This
yields a map Φ : SpecmB → SpecmA given by taking pre-images.

Definition 4.8 A map Φ : SpecmB → SpecmA is called algebraic if it comes from a
homomorphism φ as above.

To demonstrate how these definitions relate to one another we have the following
proposition.

Proposition 4.9 A map Φ : SpecmB → SpecmA is algebraic if and only if for any
algebraic function f ∈ Funct(SpecmA, k), the pullback f ◦ Φ ∈ Funct(SpecmB, k) is
algebraic.

Proof. Suppose that Φ is algebraic. It suffices to check that the following diagram is
commutative:

Funct(SpecmA, k)
−◦Φ // Funct(SpecmB, k)

A

OO

φ
// B

OO
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where φ : A→ B is the map that gives rise to Φ.
[⇐] Suppose that for all algebraic functions f ∈ Funct(SpecmA, k), the pull-back f ◦Φ

is algebraic. Then we have an induced map, obtained by chasing the diagram counter-
clockwise:

Funct(SpecmA, k)
−◦Φ // Funct(SpecmB, k)

A

OO

φ
//___________ B

OO

From φ, we can construct the map Φ′ : SpecmB → SpecmA given by Φ′(m) = φ−1(m).
I claim that Φ = Φ′. If not, then for some m ∈ SpecmB we have Φ(m) 6= Φ′(m). By
definition, for all algebraic functions f ∈ Funct(SpecmA, k), f ◦Φ = f ◦Φ′ so to arrive at
a contradiction we show the following lemma:
Given any two distinct points in SpecmA = V (I) ⊂ kn, there exists some algebraic f that
separates them. This is trivial when we realize that any polynomial function is algebraic,
and such polynomials separate points. N

§5 Serre’s criterion and its variants

We are going to now prove a useful criterion for a noetherian ring to be a product of
normal domains, due to Serre: it states that a (noetherian) ring is normal if and only if
most of the localizations at prime ideals are discrete valuation rings (this corresponds to
the ring being regular in codimension one, though we have not defined regularity yet) and
a more technical condition that we will later interpret in terms of depth. One advantage
of this criterion is that it does not require the ring to be a product of domains a priori.

5.1 Reducedness

There is a “baby” version of Serre’s criterion for testing whether a ring is reduced, which
we star with.

Recall:

Definition 5.1 A ring R is reduced if it has no nonzero nilpotents.

Proposition 5.2 If R is noetherian, then R is reduced if and only if it satisfies the fol-
lowing conditions:

1. Every associated prime of R is minimal (no embedded primes).

2. If p is minimal, then Rp is a field.

Proof. First, assume R reduced. What can we say? Say p is a minimal prime; then Rp has
precisely one prime ideal (namely, m = pRp). It is in fact a local artinian ring, though we
don’t need that fact. The radical of Rp is just m. But R was reduced, so Rp was reduced;
it’s an easy argument that localization preserves reducedness. So m = 0. The fact that 0
is a maximal ideal in Rp says that it is a field.
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On the other hand, we still have to do part 1. R is reduced, so Rad(R) =
⋂

p∈SpecR p =
0. In particular, ⋂

p minimal

p = 0.

The map

R→
∏

p minimal

R/p

is injective. The associated primes of the product, however, are just the minimal primes.
So Ass(R) can contain only minimal primes.

That’s one direction of the proposition. Let us prove the converse now. Assume R
satisfies the two conditions listed. In other words, Ass(R) consists of minimal primes, and
each Rp for p ∈ Ass(R) is a field. We would like to show that R is reduced. Primary
decomposition tells us that there is an injection

R ↪→
∏

pi minimal

Mi, Mi pi − primary.

In this case, each Mi is primary with respect to a minimal prime. We have a map

R ↪→
∏

Mi →
∏

(Mi)pi ,

which is injective, because when you localize a primary module at its associated prime,
you don’t kill anything by definition of primariness. Since we can draw a diagram

R //

��

∏
Mi

��∏
Rpi

//
∏

(Mi)pi

and the map R→
∏

(Mi)pi is injective, the downward arrow on the right injective. Thus
R can be embedded in a product of the fields

∏
Rpi , so is reduced. N

This proof actually shows:

Proposition 5.3 (Scholism) A noetherian ring R is reduced iff it injects into a product
of fields. We can take the fields to be the localizations at the minimal primes.

Example 5.4 Let R = k[X] be the coordinate ring of a variety X in Cn. Assume X is
reduced. Then MaxSpecR is a union of irreducible components Xi, which are the closures
of the minimal primes of R. The fields you get by localizing at minimal primes depend
only on the irreducible components, and in fact are the rings of meromorphic functions
on Xi. Indeed, we have a map

k[X]→
∏

k[Xi]→
∏

k(Xi).

If we don’t assume that R is radical, this is not true.
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There is a stronger condition than being reduced we could impose. We could say:

Proposition 5.5 If R is a noetherian ring, then R is a domain iff

1. R is reduced.

2. R has a unique minimal prime.

Proof. One direction is obvious. A domain is reduced and (0) is the minimal prime.
The other direction is proved as follows. Assume 1 and 2. Let p be the unique minimal

prime of R. Then Rad(R) = 0 = p as every prime ideal contains p. As (0) is a prime
ideal, R is a domain. N

We close by making some remarks about this embedding of R into a product of fields.

Definition 5.6 Let R be any ring, not necessarily a domain. Let K(R) be the localized
ring S−1R where S is the multiplicatively closed set of nonzerodivisors in R. K(R) is
called the total ring of fractions of R.

When R is a field, this is the quotient field.

First, to get a feeling for this, we show:

Proposition 5.7 Let R be noetherian. The set of nonzerodivisors S can be described by
S = R−

⋃
p∈Ass(R) p.

Proof. If x ∈ p ∈ Ass(R), then x must kill something in R as it is in an associated prime.
So x is a zerodivisor.

Conversely, suppose x is a zerodivisor, say xy = 0 for some y ∈ R−{0}. In particular,
x ∈ Ann(y). We have an injection R/Ann(y) ↪→ R sending 1 to y. But R/Ann(y) is
nonzero, so it has an associated prime p of R/Ann(y), which contains Ann(y) and thus
x. But Ass(R/Ann(y)) ⊂ Ass(R). So x is contained in a prime in Ass(R). N

Assume now that R is reduced. Then K(R) = S−1R where S is the complement of
the union of the minimal primes. At least, we can claim:

Proposition 5.8 Let R be reduced and noetherian. Then K(R) =
∏

pi minimalRpi.

So K(R) is the product of fields into which R embeds.
We now continue the discussion begun last time. Let R be noetherian and M a

finitely generated R-module. We would like to understand very rough features of M . We
can embed M into a larger R-module. Here are two possible approaches.

1. S−1M , where S is a large multiplicatively closed subset of M . Let us take S to be
the set of all a ∈ R such that M

a→M is injective, i.e. a is not a zerodivisor on M .
Then the map

M → S−1M

is an injection. Note that S is the complement of the union of Ass(R).
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2. Another approach would be to use a primary decomposition

M ↪→
∏

Mi,

where each Mi is pi-primary for some prime pi (and these primes range over Ass(M)).
In this case, it is clear that anything not in each pi acts injectively. So we can draw
a commutative diagram

M

��

//
∏
Mi

��∏
Mpi

//
∏

(Mi)pi

.

The map going right and down is injective. It follows that M injects into the product
of its localizations at associated primes.

The claim is that these constructions agree if M has no embedded primes. I.e., if
there are no nontrivial containments among the associated primes of M , then S−1M (for
S = R −

⋃
p∈Ass(M) p) is just

∏
Mp. To see this, note that any element of S must act

invertibly on
∏
Mp. We thus see that there is always a map

S−1M →
∏

p∈Ass(M)

Mp.

Proposition 5.9 This is an isomorphism if M has no embedded primes.

Proof. Let us go through a series of reductions. Let I = Ann(M) = {a : aM = 0}. With-
out loss of generality, we can replace R by R/I. This plays nice with the associated
primes.

The assumption is now that Ass(M) consists of the minimal primes of R.
Without loss of generality, we can next replace R by S−1R and M by S−1M , because

that doesn’t affect the conclusion; localization plays nice with associated primes.
Now, however, R is artinian: i.e., all primes of R are minimal (or maximal). Why is

this? Let R be any noetherian ring and S = R−
⋃

p minimal p. Then I claim that S−1R is
artinian. We’ll prove this in a moment.

So R is artinian, hence a product
∏
Ri where each Ri is local artinian. Without loss

of generality, we can replace R by Ri by taking products. The condition we are trying to
prove is now that

S−1M →Mm

for m ⊂ R the maximal ideal. But S is the complement of the union of the minimal
primes, so it is R − m as R has one minimal (and maximal) ideal. This is obviously an
isomorphism: indeed, both are M . N

TO BE ADDED: proof of artianness

Corollary 5.10 Let R be a noetherian ring with no embedded primes (i.e. Ass(R) consists
of minimal primes). Then K(R) =

∏
pi minimalRpi.

If R is reduced, we get the statement made last time: there are no embedded primes, and
K(R) is a product of fields.
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5.2 The image of M → S−1M

Let’s ask now the following question. Let R be a noetherian ring, M a finitely generated
R-module, and S the set of nonzerodivisors on M , i.e. R −

⋃
p∈Ass(M) p. We have seen

that there is an imbedding

φ : M ↪→ S−1M.

What is the image? Given x ∈ S−1M , when does it belong to the imbedding above.

To answer such a question, it suffices to check locally. In particular:

Proposition 5.11 x belongs to the image of M in S−1M iff for every p ∈ SpecR, the
image of x in (S−1M)p lies inside Mp.

This isn’t all that interesting. However, it turns out that you can check this at a
smaller set of primes.

Proposition 5.12 In fact, it suffices to show that x is in the image of φp for every
p ∈ Ass(M/sM) where s ∈ S.

This is a little opaque; soon we’ll see what it actually means. The proof is very simple.

Proof. Remember that x ∈ S−1M . In particular, we can write x = y/s where y ∈M, s ∈
S. What we’d like to prove that x ∈ M , or equivalently that y ∈ sM .5 In particular,
we want to know that y maps to zero in M/sM . If not, there exists an associated prime
p ∈ Ass(M/sM) such that y does not get killed in (M/sM)p. We have assumed, however,
for every associated prime p ∈ Ass(M), x ∈ (S−1M)p lies in the image of Mp. This states
that the image of y in this quotient (M/sM)p is zero, or that y is divisible by s in this
localization. N

The case we actually care about is the following:

Take R as a noetherian domain and M = R. Then S = R−{0} and S−1M is just the
fraction field K(R). The goal is to describe R as a subset of K(R). What we have proven
is that R is the intersection in the fraction field

R =
⋂

p∈Ass(R/s),s∈R−0

Rp.

So to check that something belongs to R, we just have to check that in a certain set of
localizations.

Let us state this as a result:

Theorem 5.13 If R is a noetherian domain

R =
⋂

p∈Ass(R/s),s∈R−0

Rp

5In general, this would be equivalent to ty ∈ tsM for some t ∈ S; but S consists of nonzerodivisors on
M .
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5.3 Serre’s criterion

We can now state a result.

Theorem 5.14 (Serre) Let R be a noetherian domain. Then R is integrally closed iff it
satisfies

1. For any p ⊂ R of height one, Rp is a DVR.

2. For any s 6= 0, R/s has no embedded primes (i.e. all the associated primes of R/s
are height one).

Here is the non-preliminary version of the Krull theorem.

Theorem 5.15 (Algebraic Hartogs) Let R be a noetherian integrally closed ring. Then

R =
⋂

p height one

Rp,

where each Rp is a DVR.

Proof. Now evident from the earlier result Theorem 5.13 and Serre’s criterion. N

Earlier in the class, we proved that a domain was integrally closed if and only if it could
be described as an intersection of valuation rings. We have now shown that when R is
noetherian, we can take discrete valuation rings.

Remark In algebraic geometry, say R = C[x1, . . . , xn]/I. Its maximal spectrum is a
subset of Cn. If I is prime, and R a domain, this variety is irreducible. We are trying to
describe R inside its field of fractions.

The field of fractions are like the “meromorphic functions”; R is like the holomorphic
functions. Geometrically, this states to check that a meromorphic function is holomor-
phic, you can just check this by computing the “poleness” along each codimension one
subvariety. If the function doesn’t blow up on each of the codimension one subvarieties,
and R is normal, then you can extend it globally.

This is an algebraic version of Hartog’s theorem: this states that a holomorphic func-
tion on C2 − (0, 0) extends over the origin, because this has codimension > 1.

All the obstructions of extending a function to all of SpecR are in codimension one.

Now, we prove Serre’s criterion.

Proof. Let us first prove that R is integrally closed if 1 and 2 occur. We know that

R =
⋂

p∈Ass(R/x),x 6=0

Rp;

by condition 1, each such p is of height one, and Rp is a DVR. So R is the intersection of
DVRs and thus integrally closed.

The hard part is going in the other direction. Assume R is integrally closed. We want
to prove the two conditions. In R, consider the following conditions on a prime ideal p:
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1. p is an associated prime of R/x for some x 6= 0.

2. p is height one.

3. pp is principal in Rp.

First, 3 implies 2 implies 1. 3 implies that p contains an element x which generates p after
localizing. It follows that there can be no prime between (x) and p because that would be
preserved under localization. Similarly, 2 implies 1 is easy. If p is minimal over (x), then
p ∈ AssR/(x) since the minimal primes in the support are always associated.

We are trying to prove the inverse implications. In that case, the claims of the theorem
will be proved. We have to show that 1 implies 3. This is an argument we really saw last
time, but let’s see it again. Say p ∈ Ass(R/x). We can replace R by Rp so that we can
assume that p is maximal. We want to show that p is generated by one element.

What does the condition p ∈ Ass(R/x) buy us? It tells us that there is y ∈ R/x such
that Ann(y) = p. In particular, there is y ∈ R such that py ⊂ (x) and y /∈ (x). We have
the element y/x ∈ K(R) which sends p into R. That is,

(y/x)p ⊂ R.

There are two cases to consider, as in last time:

1. (y/x)p = R. Then p = R(x/y) so p is principal.

2. (y/x)p 6= R. In particular, (y/x)p ⊂ p. Then since p is finitely generated, we find
that y/x is integral over R, hence in R. This is a contradiction as y /∈ (x).

Only the first case is now possible. So p is in fact principal. N
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Chapter 8

Unique factorization and the class group

Commutative rings in general do not admit unique factorization. Nonetheless, for many
rings (“integrally closed” rings), which includes the affine coordinate rings one obtains
in algebraic geometry when one studies smooth varieties, there is an invariant called the
“class group” that measures the failure of unique factorization. This “class group” is a
certain quotient of codimension one primes (geometrically, codimension one subvarieties)
modulo rational equivalence.

Many even nicer rings have the convenient property that their localizations at prime
ideals factorial, a key example being the coordinate ring of an affine nonsingular vari-
ety. For these even nicer rings, an alternative method of defining the class group can
be given: the class group corresponds to the group of isomorphism classes of invertible
modules. Geometrically, such invertible modules are line bundles on the associated variety
(or scheme).

§1 Unique factorization

1.1 Definition

We begin with the nicest of all possible cases, when the ring itself admits unique factor-
ization.

Let R be a domain.

Definition 1.1 A nonzero element x ∈ R is prime if (x) is a prime ideal.

In other words, x is not a unit, and if x | ab, then either x | a or x | b.
We restate the earlier Definition 5.7 slightly.

Definition 1.2 A domain R is factorial (or a unique factorization domain, or a
UFD) if every nonzero noninvertible element x ∈ R factors as a product x1 . . . xn where
each xi is prime.

Recall that a principal ideal domain is a UFD (Theorem 5.9), as is a euclidean domain
(Theorem 5.11); actually, a euclidean domain is a PID. Previously, we imposed something
seemingly slightly stronger: that the factorization be unique. We next show that we get
that for free.
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Proposition 1.3 (The fundamental theorem of arithmetic) This factorization is es-
sentially unique, that is, up to multiplication by units.

Proof. Let x ∈ R be a nonunit. Say x = x1 . . . xn = y1 . . . ym were two different prime
factorizations. Then m,n > 0.

We have that x1 | y1 . . . ym, so x1 | yi for some i. But yi is prime. So x1 and yi differ
by a unit. By removing each of these, we can get a smaller set of nonunique factorizations.
Namely, we find that

x2 . . . xn = y1 . . . ŷi . . . ym

and then we can induct on the number of factors. N

The motivating example is of course:

Example 1.4 Z is factorial. This is the fundamental theorem of arithmetic, and follows
because Z is a euclidean domain. The same observation applies to a polynomial ring over
a field by Proposition 5.12.

1.2 Gauss’s lemma

We now show that factorial rings are closed under the operation of forming polynomial
rings.

Theorem 1.5 (Gauss’s lemma) If R is factorial, so is the polynomial ring R[X].

In general, if R is a PID, R[X] will not be a PID. For instance, Z[X] is not a PID: the
prime ideal (2, X) is not principal.

Proof. In the course of this proof, we shall identify the prime elements in R[X]. We start
with a lemma that allows us to compare factorizations in K[X] (for K the quotient field)
and R[X]; the advantage is that we already know the polynomial ring over a field to be a
UFD.

Lemma 1.6 Suppose R is a unique factorization domain with quotient field K. Sup-
pose f ∈ R[X] is irreducible in R[X] and there is no nontrivial common divisor of the
coefficients of f . Then f is irreducible in K[X].

With this in mind, we say that a polynomial in R[X] is primitive if the coefficients have
no common divisor in R.

Proof. Indeed, suppose we had a factorization

f = gh, g, h ∈ K[X],

where g, h have degree ≥ 1. Then we can clear denominators to find a factorization

rf = g′h′

where r ∈ R − {0} and g′, h′ ∈ R[X]. By clearing denominators as little as possible, we
may assume that g′, h′ are primitive. To be precise, we divide g′, h′ by their contents. Let
us define:
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Definition 1.7 The content Cont(f) of a polynomial f ∈ R[X] is the greatest common
divisor of its coefficients. The content of an element f in K[X] is defined by considering
r ∈ R such that rf ∈ R[X], and taking Cont(rf)/r. This is well-defined, modulo elements
of R∗, and we have Cont(sf) = sCont f if s ∈ K.

To say that the content lies in R is to say that the polynomial is in R[X]; to say
that the content is a unit is to say that the polynomial is primitive. Note that a monic
polynomial in R[X] is primitive.

So we have:

Lemma 1.8 Any element of K[X] is a product of Cont(f) and something primitive in
R[X].

Proof. Indeed, f/Cont(f) has content a unit. It therefore cannot have anything in the
denominator. Indeed, if it had a term r/piXn where r, p ∈ R and p - r is prime, then the
content would divide r/pi. It thus could not be in R. N

Lemma 1.9 Cont(fg) = Cont(f) Cont(g) if f, g ∈ K[X].

Proof. By dividing f, g by their contents, it suffices to show that the product of two
primitive polynomials in R[X] (i.e. those with no common divisor of all their coefficients)
is itself primitive. Indeed, suppose f, g are primitive and p ∈ R is a prime. Then f, g ∈
R/(p)[X] are nonzero. Their product fg is also not zero because R/(p)[X] is a domain, p
being prime. In particular, p is not a common factor of the coefficients of fg. Since p was
arbitrary, this completes the proof. N

So return to the main proof. We know that f = gh. We divided g, h by their contents
to get g′, h′ ∈ R[X]. We had then

rf = g′h′, r ∈ K∗.

Taking the contents, and using the fact that f, g′, h′ are primitive, we have then:

r = Cont(g′) Cont(h′) = 1 (modulo R∗).

But then f = r−1g′h′ shows that f is not irreducible in R[X], contradiction. N

Let R be a ring. Recall that an element is irreducible if it admits no nontrivial
factorization. The product of an irreducible element and a unit is irreducible. Call a ring
finitely irreducible if every element in the ring admits a factorization into finitely many
irreducible elements.

Lemma 1.10 A ring R is finitely irreducible if every ascending sequence of principal
ideals in R stabilizes.

A ring such that every ascending sequence of ideals (not necessarily principal) stabilizes
is said to be noetherian; this is a highly useful finiteness condition on a ring.
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Proof. Suppose R satisfies the ascending chain condition on principal ideals. Then let
x ∈ R. We would like to show it can be factored as a product of irreducibles. So suppose
x is not the product of finitely many irreducibles. In particular, it is reducible: x = x1x

′
1,

where neither factor is a unit. One of this cannot be written as a finite product of
irreducibles. Say it is x1. Similarly, we can write x1 = x2x

′′
2 where one of the factors,

wlog x2, is not the product of finitely many irreducibles. Repeating inductively gives the
ascending sequence

(x) ⊂ (x1) ⊂ (x2) ⊂ . . . ,
and since each factorization is nontrivial, the inclusions are each nontrivial. This is a
contradiction. N

Lemma 1.11 Suppose R is a UFD. Then every ascending sequence of principal ideals in
R[X] stabilizes. In particular, R[X] is finitely irreducible.

Proof. Suppose (f1) ⊂ (f2) ⊂ · · · ∈ R[X]. Then each fi+1 | fi. In particular, the degrees of
fi are nonincreasing, and consequently stabilize. Thus for i� 0, we have deg fi+1 = deg fi.
We can thus assume that all the degrees are the same. In this case, if i � 0 and k > 0,
fi/fi+k ∈ R[X] must actually lie in R as R is a domain. In particular, throwing out the
first few elements in the sequence if necessary, it follows that our sequence looks like

f, f/r1, f/(r1r2), . . .

where the ri ∈ R. However, we can only continue this a finite amount of time before the
ri’s will have to become units since R is a UFD. (Or f = 0.) So the sequence of ideals
stabilizes. N

Lemma 1.12 Every element in R[X] can be factored into a product of irreducibles.

Proof. Now evident from the preceding lemmata. N

Suppose P is an irreducible element in R[X]. I claim that P is prime. There are two
cases:

1. P ∈ R is a prime in R. Then we know that P | f if and only if the coefficients of f
are divisible by P . In particular, P | f iff P | Cont(f). It is now clear that P | fg if
and only if P divides one of Cont(f),Cont(g) (since Cont(fg) = Cont(f) Cont(g)).

2. P does not belong to R. Then P must have content a unit or it would be divisible
by its content. So P is irreducible in K[X] by the above reasoning.

Say we have an expression

P | fg, f, g ∈ R[X].

Since P is irreducible, hence prime, in the UFD (even PID) K[X], we have that P
divides one of f, g in K[X]. Say we can write

f = qP, q ∈ K[X].

Then taking the content shows that Cont(q) = Cont(f) ∈ R, so q ∈ R[X]. It follows
that P | f in R[X].
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We have shown that every element in R[X] factors into a product of prime elements.
From this, it is clear that R[X] is a UFD. N

Corollary 1.13 The polynomial ring k[X1, . . . , Xn] for k a field is factorial.

Proof. Induction on n. N

1.3 Factoriality and height one primes

We now want to give a fancier criterion for a ring to be a UFD, in terms of the lattice
structure on SpecR. This will require a notion from dimension theory (to be developed
more fully later).

Definition 1.14 Let R be a domain. A prime ideal p ⊂ R is said to be of height one if
p is minimal among ideals containing x for some nonzero x ∈ R.

So a prime of height one is not the zero prime, but it is as close to zero as possible, in
some sense. When we later talk about dimension theory, we will talk about primes of any
height. In a sense, p is “almost” generated by one element.

Theorem 1.15 Let R be a noetherian domain. The following are equivalent:

1. R is factorial.

2. Every height one prime is principal.

Proof. Let’s first show 1) implies 2). Assume R is factorial and p is height one, minimal
containing (x) for some x 6= 0 ∈ R. Then x is a nonunit, and it is nonzero, so it has a
prime factorization

x = x1 . . . xn, each xi prime.

Some xi ∈ p because p is prime. In particular,

p ⊃ (xi) ⊃ (x).

But (xi) is prime itself, and it contains (x). The minimality of p says that p = (xi).
Conversely, suppose every height one prime is principal. Let x ∈ R be nonzero and a

nonunit. We want to factor x as a product of primes. Consider the ideal (x) ( R. As a
result, (x) is contained in a prime ideal. Since R is noetherian, there is a minimal prime
ideal p containing (x). Then p, being a height one prime, is principal—say p = (x1). It
follows that x1 | x and x1 is prime. Say

x = x1x
′
1.

If x′1 is a nonunit, repeat this process to get x′1 = x2x
′
2 with x2 a prime element. Keep

going; inductively we have
xk = xk+1x

′
k+1.

If this process stops, with one of the x′k a unit, we get a prime factorization of x. Suppose
the process continues forever. Then we would have

(x) ( (x′1) ( (x′2) ( (x′3) ( . . . ,

which is impossible by noetherianness. N

We have seen that unique factorization can be formulated in terms of prime ideals.
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1.4 Factoriality and normality

We next state a generalization of the “rational root theorem” as in high school algebra.

Proposition 1.16 A factorial domain is integrally closed.

Proof. TO BE ADDED: proof – may be in the queue already N

§2 Weil divisors

2.1 Definition

We start by discussing Weil divisors.

Definition 2.1 A Weil divisor for R is a formal linear combination
∑
ni[pi] where the

pi range over height one primes of R. So the group of Weil divisors is the free abelian
group on the height one primes of R. We denote this group by Weil(R).

The geometric picture behind Weil divisors is that a Weil divisor is like a hypersurface:
a subvariety of codimension one.

2.2 Valuations

2.3 Nagata’s lemma

We finish with a fun application of the exact sequence of Weil divisors to a purely algebraic
statement about factoriality.

Lemma 2.2 Let A be a normal noetherian domain.

Theorem 2.3 Let A be a noetherian domain, x ∈ A−{0}. Suppose (x) is prime and Ax
is factorial. Then A is factorial.

Proof. We first show that A is normal (hence regular in codimension one). Indeed, Ax
is normal. So if t ∈ K(A) is integral over A, it lies in Ax. So we need to check that if
a/xn ∈ Ax is integral over A and x - x, then n = 0. Suppose we had an equation

(a/xn)N + b1(a/xn)N−1 + · · ·+ bN = 0.

Multiplying both sides by xnN gives that

aN ∈ xR,

so x | a by primality.
Now we use the exact sequence

(x)→ Cl(A)→ Cl(Ax)→ 0.

The end is zero, and the image of the first map is zero. So Cl(A) = 0. Thus A is a UFD.N
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§3 Locally factorial domains

3.1 Definition

Definition 3.1 A noetherian domain R is said to be locally factorial if Rp is factorial
for each p prime.

Example 3.2 The coordinate ring C[x1, . . . , xn/I of an algebraic variety is locally facto-
rial if the variety is smooth. We may talk about this later.

Example 3.3 (Nonexample) Let R be C[A,B,C,D]/(AD −BC). The spectrum of R
has maximal ideals consisting of 2-by-2 matrices of determinant zero. This variety is very
singular at the origin. It is not even locally factorial at the origin.

The failure of unique factorization comes from the fact that

AD = BC

in this ring R. This is a prototypical example of a ring without unique factorization. The
reason has to do with the fact that the variety has a singularity at the origin.

3.2 The Picard group

Definition 3.4 Let R be a commutative ring. An R-module I is invertible if there exists
J such that

I ⊗R J ' R.

Invertibility is with respect to the tensor product.

Remark In topology, one is often interested in classifying vector bundles on spaces. In
algebraic geometry, a moduleM over a ring R gives (as in ??) a sheaf of abelian groups over
the topological space SpecR; this is supposed to be an analogy with the theory of vector
bundles. (It is not so implausible since the Serre-Swan theorem (??) gives an equivalence of
categories between the vector bundles over a compact space X and the projective modules
over the ring C(X) of continuous functions.) In this analogy, the invertible modules are
the line bundles. The definition has a counterpart in the topological setting: for instance,
a vector bundle E → X over a space X is a line bundle (that is, of rank one) if and only
if there is a vector bundle E ′ → X such that E ⊗ E ′ is the trivial bundle X × R.

There are many equivalent characterizations.

Proposition 3.5 Let R be a ring, I an R-module. TFAE:

1. I is invertible.

2. I is finitely generated and Ip ' Rp for all primes p ⊂ R.

3. I is finitely generated and there exist a1, . . . , an ∈ R which generate (1) in R such
that

I[a−1
i ] ' R[a−1

i ].
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Proof. First, we show that if I is invertible, then I is finitely generated. Suppose I⊗RJ '
R. This means that 1 ∈ R corresponds to an element∑

ik ⊗ jk ∈ I ⊗R J.

Thus, there exists a finitely generated submodule I0 ⊂ I such that the map I0⊗J → I⊗J
is surjective. Tensor this with I, so we get a surjection

I0 ' I0 ⊗ J ⊗ I → I ⊗ J ⊗ I ' I

which leads to a surjection I0 � I. This implies that I is finitely generated
Step 1: 1 implies 2. We now show 1 implies 2. Note that if I is invertible, then

I ⊗R R′ is an invertible R′ module for any R-algebra R′; to get an inverse of I ⊗R R′,
tensor the inverse of I with R′. In particular, Ip is an invertible Rp-module for each p. As
a result,

Ip/pIp

is invertible over the field Rp/pRp. This means that Ip/pIp is a one-dimensional vector
space over the residue field. (The invertible modules over a vector space are the one-
dimensional spaces.) Choose an element x ∈ Ip which generates Ip/pIp. Since Ip is finitely
generated, Nakayama’s lemma shows that x generates Ip.

We get a surjection α : Rp � Ip carrying 1→ x. We claim that this map is injective.
This will imply that Ip is free of rank 1. So, let J be an inverse of I among R-modules, so
that I ⊗R J = R; the same argument as above provides a surjection β : Rp → Jp. Then
β′ = β ⊗ 1Ip : Ip → Rp is also a surjection. Composing, we get a surjective map

Rp
α
� Ip

β′

� Rp

whose composite must be multiplication by a unit, since the ring is local. Thus the
composite is injective and α is injective. It follows that α is an isomorphism, so that Ip is
free of rank one.

Step 2: 2 implies 3. Now we show 2 implies 3. Suppose I is finitely generated with
generators {x1, . . . , xn} ⊂ I and Ip ' Rp for all p. Then for each p, we can choose an
element x of Ip generating Ip as Rp-module. By multiplying by the denominator, we can
assume that x ∈ I. By assumption, we can then find ai, si ∈ R with

sixi = aix ∈ R

for some si /∈ p as x generates Ip. This means that x generates I after inverting the si. It
follows that I[1/a] = R[1/a] where a =

∏
si /∈ p. In particular, we find that there is an

open covering {SpecR[1/ap]} of SpecR (where ap /∈ p) on which I is isomorphic to R. To
say that these cover SpecR is to say that the ap generate 1.

Finally, let’s do the implication 3 implies 1. Assume that we have the situation of
I[1/ai] ' R[1/ai]. We want to show that I is invertible. We start by showing that I is
finitely presented. This means that there is an exact sequence

Rm → Rn → I → 0,
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i.e. I is the cokernel of a map between free modules of finite rank. To see this, first, we’ve
assumed that I is finitely generated. So there is a surjection

Rn � I

with a kernel K � Rn. We must show that K is finitely generated. Localization is an
exact functor, so K[1/ai] is the kernel of R[1/ai]

n → I[1/ai]. However, we have an exact
sequence

K[1/ai]� R[1/ai]
n � R[1/ai]

by the assumed isomorphism I[1/ai] ' R[1/ai]. But since a free module is projective, this
sequence splits and we find that K[1/ai] is finitely generated. If it’s finitely generated, it’s
generated by finitely many elements in K. As a result, we find that there is a map

RN → K

such that the localization to SpecR[1/ai] is surjective. This implies by the homework that
RN → K is surjective.1 Thus K is finitely generated.

In any case, we have shown that the module I is finitely presented. Define J =
HomR(I,R) as the candidate for its dual. This construction is compatible with localiza-
tion. We can choose a finite presentation Rm → Rn → I → 0, which leads to a sequence

0→ J → Hom(Rn, R)→ Hom(Rm, R).

It follows that the formation of J commutes with localization. In particular, this argument
shows that

J [1/a] = HomR[1/a](I[1/a], R[1/a]).

One can check this by using the description of J . By construction, there is a canonical
map I ⊗ J → R. I claim that this map is invertible.

For the proof, we use the fact that one can check for an isomorphism locally. It suffices
to show that

I[1/a]⊗ J [1/a]→ R[1/a]

is an isomorphism for some collection of a’s that generate the unit ideal. However, we
have a1, . . . , an that generate the unit ideal such that I[1/ai] is free of rank 1, hence so is
J [1/ai]. It thus follows that I[1/ai]⊗ J [1/ai] is an isomorphism. N

Definition 3.6 Let R be a commutative ring. We define the Picard group Pic(R) to
be the set of isomorphism classes of invertible R-modules. This is an abelian group; the
addition law is defined so that the sum of the classes represented by M,N is M ⊗R N .
The identity element is given by R.

The Picard group is thus analogous (cf. ??) to the set of isomorphism classes of line
bundles on a topological space (which is also an abelian group). While the latter can
often be easily computed (for a nice space X, the line bundles are classified by elements
of H2(X,Z)), the interpretation in the algebraic setting is more difficult.

1To check that a map is surjective, just check at the localizations at any maximal ideal.
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3.3 Cartier divisors

Assume furthermore that R is a domain. We now introduce:

Definition 3.7 A Cartier divisor for R is a submodule M ⊂ K(R) such that M is
invertible.

In other words, a Cartier divisor is an invertible fractional ideal. Alternatively, it is an
invertible R-module M with a nonzero map M → K(R). Once this map is nonzero,
it is automatically injective, since injectivity can be checked at the localizations, and
any module-homomorphism from a domain into its quotient field is either zero or injective
(because it is multiplication by some element).

We now make this into a group.

Definition 3.8 Given (M,a : M ↪→ K(R)) and (N, b : N ↪→ K(R)), we define the sum
to be

(M ⊗N, a⊗ b : M ⊗N ↪→ K(R)).

The map a⊗ b is nonzero, so by what was said above, it is an injection. Thus the Cartier
divisors from an abelian group Cart(R).

By assumption, there is a homomorphism

Cart(R)→ Pic(R)

mapping (M,M ↪→ K(R))→M .

Proposition 3.9 The map Cart(R)→ Pic(R) is surjective. In other words, any invertible
R-module can be embedded in K(R).

Proof. Let M be an invertible R-module. Indeed, we know that M(0) = M ⊗R K(R) is
an invertible K(R)-module, so a one-dimensional vector space over K(R). In particular,
M(0) ' K(R). There is a nonzero homomorphic map

M →M(0) ' K(R),

which is automatically injective by the discussion above. N

What is the kernel of Cart(R)→ Pic(R)? This is the set of Cartier divisors which are
isomorphic to R itself. In other words, it is the set of (R,R ↪→ K(R)). This data is the
same thing as the data of a nonzero element of K(R). So the kernel of

Cart(R)→ Pic(R)

has kernel isomorphic to K(R)∗. We have a short exact sequence

K(R)∗ → Cart(R)→ Pic(R)→ 0.
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3.4 Weil divisors and Cartier divisors

Now, we want to assume Cart(R) if R is “good.” The “goodness” in question is to assume
that R is locally factorial, i.e. that Rp is factorial for each p. This is true, for instance, if
R is the coordinate ring of a smooth algebraic variety.

Proposition 3.10 If R is locally factorial and noetherian, then the group Cart(R) is a
free abelian group. The generators are in bijection with the height one primes of R.

Now assume that R is a locally factorial, noetherian domain. We shall produce an iso-
morphism

Weil(R) ' Cart(R)

that sends [pi] to that height one prime pi together with the imbedding pi ↪→ R→ K(R).
We first check that this is well-defined. Since Weil(R) is free, all we have to do is check

that each pi is a legitimate Cartier divisor. In other words, we need to show that:

Proposition 3.11 If p ⊂ R is a height one prime and R locally factorial, then p is
invertible.

Proof. In the last lecture, we gave a criterion for invertibility: namely, being locally trivial.
We have to show that for any prime q, we have that pq is isomorphic to Rq. If p 6⊂ q, then
pq is the entire ring Rq, so this is obvious. Conversely, suppose p ⊂ q. Then pq is a height
one prime of Rq: it is minimal over some element in Rq.

Thus pq is principal, in particular free of rank one, since Rq is factorial. We saw last
time that being factorial is equivalent to the principalness of height one primes. N

We need to define the inverse map

Cart(R)→Weil(R).

In order to do this, start with a Cartier divisor (M,M ↪→ K(R)). We then have to describe
which coefficient to assign a height one prime. To do this, we use a local criterion.

Let’s first digress a bit. Consider a locally factorial domain R and a prime p of height
one. Then Rp is factorial. In particular, its maximal ideal pRp is height one, so principal.
It is the principal ideal generated by some t ∈ Rp. Now we show:

Proposition 3.12 Every nonzero ideal in Rp is of the form (tn) for some unique n ≥ 0.

Proof. Let I0 ⊂ Rp be nonzero. If I0 = Rp, then we’re done—it’s generated by t0.
Otherwise, I0 ( Rp, so contained in pRp = (t). So let I1 = {x ∈ Rp : tx ∈ I0}. Thus

I1 = t−1I0.

I claim now that I1 6= I0, i.e. that there exists x ∈ Rp such that x /∈ I0 but tx ∈ I0.
The proof comes from the theory of associated primes. Look at Rp/I0; it has at least one
associated prime as it is nonzero.

Since it is a torsion module, this associated prime must be pRp since the only primes
in Rp are (0) and (t), which we have not yet shown. So there exists an element in the
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quotient R/I0 whose annihilator is precisely (t). Lifting this gives an element in R which
when multiplied by (t) is in I0 but which is not in I0. So I0 ( I1.

Proceed as before now. Define I2 = {x ∈ Rp : tx ∈ I1}. This process must halt since
we have assumed noetherianness. We must have Im = Im+1 for some m, which would
imply that some Im = Rp by the above argument. It then follows that I0 = (tm) since
each Ii is just tIi+1. N

We thus have a good structure theory for ideals in R localized at a height one prime.
Let us make a more general claim.

Proposition 3.13 Every nonzero finitely generated Rp-submodule of the fraction field
K(R) is of the form (tn) for some n ∈ Z.

Proof. Say that M ⊂ K(R) is such a submodule. Let I = {x ∈ Rp, xM ⊂ Rp}. Then
I 6= 0 as M is finitely generated M is generated over Rp by a finite number of fractions
ai/bi, bi ∈ R. Then the product b =

∏
bi brings M into Rp.

We know that I = (tm) for some m. In particular, tmM is an ideal in R. In particular,

tmM = tpR N

for some p, in particular M = tp−mR.

Now let’s go back to the main discussion. R is a noetherian locally factorial domain;
we want to construct a map

Cart(R)→Weil(R).

Given (M,M ↪→ K(R)) with M invertible, we want to define a formal sum
∑
ni[pi]. For

every height one prime p, let us look at the local ring Rp with maximal ideal generated
by some tp ∈ Rp. Now Mp ⊂ K(R) is a finitely generated Rp-submodule, so generated by
some t

np
p . So we map (M,M ↪→ K(R)) to∑

p

np[p].

First, we have to check that this is well-defined. In particular, we have to show:

Proposition 3.14 For almost all height one p, we have Mp = Rp. In other words, the
integers np are almost all zero.

Proof. We can always assume that M is actually an ideal. Indeed, choose a ∈ R with
aM = I ⊂ R. As Cartier divisors, we have M = I−(a). If we prove the result for I and (a),
then we will have proved it for M (note that the np’s are additive invariants2). So because
of this additivity, it is sufficient to prove the proposition for actual (i.e. nonfractional)
ideals.

2To see this, localize at p—then if M is generated by ta, N generated by tb, then M ⊗N is generated
by ta+b.
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Assume thus that M ⊂ R. All of these np associated to M are at least zero because
M is actually an ideal. What we want is that np ≤ 0 for almost all p. In other words, we
must show that

Mp ⊃ Rp almost all p.

To do this, just choose any x ∈M−0. There are finitely many minimal primes containing
(x) (by primary decomposition applied to R/(x)). Every other height one prime q does
not contain (x).3 This states that Mq ⊃ x/x = 1, so Mq ⊃ Rq.

The key claim we’ve used in this proof is the following. If q is a height one prime
in a domain R containing some nonzero element (x), then q is minimal among primes
containing (x). In other words, we can test the height one condition at any nonzero
element in that prime. Alternatively:

Lemma 3.15 There are no nontrivial containments among height one primes.

Anyway, we have constructed maps between Cart(R) and Weil(R). The map Cart(R)→
Weil(R) takes M →

∑
np[p]. The other map Weil(R) → Cart(R) takes [p] → p ⊂ K(R).

The composition Weil(R)→Weil(R) is the identity. Why is that? Start with a prime p;
that goes to the Cartier divisor p. Then we need to finitely generatedre the multiplicities
at other height one primes. But if p is height one and q is a height one prime, then if
p 6= q the lack of nontrivial containment relations implies that the multiplicity of p at q is
zero. We have shown that

Weil(R)→ Cart(R)→Weil(R)

is the identity.
Now we have to show that Cart(R) → Weil(R) is injective. Say we have a Cartier

divisor (M,M ↪→ K(R)) that maps to zero in Weil(R), i.e. all its multiplicities np are
zero at height one primes. We show that M = R.

First, assume M ⊂ R. It is sufficient to show that at any maximal ideal m ⊂ R, we
have

Mm = Rm.

What can we say? Well, Mm is principal as M is invertible, being a Cartier divisor. Let
it be generated by x ∈ Rm; suppose x is a nonunit (or we’re already done). But Rm

is factorial, so x = x1 . . . xn for each xi prime. If n > 0, then however M has nonzero
multiplicity at the prime ideal (xi) ⊂ Rm. This is a contradiction.

The general case of M not really a subset of R can be handled similarly: then the
generating element x might lie in the fraction field. So x, if it is not a unit in R, is
a product of some primes in the numerator and some primes in the denominator. The
nonzero primes that occur lead to nonzero multiplicities.

3.5 Recap and a loose end

Last time, it was claimed that if R is a locally factorial domain, and p ⊂ R is of height one,
then every prime ideal of Rp is either maximal or zero. This follows from general dimension
theory. This is equivalent to the following general claim about height one primes:

3Again, we’re using something about height one primes not proved yet.
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There are no nontrivial inclusions among height one primes for R a locally
factorial domain.

Proof. Suppose q ( p is an inclusion of height one primes.

Replace R by Rp. Then R is local with some maximal ideal m, which is principal with
some generator x. Then we have an inclusion

0 ⊂ q ⊂ m.

This inclusion is proper. However, q is principal since it is height one in the factorial ring
Rp. This cannot be since every element is a power of x times a unit. (Alright, this wasn’t
live TEXed well.) N

Last time, we were talking about Weil(R) and Cart(R) for R a locally factorial noethe-
rian domain.

1. Weil(R) is free on the height one primes.

2. Cart(R) is the group of invertible submodules of K(R).

We produced an isomorphism

Weil(R) ' Cart(R).

Remark Geometrically, what is this? Suppose R = C[X1, . . . , Xn]/I for some ideal I.
Then the maximal ideals, or closed points in SpecR, are certain points in Cn; they form
an irreducible variety if R is a domain. The locally factorial condition is satisfied, for
instance, if the variety is smooth. In this case, the Weil divisors correspond to sums of
irreducible varieties of codimension one—which correspond to the primes of height one.
The Weil divisors are free on the set of irreducible varieties of codimension one.

The Cartier divisors can be thought of as “linear combinations” of subvarieties which
are locally defined by one equation. It is natural to assume that the condition of being de-
fined by one equation corresponds to being codimension one. This is true by the condition
of R locally factorial.

In general, we can always construct a map

Cart(R)→Weil(R),

but it is not necessarily an isomorphism.

3.6 Further remarks on Weil(R) and Cart(R)

Recall that the Cartier group fits in an exact sequence:

K(R)∗ → Cart(R)→ Pic(R)→ 0,

because every element of Cart(R) determines its isomorphism class, and every element of
K(R)∗ determines a free module of rank one. Contrary to what was stated last time, it
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is not true that exactness holds on the right. In fact, the kernel is the group R∗ of units
of R. So the exact sequence runs

0→ R∗ → K(R)∗ → Cart(R)→ Pic(R)→ 0.

This is true for any domain R. For R locally factorial and noetherian, we know that
Cart(R) 'Weil(R), though.

We can think of this as a generalization of unique factorization.

Proposition 3.16 R is factorial if and only if R is locally factorial and Pic(R) = 0.

Proof. Assume R is locally factorial and Pic(R) = 0. Then every prime ideal of height one
(an element of Weil(R), hence of Cart(R)) is principal, which implies that R is factorial.
And conversely. N

In general, we can think of the exact sequence above as a form of unique factorization
for a locally factorial domain: any invertible fractional ideal is a product of height one
prime ideals.

Let us now give an example. TO BE ADDED: ?
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Chapter 9

Dedekind domains

The notion of a Dedekind domain allows one to generalize the usual unique factorization
in principal ideal domains as in Z to settings such as the ring of integers in an algebraic
number field. In general, a Dedekind domain does not have unique factorization, but the
ideals in a Dedekind domain do factor uniquely into a product of prime ideals. We shall
see that Dedekind domains have a short characterization in terms of the characteristics
we have developed.

After this, we shall study the case of an extension of Dedekind domains A ⊂ B. It
will be of interest to determine how a prime ideal of A factors in B. This should provide
background for the study of basic algebraic number theory, e.g. a rough equivalent of the
first chapter of [Lan94] or [Ser79].

§1 Discrete valuation rings

1.1 Definition

We start with the simplest case of a discrete valuation ring, which is the local version of
a Dedekind domain. Among the one-dimensional local noetherian rings, these will be the
nicest.

Theorem 1.1 Let R be a noetherian local domain whose only prime ideals are (0) and
the maximal ideal m 6= 0. Then, the following are equivalent:

1. R is factorial.

2. m is principal.

3. R is integrally closed.

4. R is a valuation ring with value group Z.

Definition 1.2 A ring satisfying these conditions is called a discrete valuation ring
(DVR). A discrete valuation ring necessarily has only two prime ideals, namely m and
(0).

Alternatively, we can say that a noetherian local domain is a DVR if and only if it is
of dimension one and integrally closed.
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Proof. Assume 1: that is, suppose R is factorial. Then every prime ideal of height one is
principal by Theorem 1.15. But m is the only prime that can be height one: it is minimal
over any nonzero nonunit of R, so m is principal. Thus 1 implies 2, and similarly 2 implies
1 by Theorem 1.15.

1 implies 3 is true for any R: a factorial ring is always integrally closed, by Proposi-
tion 1.16.

4 implies 2 is easy as well. Indeed, suppose R is a valuation ring with value group Z.
Then, one chooses an element x ∈ R such that the valuation of x is one. It is easy to
see that x generates m: if y ∈ m is a non-unit, then the valuation of y is at least one, so
y/x ∈ R and y ∈ (x).

The proof that 2 implies 4 is also straightforward. Suppose m is principal, generated
by t. In this case, we claim that any x ∈ R is associate (i.e. differs by a unit from) a power
of t. Indeed, since

⋂
mn = 0 by the Krull intersection theorem (??), it follows that there

exists n such that x is divisible by tn but not by tn+1. In particular, if we write x = utn,
then u /∈ (t) is a unit. This proves the claim.

With this in mind, we need to show that R is a valuation ring with value group Z. If
x ∈ R, we define the valuation of x to be the nonnegative integer n such that (x) = (tn).
One can easily check that this is a valuation on R, which extends to the quotient field by
additivity.

The interesting part of the argument is the claim that 3 implies 2. Suppose R is
integrally closed, noetherian, and of dimension one; we claim that m is principal. Choose
x ∈ m− {0}. If (x) = m, we are done.

Otherwise, we can look at m/(x) 6= 0. The module m/(x) is finitely generated module
a noetherian ring which is nonzero, so it has an associated prime. That associated prime
is either zero or m because R has dimension one. But 0 is not an associated prime because
every element in the module is killed by x. So m is an associated prime of m/(x).

There is y ∈ m/(x) whose annihilator is m. Thus, there is y ∈ m such that y /∈ (x) and
my ⊂ (x). In particular, y/x ∈ K(R)−R, but

(y/x)m ⊂ R.

There are two cases:

1. Suppose (y/x)m = R. Then we can write m = R(x/y). So m is principal. (This
argument shows that x/y ∈ R.)

2. The other possibility is that y/xm ( R. In this case, (y/x)m is an ideal, so

(y/x)m ⊂ m.

In particular, multiplication by y/x carries m to itself, and stabilizes the finitely
generated faithful module m. By Proposition 1.7, we see that y/x is integral over
R. In particular, we find that y/x ∈ R, as R was integrally closed, a contradiction
as y /∈ (x). N

Let us give several examples of DVRs.
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Example 1.3 The localization Z(p) at any prime ideal (p) 6= 0 is a DVR. The associated
valuation is the p-adic valuation.

Example 1.4 Although we shall not prove (or define) this, the local ring of an algebraic
curve at a smooth point is a DVR. The associated valuation measures the extent to which
a function (or germ thereof) has a zero (or pole) at that point.

Example 1.5 The formal power series ring C[[T ]] is a discrete valuation ring, with max-
imal ideal (T ).

1.2 Another approach

In the proof of Theorem 1.1, we freely used the notion of associated primes, and thus some
of the results of Chapter 5. However, we can avoid all that and give a more “elementary
approach,” as in [CF86].

Let us suppose that R is an integrally closed, local noetherian domain of dimension
one. We shall prove that the maximal ideal m ⊂ R is principal. This was the hard part of
Theorem 1.1, and the only part where we used associated primes earlier.

Proof. We will show that m is principal, by showing it is invertible (as will be seen below).
We divide the proof into steps:

Step one For a nonzero ideal I ⊂ R, let I−1 := {x ∈ K(R) : xI ⊂ R}, where K(R) is
the quotient field of R. Then clearly I−1 ⊃ R and I−1 is an R-module, but in general we
cannot say that I−1 6= R even if I is proper. Nevertheless, we claim that in the present
situation, we have

m−1 6= R.

This is the conclusion of Step one.

The proof runs across a familiar line: we show that any maximal element in the set
of ideals I ⊂ R with I−1 6= R is prime. The set of such ideals is nonempty: it contains
any (a) for a ∈ m (in which case (a)−1 = Ra−1 6= R). There must be a maximal element
in this set of ideals by noetherianness, which as we will see is prime; thus, that maximal
element must be m, which proves our claim.

So to fill in the missing link, we must prove:

Lemma 1.6 If S is a noetherian domain, any maximal element in the set of ideals I ⊂ S
with I−1 6= S is prime.

Proof. Let J be a maximal element, and suppose we have ab ∈ J , with a, b /∈ J . I claim
that if z ∈ J−1−S, then za, zb ∈ J−1−S. The J−1 part follows since J−1 is a S-module.

By symmetry it is enough to prove the other half for a, namely that za /∈ S; but then
if za ∈ S, we would have z((a) + J) ⊂ S, which implies ((a) + J)−1 6= S, contradiction,
for J was maximal.

Then it follows that z(ab) = (za)b ∈ J−1 − S, by applying the claim just made twice.
But ab ∈ J , so z(ab) ∈ S, contradiction. N
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Step two In the previous step, we have established that m−1 6= R.

We now claim that mm−1 = R. First, we know of course that mm−1 ⊂ R by definition
of inverses, and equally m ⊂ mm−1 too. So mm−1 is an ideal sandwiched between m and
R. Thus we only need to prove that mm−1 = m is impossible. If this were the case, we
could choose some a ∈ m−1 − R which must satisfy am ⊂ m. Then a would integral over
R. As R is integrally closed, this is impossible.

Step three Finally, we claim that m is principal, which is the final step of the proof. In
fact, let us prove a more general claim.

Proposition 1.7 Let (R,m) be a local noetherian domain such that mm−1 = R. Then m
is principal.

Proof. Indeed, since mm−1 = R, write

1 =
∑

mini, mi ∈ m, ni ∈ m−1.

At least one mjnj is invertible, since R is local. It follows that there are x ∈ m and
y ∈ m−1 whose product xy is a unit in R. We may even assume xy = 1.

Then we claim m = (x). Indeed, we need only prove m ⊂ (x). For this, if q ∈ m, then
qy ∈ R by definition of m−1, so

q = x(qy) ∈ (x). N

So we are done in this case too. Taking stock, we have an effective way to say whether a
ring is a DVR. These three conditions are much easier to check in practice (noetherianness
is usually easy, integral closure is usually automatic, and the last one is not too hard either
for reasons that will follow) than the existence of an absolute value.

§2 Dedekind rings

2.1 Definition

We now introduce a closely related notion.

Definition 2.1 A Dedekind ring is a noetherian domain R such that

1. R is integrally closed.

2. Every nonzero prime ideal of R is maximal.

Remark If R is Dedekind, then any nonzero element is height one. This is evident since
every nonzero prime is maximal.

If R is Dedekind, then R is locally factorial. In fact, the localization of R at a nonzero
prime p is a DVR.
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Proof. Rp has precisely two prime ideals: (0) and pRp. As a localization of an integrally
closed domain, it is integrally closed. So Rp is a DVR by the above result (hence facto-
rial). N

Assume R is Dedekind now. We have an exact sequence

0→ R∗ → K(R)∗ → Cart(R)→ Pic(R)→ 0.

Here Cart(R) ' Weil(R). But Weil(R) is free on the nonzero primes, or equivalently
maximal ideals, R being Dedekind. In fact, however, Cart(R) has a simpler description.

Proposition 2.2 Suppose R is Dedekind. Then Cart(R) consists of all nonzero finitely
generated submodules of K(R) (i.e. fractional ideals).

This is the same thing as saying as every nonzero finitely generated submodule of
K(R) is invertible.

Proof. Suppose M ⊂ K(R) is nonzero and finitely generated It suffices to check that M
is invertible after localizing at every prime, i.e. that Mp is an invertible—or equivalently,
trivial, Rp-module. At the zero prime, there is nothing to check. We might as well assume
that p is maximal. Then Rp is a DVR and Mp is a finitely generated submodule of
K(Rp) = K(R).

Let S be the set of integers n such that there exists x ∈ Mp with v(x) = n, for v
the valuation of Rp. By finite generation of M , S is bounded below. Thus S has a least
element k. There is an element of Mp, call it x, with valuation k.

It is easy to check that Mp is generated by x, and is in fact free with generator x. The
reason is simply that x has the smallest valuation of anything in Mp. N

What’s the upshot of this?

Theorem 2.3 If R is a Dedekind ring, then any nonzero ideal I ⊂ R is invertible, and
therefore uniquely described as a product of powers of (nonzero) prime ideals, I =

∏
pnii .

Proof. This is simply because I is in Cart(R) = Weil(R) by the above result. N

This is Dedekind’s generalization of unique factorization.
We now give the standard examples:

Example 2.4 1. Any PID (in particular, any DVR) is Dedekind.

2. If K is a finite extension of Q, and set R to be the integral closure of Z in K, then
R is a Dedekind ring. The ring of integers in any number field is a Dedekind ring.

3. If R is the coordinate ring of an algebraic variety which is smooth and irreducible
of dimension one, then R is Dedekind.

4. Let X be a compact Riemann surface, and let S ⊂ X be a nonempty finite subset.
Then the ring of meromorphic functions on X with poles only in S is Dedekind. The
maximal ideals in this ring are precisely those corresponding to points of X − S.
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2.2 A more elementary approach

We would now like to give a more elementary approach to the unique factorization of
ideals in Dedekind domains, one which does not use the heavy machinery of Weil and
Cartier divisors.

In particular, we can encapsulate what has already been proved as:

Theorem 2.5 Let A be a Dedekind domain with quotient field K. Then there is a bijection
between the discrete valuations of K that assign nonnegative orders to elements of A and
the nonzero prime ideals of A.

Proof. Indeed, every valuation gives a prime ideal of elements of positive order; every
prime ideal p gives a discrete valuation on Ap, hence on K. N

This result, however trivial to prove, is the main reason we can work essentially inter-
changeably with prime ideals in Dedekind domains and discrete valuations.

Now assume A is Dedekind. A finitely generated A-submodule of the quotient field F
is called a fractional ideal; by multiplying by some element of A, we can always pull a
fractional ideal into A, when it becomes an ordinary ideal. The sum and product of two
fractional ideals are fractional ideals.

Theorem 2.6 (Invertibility) If I is a nonzero fractional ideal and I−1 := {x ∈ F :
xI ⊂ A}, then I−1 is a fractional ideal and II−1 = A.

Thus, the nonzero fractional ideals are an abelian group under multiplication.

Proof. To see this, note that invertibility is preserved under localization: for a multiplica-
tive set S, we have S−1(I−1) = (S−1I)−1, where the second ideal inverse is with respect to
S−1A; this follows from the fact that I is finitely generated. Note also that invertibility is
true for discrete valuation rings: this is because the only ideals are principal, and principal
ideals (in any integral domain) are obviously invertible.

So for all primes p, we have (II−1)p = Ap, which means the inclusion of A-modules
II−1 → A is an isomorphism at each localization. Therefore it is an isomorphism, by
general algebra. N

The next result says we have unique factorization of ideals:

Theorem 2.7 (Factorization) Each ideal I ⊂ A can be written uniquely as a product
of powers of prime ideals.

Proof. Let’s use the pseudo-inductive argument to obtain existence of a prime factoriza-
tion. Let I be the maximal ideal which can’t be written in such a manner, which exists
since A is Noetherian. Then I isn’t prime (evidently), so it’s contained in some prime p.
But I = (Ip−1)p, and Ip−1 6= I can be written as a product of primes, by the inductive
assumption. Whence so can I, contradiction.

Uniqueness of factorization follows by localizing at each prime. N

Definition 2.8 Let P be the subgroup of nonzero principal ideals in the group I of
nonzero ideals. The quotient I/P is called the ideal class group.
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The ideal class group of the integers, for instance (or any principal ideal domain) is
clearly trivial. In general, this is not the case, because Dedekind domains do not generally
admit unique factorization.

Proposition 2.9 Let A be a Dedekind domain. Then A is a UFD if and only if its ideal
class group is trivial.

Proof. If the ideal class group is trivial, then A is a principal ideal domain, hence a UFD
by elementary algebra. Conversely, suppose A admits unique factorization. Then, by the
following lemma, every prime ideal is principal. Hence every ideal is principal, in view of
the unique factorization of ideals. N

Lemma 2.10 Let R be a UFD, and let p be a prime ideal which contains no proper prime
sub-ideal except for 0. Then p is principal.

The converse holds as well; a domain is a UFD if and only if every prime ideal of height
one is principal, by Theorem 1.15.

Proof. First, p contains an element x 6= 0, which we factor into irreducibles π1 . . . πk. One
of these, say πj , belongs to p, so p ⊃ (πj). Since p is minimal among nonzero prime ideals,
we have p = (πj). (Note that (πj) is prime by unique factorization.) N

Exercise 9.1 This exercise is from [Liu02]. If A is the integral closure of Z in a number
field (so that A is a Dedekind domain), then it is known (cf. [Lan94] for a proof) that
the ideal class group of A is finite. From this, show that every open subset of SpecA is a
principal open set D(f). Scheme-theoretically, this means that every open subscheme of
SpecA is affine (which is not true for general rings).

2.3 Modules over Dedekind domains

Let us now consider some properties of Dedekind domains.

Proposition 2.11 Let A be a Dedekind domain, and let M be a finitely generated A
module. Then M is projective (or equivalently flat, or locally free) if and only if it is
torsion-free.

Proof. If M is projective, then it is a direct summand of a free module, so it is torsion-free.
So we need to show that if M is torsion-free, then it is projective. Recall that to show
M is projective, it suffices to show that Mp is projective for any prime p ⊂ M . But note
that Ap is a PID so a module over it is torsion free if and only if it is flat, by Lemma
2.25. However, it is also a local Noetherian ring, so a module is flat if and only if it is
projective. So Mp is projective if and only if it is torsion-free, so it now suffices to show
that it is torsion-free.

However for any multiplicative set S ⊂ A, if M is torsion-free then MS is also torsion-
free. This is because if

a

s′
· m
s

= 0

then there is t such that tam = 0, as desired. N
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Proposition 2.12 Let A be a Dedekind domain. Then any finitely generated module M
over it has (not canonically) a decomposition M = M tors ⊕M tors−free.

Proof. Note that by Lemma 2.24, we have a short exact sequence

0→M tors →M →M tors−free → 0

but by proposition 2.11 the torsion free part is projective, so M can be split, not necessarily
canonically as M tors ⊕M tors−free, as desired. N

Note that we may give further information about the torsion free part of the module:

M tors =
⊕
p

M tors
p

First note that there is a map

M tors →
⊕
p

M tors
p

because M is torsion, every element is supported at finitely many points, so the image
of f in M tors

p is only nonzero for finitely many p. It is an isomorphism, because it is an
isomorphism after every localization.

So we have pretty much specified what the torsion part is. We can in fact also classify
the torsion free part; in particular, we have

M tors−free ' ⊕L

where L are locally free modules of rank 1. This is because we know from above that the
torsion free module is projective, we may apply Problem Set 10, Problem 12, and then
since L is a line bundle, and I−D is also, L⊗ I−D is a line bundle, and then M/L⊗ I−D
is flat, so it is projective, so we may split it off.

Lemma 2.13 For A a Dedekind Domain, and I ⊂ A an ideal, then I is a locally free
module of rank 1.

Proof. First note that I is torsion-free and therefore projective by 2.11, and it is also
finitely generated, because A is Noetherian. But for a finitely generated module over a
Noetherian ring, we know that it is projective if and only if it is locally free, so we have
shown that it is locally free.

Also recall that for a module which is locally free, the rank is well defined, i.e, any
localization which makes it free makes it free of the same rank. So to test the rank, it
suffices to show that if we tensor with the field of fractions K, it is free of rank 1. But
note that since K, being a localization of A is flat over A so we have short exact sequence

0→ I ⊗A K → A⊗A K → (A/I)⊗A K → 0

However, note that supp(A/I) = V (Ann(A/I)) = V (I), and the prime (0) is not in
V (I), so A/I ⊗A K, which is the localization of A/I at (0) vanishes, so we have

I ⊗A K ' A⊗A K

but this is one-dimensional as a free K module, so the rank is 1, as desired. N
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We close by listing a collection of useful facts about Dedekind domains. A dozen things every Good Algebraist should know about Dedekind domains.
R is a Dedekind domain.

1. R is local ⇐⇒ R is a field or a DVR.

2. R semi-local =⇒ it is a PID.

3. R is a PID ⇐⇒ it is a UFD ⇐⇒ C(R) = {1}

4. R is the full ring of integers of a number field K =⇒ |C(R)| <∞, and this number
is the class number of K.

5. C(R) can be any abelian group. This is Clayborn’s Theorem.

6. For any non-zero prime p ∈ SpecR, pn/pn+1 ∼= R/p as an R-module.

7. “To contain is to divide”, i.e. if A,B ⊂ R, then A ⊂ B ⇐⇒ A = BC for some
C ⊂ R.

8. (Generation of ideals) Every non-zero ideal B ⊂ R is generated by two elements.
Moreover, one of the generators can be taken to be any non-zero element of B.

9. (Factor rings) If A ⊂ R is non-zero, then R/A is a PIR (principal ideal ring).

10. (Steinitz Isomorphism Theorem) If A,B ⊂ R are non-zero ideals, then A ⊕ B ∼=
RR⊕AB as R-modules.

11. If M is a finitely generated torsion-free R-module of rank n,1 then it is of the form
M ∼= Rn−1 ⊕A, where A is a non-zero ideal, determined up to isomorphism.

12. If M is a finitely generated torsion R-module, then M is uniquely of the form
M ∼= R/A1 ⊕ · · · ⊕R/An with A1 ( A2 ( · · · ( An ( R.

TO BE ADDED: eventually, proofs of these should be added

§3 Extensions

In this section, we will essentially consider the following question: if A is a Dedekind
domain, and L a finite extension of the quotient field of A, is the integral closure of A in L
a Dedekind domain? The general answer turns out to be yes, but the result is somewhat
simpler for the case of a separable extension, with which we begin.

1The rank is defined as rk(M) = dimK(R)M ⊗R K(R) where K(R) is the quotient field.
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3.1 Integral closure in a finite separable extension

One of the reasons Dedekind domains are so important is

Theorem 3.1 Let A be a Dedekind domain with quotient field K, L a finite separable
extension of K, and B the integral closure of A in L. Then B is Dedekind.

This can be generalized to the Krull-Akizuki theorem below (??).
First let us give an alternate definition of “separable”. For a finite field extension k′

of k, we may consider the bilinear pairing k′⊗k k′ → k given by x, y 7→ Trk′/k(xy). Which
is to say xy ∈ k′ can be seen as a k-linear map of finite dimensional vector spaces k′ → k′,
and we are considering the trace of this map. Then we claim that k′ is separable if and
only if the bilinear pairing k′ × k′ → k is non-degenerate.

To show the above claim, first note that the pairing is non-degenerate if and only if it
is non-degenerate after tensoring with the algebraic closure. This is because if Tr(xy) = 0
for all y ∈ k′, then Tr((x⊗ 1k)y) = 0 for all y ∈ k′ ⊗k k, which we may see to be true by
decomposing into pure tensors. The other direction is obtained by selecting a basis of k
over k, and then noting that for yi basis elements, if Tr(

∑
xyi) = 0 then Tr(xyi) = 0 for

each i.
So now we just need to show that X = k′ ⊗k k is reduced if and only if the map

X ⊗k X → k given by a ⊗ b 7→ Tr(ab) is non-degenerate. To do this, we show that
elements of the kernel of the bilinear map are exactly the nilpotents. But note that X is a
finite dimensional algebra over k, and we may elements as matrices. Then if Tr(AB) = 0
for all B if and only if Tr(PAP−1PBP−1) = 0 for all B, so we may assume A is in Upper
Triangular Form. From this, the claim becomes clear.

Proof. We need to check that B is Noetherian, integrally, closed, and of dimension 1.

• Noetherian. Indeed, B is a finitely generated A-module, which obviously implies
Noetherianness. To see this, note that the K-linear map (., .) : L × L → K, a, b →
Tr(ab) is nondegenerate since L is separable over K (??). Let F ⊂ B be a free
module spanned by a K-basis for L. Then since traces preserve integrality and A is
integrally closed, we have B ⊂ F ∗, where F ∗ := {x ∈ K : (x, F ) ⊂ A}. Now F ∗ is
A-free on the dual basis of F though, so B is a submodule of a finitely generated A
module, hence a finitely generated A-module.

• Integrally closed. B is the integral closure of A in L, so it is integrally closed
(integrality being transitive).

• Dimension 1. Indeed, if A ⊂ B is an integral extension of domains, then dimA =
dimB. This follows essentially from the theorems of “lying over” and “going up.”
Cf. [Eis95].

So, consequently the ring of algebraic integers (integral over Z) in a number field (finite
extension of Q) is Dedekind. N

Note that the above proof actually implied (by the argument about traces) the follow-
ing useful fact:
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Proposition 3.2 Let A be a noetherian integrally closed domain with quotient field K.
Let L be a finite separable extension and B the ring of integers. Then B is a finitely
generated A-module.

We shall give another, more explicit proof of Proposition 3.2 whose technique will be
useful in the sequel. Let α ∈ B be a generator of L/K. Let n = [L : K] and σ1, . . . , σn
the distinct embeddings of L into the algebraic closure of K. Define the discriminant of
α to be

D(α) =

det

1 σ1α (σ1α)2 . . .
1 σ2α (σ2α)2 . . .
...

...
...

. . .




2

.

This maps to the same element under each σi, so is in K∗ (and even A∗ by integrality);
it is nonzero by basic facts about vanderMonde determinants since each σi maps α to
a different element. The next lemma clearly implies that B is contained in a finitely
generated A-module, hence is finitely generated (since A is noetherian).

Lemma 3.3 We have B ⊂ D(α)−1A[α].

Proof. Indeed, suppose x ∈ B. We can write x = c0(1) + c1(α) + . . . cn−1(αn−1) where
each ci ∈ K. We will show that in fact, each ci ∈ D(α)−1A, which will prove the lemma.
Applying each σi, we have for each i, σix = c0(1) + c1(σiα) + · · · + cn−1(σiα

n−1). Now
by Cramer’s lemma, each ci can be written as a quotient of determinants of matrices
involving σjx and the αj . The denominator determinant is in fact D(α). The numerator
is in K and must be integral, hence is in A. This proves the claim and the lemma. N

The above technique may be illustrated with an example.

Example 3.4 Let pi be a power of a prime p and consider the extension Q(ζpi)/Q for
ζpi a primitive pi-th root of unity. This is a special case of a cyclotomic extension, an
important example in the subject. We claim that the ring of integers (that is, the integral
closure of Z) in Q(ζpi) is precisely Z[ζpi ]. This is true in fact for all cyclotomic extensions,
but we will not be able to prove it here.

First of all, ζpi satisfies the equation Xpi−1(p−1) + Xpi−1(p−2) + · · · + 1 = 0. This is

because if ζp is a p-th root of unity, (ζp−1)(1+ζp+ · · ·+ζp−1
p ) = ζpp −1 = 0. In particular,

X − ζpi | Xpi−1(p−1) +Xpi−1(p−2) + · · ·+ 1, and consequently (taking X = 1), we find that
1 − ζpi divides p in the ring of integers in Q(ζpi)/Q. This is true for any primitive pi-th

root of unity for any pi. Thus the norm to Q of 1− ζj
pi

for any j is a power of p.

I claim that this implies that the discriminant D(ζpi) is a power of p, up to sign.
But by the vanderMonde formula, this discriminant is a product of terms of the form∏

(1 − ζj
pi

) up to roots of unity. The norm to Q of each factor is thus a power of p, and
the discriminant itself plus or minus a power of p.

By the lemma, it follows that the ring of integers is contained in Z[p−1, ζpi ]. To get
down further to Z[ζpi ] requires a bit more work. TO BE ADDED: this proof
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3.2 The Krull-Akizuki theorem

We are now going to prove a general theorem that will allow us to remove the separability
hypothesis in ??. Let us say that a noetherian domain has dimension at most one if
every nonzero prime ideal is maximal; we shall later generalize this notion of “dimension.”

Theorem 3.5 (Krull-Akizuki) Suppose A is a noetherian domain of dimension at most
one. Let L be a finite extension of the quotient field K(A), and suppose B ⊂ L is a domain
containing A. Then B is noetherian of dimension at most one.

From this, it is clear:

Theorem 3.6 The integral closure of a Dedekind domain in any finite extension of the
quotient field is a Dedekind domain.

Proof. Indeed, by Krull-Akizuki, this integral closure is noetherian and of dimension ≤ 1;
it is obviously integrally closed as well, hence a Dedekind domain. N

Now let us prove Krull-Akizuki. TO BE ADDED: we need to introduce material
about length

Proof. We are going to show that for any a ∈ A − {0}, the A-module B/aB has finite
length. (This is quite nontrivial, since B need not even be finitely generated as an A-
module.) From this it will be relatively easy to deduce the result.

Indeed, if I ⊂ B is any nonzero ideal, then I contains a nonzero element of A; to see
this, we need only choose an element b ∈ I and consider an irreducible polynomial

a0X
n + · · ·+ an ∈ K[X]

that it satisfies. We can assume that all the ai ∈ A by clearing denominators. It then
follows that an ∈ A∩ I. So choose some a ∈ (A∩ I)−{0}. We then know by the previous
paragraph (though we have not proved it yet) that B/aB has finite length as an A-module
(and a fortiori as a B-module); in particular, the submodule I/aB is finitely generated as
a B-module. The exact sequence

0→ aB → I → I/aB → 0

shows that I must be finitely generated as a B-module, since the two outer terms are.
Thus any ideal of B is finitely generated, so B is noetherian.

TO BE ADDED: B has dimension at most one

To prove the Krull-Akizuki theorem, we are going to prove:

Lemma 3.7 (Finite length lemma) If A is a noetherian domain of dimension at most
one, then for any torsion-free A-module M such that K(A) ⊗A M is finite-dimensional
(alternatively: M has finite rank) and a 6= 0, M/aM has finite length.

260



The CRing Project, §9.3.

Proof. We are going to prove something stronger. If M has rank n and is torsion-free,
then will show

`(M/aM) ≤ n`(A/aA). (9.1)

Note that A/aA has finite length. This follows because there is a filtration of A/aA whose
quotients are of the form A/p for p prime; but these p cannot be zero as A/aA is torsion.
So these primes are maximal, and A/aA has a filtration whose quotients are simple. Thus
`(A/aA) < ∞. In fact, we see thus that any torsion, finitely-generated module has finite
length; this will be used in the sequel.

There are two cases:

1. M is finitely generated. We can choose generators m1, . . . ,mn in M of K(A)⊗AM ;
we then from these generators get a map

An →M

which becomes an isomorphism after localizing at A−{0}. In particular, the kernel
and cokernel are torsion modules. The kernel must be trivial (A being a domain),
and An →M is thus injective. Thus we have found a finite free submodule F ⊂M
such that M/F is a torsion module T , which is also finitely generated.

We have an exact sequence

0→ F/(aM ∩ F )→M/aM → T/aT → 0.

Here the former has length at most `(F/aF ) = n`(A/aA), and we get the bound
`(M/aM) ≤ n`(A/aA) + `(T/aT ). However, we have the annoying last term to
contend with, which makes things somewhat inconvenient. Thus, we use a trick: for
each t > 0, we consider the exact sequence

0→ F/(atM ∩ F )→M/atM → T/atT → 0.

This gives

`(M/atM) ≤ tn`(A/aA) + `(T/atT ) ≤ tn`(A/aA) + `(T ).

However, `(T ) < ∞ as T is torsion (cf. the first paragraph). If we divide by t, we
get the inequality

1

t
`(M/atM) ≤ n`(A/aA) +

`(T )

t
. (9.2)

However, the filtration atM ⊂ at−1M ⊂ · · · ⊂ aM ⊂ M whose quotients are all
isomorphic to M/aM (M being torsion-free) shows that `(M/atM) = t`(M/aM)
In particular, letting t → ∞ in (9.2) gives (9.1) in the case where M is finitely
generated.

2. M is not finitely generated. Now we can use a rather cheeky argument. M is
the inductive limit of its finitely generated submodules MF ⊂ M , each of which is
itself torsion free and of rank at most n. Thus M/aM is the inductive limit of its
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submodules MF /(aM ∩MF ) as MF ranges over We know that `(MF /(aM ∩MF )) ≤
n`(A/aA) for each finitely generated MF ⊂M by the first case above (and the fact
that MF /(aM ∩MF ) is a quotient of MF /aMF ).

But if M/aM is the inductive limit of submodules of length at most n`(A/aA), then
it itself can have length at most n`(A/aA). For M/aM must be in fact equal to
the submodule MF /(aM ∩MF ) that has the largest length (no other submodule
MF ′/(aM ∩MF ′) can properly contain this). N

With this lemma proved, it is now clear that Krull-Akizuki is proved as well.

3.3 Extensions of discrete valuations

As a result, we find:

Theorem 3.8 Let K be a field, L a finite separable extension. Then a discrete valuation
on K can be extended to one on L.

TO BE ADDED: This should be clarified — what is a discrete valuation?

Proof. Indeed, let R ⊂ K be the ring of integers of the valuation, that is the subset of
elements of nonnegative valuation. Then R is a DVR, hence Dedekind, so the integral
closure S ⊂ L is Dedekind too (though in general it is not a DVR—it may have several
non-zero prime ideals) by Theorem 3.1. Now as above, S is a finitely generated R-module,
so if m ⊂ R is the maximal ideal, then

mS 6= S

by Nakayama’s lemma (cf. for instance [Eis95]). So mS is contained in a maximal ideal
M of S with, therefore, M ∩ R = m. (This is indeed the basic argument behind lying
over, which I could have just invoked.) Now SM ⊃ Rm is a DVR as it is the localization
of a Dedekind domain at a prime ideal, and one can appeal to ??. So there is a discrete
valuation on SM. Restricted to R, it will be a power of the given R-valuation, because
its value on a uniformizer π is < 1. However, a power of a discrete valuation is a discrete
valuation too. So we can adjust the discrete valuation on SM if necessary to make it an
extension.

This completes the proof. N

Note that there is a one-to-one correspondence between extensions of the valuation on
K and primes of S lying above m. Indeed, the above proof indicated a way of getting
valuations on L from primes of S. For an extension of the valuation on K to L, let
M := {x ∈ S : |x| < 1}.

§4 Action of the Galois group

Suppose we have an integral domain (we don’t even have to assume it Dedekind) A with
quotient field K, a finite Galois extension L/K, with B the integral closure in L. Then
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the Galois group G = G(L/K) acts on B; it preserves B because it preserves equations
in A[X]. In particular, if P ⊂ B is a prime ideal, so is σP, and the set SpecB of prime
ideals in B becomes a G-set.

4.1 The orbits of the Galois group

It is of interest to determine the orbits; this question has a very clean answer.

Proposition 4.1 The orbits of G on the prime ideals of B are in bijection with the
primes of A, where a prime ideal p ⊂ A corresponds to the set of primes of B lying over
A.2 Alternatively, any two primes P,Q ⊂ B lying over A are conjugate by some element
of G.

In other words, under the natural map SpecB → SpecA = SpecBG, the latter space
is the quotient under the action of G, while A = BG is the ring of invariants in B.3

Proof. We need only prove the second statement. Let S be the multiplicative set A − p.
Then S−1B is the integral closure of S−1A, and in S−1A = Ap, the ideal p is maximal.
Let Q,P lie over p; then S−1Q, S−1P lie over S−1p and are maximal (to be added). If
we prove that S−1Q, S−1P are conjugate under the Galois group, then Q,P must also
be conjugate by the properties of localization. In particular, we can reduce to the case of
p,Q,P all maximal.

The rest of the proof is now an application of the Chinese remainder theorem. Suppose
that, for all σ ∈ G, we have σP 6= Q. Then the ideals σP,Q are distinct maximal ideals,
so by the remainder theorem, we can find x ≡ 1 mod σP for all σ ∈ G and x ≡ 0 mod Q.
Now, consider the norm NL

K(x); the first condition implies that it is congruent to 1 modulo
p. But the second implies that the norm is in Q ∩K = p, contradiction. N

4.2 The decomposition and inertia groups

Now, let’s zoom in on a given prime p ⊂ A. We know that G acts transitively on the set
P1, . . . ,Pg of primes lying above p; in particular, there are at most [L : K] of them.

Definition 4.2 If P is any one of the Pi, then the stabilizer in G of this prime ideal is
called the decomposition group GP.

We have, clearly, (G : GP) = g.

Now if σ ∈ GP, then σ acts on the residue field B/P while fixing the subfield A/p.
In this way, we get a homomorphism σ → σ from G into the automorphism group of
B/P over A/p) (we don’t call it a Galois group because we don’t yet know whether the
extension is Galois).

The following result will be crucial in constructing the so-called “Frobenius elements”
of crucial use in class field theory.

2It is useful to note here that the lying over theorem works for arbitrary integral extensions.
3The reader who does not know about the Spec of a ring can disregard these remarks.
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Proposition 4.3 Suppose A/p is perfect. Then B/P is Galois over A/p, and the homo-
morphism σ → σ is surjective from GP → G(B/P/A/p).

Proof. In this case, the extension B/P/A/p is separable, and we can choose x ∈ B/P
generating it by the primitive element theorem. We will show that x satisfies a polynomial
equation P (X) ∈ A/p[X] all of whose roots lie in B/P, which will prove that the residue
field extension is Galois. Moreover, we will show that all the nonzero roots of P in
B/P are conjugates of x under elements of GP. This latter will imply surjectivity of the
homomorphism σ → σ, because it shows that any conjugate of x under G(B/P/A/p) is a
conjugate under GP.

We now construct the aforementioned polynomial. Let x ∈ B lift x. Choose y ∈ B
such that y ≡ x mod P but y ≡ 0 mod Q for the other primes Q lying over p. We take
P (X) =

∏
σ∈G(X − σ(y)) ∈ A[X]. Then the reduction P satisfies P (x) = P (y) = 0, and

P factors completely (via
∏
σ(X − σ(t))) in B/P[X]. This implies that the residue field

extension is Galois, as already stated. But it is also clear that the polynomial P (X) has
roots of zero and σ(y) = σ(x) for σ ∈ GP. This completes the proof of the other assertion,
and hence the proposition. N

Definition 4.4 The kernel of the map σ → σ is called the inertia group TP. Its fixed
field is called the inertia field.

These groups will resurface significantly in the future.

Remark Although we shall never need this in the future, it is of interest to see what
happens when the extension L/K is purely inseparable.4 Suppose A is integrally closed
in K, and B is the integral closure in L. Let the characteristic be p, and the degree
[L : K] = pi. In this case, x ∈ B if and only if xp

i ∈ A. Indeed, it is clear that the
condition mentioned implies integrality. Conversely, if x is integral, then so is xp

i
, which

belongs to K (by basic facts about purely inseparable extensions). Since A is integrally
closed, it follows that xp

i ∈ A.
Let now p ⊂ A be a prime ideal. I claim that there is precisely one prime ideal P of B

lying above A, and Ppi = p. Namely, this ideal consists of x ∈ B with xp
i ∈ p! The proof

is straightforward; if P is any prime ideal lying over p, then x ∈ P iff xp
i ∈ L∩P = p. In

a terminology to be explained later, p is totally ramified.

4Cf. [Lan02], for instance.
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Chapter 10

Dimension theory

Dimension theory assigns to each commutative ring—say, noetherian—an invariant
called the dimension. The most standard definition, that of Krull dimension (which we
shall not adopt at first), defines the dimension in terms of the maximal lengths of ascending
chains of prime ideals. In general, however, the geometric intuition behind dimension is
that it should assign to an affine ring—say, one of the form C[x1, . . . , Xn]/I—something
like the “topological dimension” of the affine variety in Cn cut out by the ideal I.

In this chapter, we shall obtain three different expressions for the dimension of a
noetherian local ring (R,m), each of which will be useful at different times in proving
results.

§1 The Hilbert function and the dimension of a local ring

1.1 Integer-valued polynomials

It is now necessary to do a small amount of general algebra.
Let P ∈ Q[t]. We consider the question of when P maps the integers Z, or more

generally the sufficiently large integers, into Z. Of course, any polynomial in Z[t] will do
this, but there are others: consider 1

2(t2 − t), for instance.

Proposition 1.1 Let P ∈ Q[t]. Then P (m) is an integer for m� 0 integral if and only
if P can be written in the form

P (t) =
∑
n

cn

(
t

n

)
, cn ∈ Z.

In particular, P (Z) ⊂ Z.

So P is a Z-linear function of binomial coefficients.

Proof. Note that the set
{(

t
n

)}
n∈Z≥0

forms a basis for the set of polynomials Q[t]. It is

thus clear that P (t) can be written as a rational combination
∑
cn
(
t
n

)
for the cn ∈ Q. We

need to argue that the cn ∈ Z in fact.
Consider the operator ∆ defined on functions Z→ C as follows:

(∆f)(m) = f(m)− f(m− 1).
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It is obvious that if f takes integer values for m� 0, then so does ∆f . It is also easy to
check that ∆

(
t
n

)
=
(

t
n−1

)
.

By looking at the function ∆P =
∑
cn
(

t
n−1

)
(which takes values in Z), it is easy to

see that the cn ∈ Z by induction on the degree. It is also easy to see directly that the
binomial coefficients take values in Z at all arguments. N

1.2 Definition and examples

Let R be a ring.

Question What is a good definition for dim(R)? Actually, more generally, what is the
dimension of R at a given “point” (i.e. prime ideal)?

Geometrically, think of SpecR, for any ring; pick some point corresponding to a max-
imal ideal m ⊂ R. We want to define the dimension of R at m. This is to be thought
of kind of like “dimension over the complex numbers,” for algebraic varieties defined over
C. But it should be purely algebraic. What might you do?

Here is an idea. For a topological space X to be n-dimensional at x ∈ X, there should
be n coordinates at the point x. In other words, the point x should be uniquely defined by
the zero locus of n points on the space. Motivated by this, we could try defining dimmR
to be the number of generators of m. However, this is a bad definition, as m may not have
the same number of generators as mRm. In other words, it is not a truly local definition.

Example 1.2 Let R be a noetherian integrally closed domain which is not a UFD. Let
p ⊂ R be a prime ideal which is minimal over a principal ideal but which is not itself
principal. Then pRp is generated by one element, as we will eventually see, but p is not.

We want our definition of dimension to be local. So this leads us to:

Definition 1.3 If R is a (noetherian) local ring with maximal ideal m, then the embed-
ding dimension of R, denoted EmdimR is the minimal number of generators for m. If
R is a noetherian ring and p ⊂ R a prime ideal, then the embedding dimension at p is
that of the local ring Rp.

In the above definition, it is clearly sufficient to study what happens for local rings,
and we impose that restriction for now. By Nakayama’s lemma, the embedding dimension
is the minimal number of generators of m/m2, or the R/m-dimension of that vector space:

EmdimR = dimR/mm/m
2.

In general, however, the embedding dimension is not going to coincide with the intuitive
“geometric” dimension of an algebraic variety.

Example 1.4 Let R = C[t2, t3] ⊂ C[t], which is the coordinate ring of a cubic curve
y2 = x3 as R ' C[x, y]/(x2 − y3) via x = t3, y = t2. Let us localize at the prime ideal
p = (t2, t3): we get Rp.

Now SpecR is singular at the origin. In fact, as a result, pRp ⊂ Rp needs two genera-
tors, but the variety it corresponds to is one-dimensional.
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So the embedding dimension is the smallest dimension into which you can embed R
into a smooth space. But for singular varieties this is not the dimension we want.

So instead of considering simply m/m2, let us consider the sequence of finite-dimensional
vector spaces

mk/mk+1.

Computing these dimensions as a function of k gives some invariant that describes the
local geometry of SpecR.

We shall eventually prove:

Theorem 1.5 Let (R,m) be a local noetherian ring. Then there exists a polynomial f ∈
Q[t] such that

f(n) = `(R/mn) =

n−1∑
i=0

dimmi/mi+1 ∀n� 0.

Moreover, deg f ≤ dimm/m2.

Note that this polynomial is well-defined, as any two polynomials agreeing for large n
coincide. Note also that R/mn is artinian so of finite length, and that we have used the
fact that the length is additive for short exact sequences. We would have liked to write
dimR/mn, but we can’t, in general, so we use the substitute of the length.

Based on this, we define:

Definition 1.6 The dimension of the local ring R is the degree of the polynomial f
above. For an arbitrary noetherian ring R, we define dimR = supp∈SpecR dim(Rp).

Let us now do a few example computations.

Example 1.7 (The affine line) Consider the local ring (R,m) = C[t](t). Then m = (t)

and mk/mk+1 is one-dimensional, generated by tk. In particular, the ring has dimension
one.

Example 1.8 (A singular curve) Consider R = C[t2, t3](t2,t3), the local ring of y2 = x3

at zero. Then mn is generated by t2n, t2n+1, . . . . mn+1 is generated by t2n+2, t2n+3, . . . . So
the quotients all have dimension two. The dimension of these quotients is a little larger
than in Example 1.7, but they do not grow. The ring still has dimension one.

Example 1.9 (The affine plane) Consider R = C[x, y](x,y). Then mk is generated by

polynomials in x, y that are homogeneous in degree k. So mk/mk+1 has dimensions that
grow linearly in k. This is a genuinely two-dimensional example.

It is this difference between constant linear and quadratic growth in R/mn as n→∞,
and not the size of the initial terms, that we want for our definition of dimension.

Let us now generalize Example 1.7 and Example 1.9 above to affine spaces of arbitrary
dimension.
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Example 1.10 (Affine space) Consider R = C[x1, . . . , xn](x1,...,xn). This represents the
variety Cn = AnC near the origin geometrically, so it should intuitively have dimension n.
Let us check that it does.

Namely, we need to compute the polynomial f above. Here R/mk looks like the set
of polynomials of degree < k over C. The dimension as a vector space of this is given by
some binomial coefficient

(
n+k−1
n

)
. This is a polynomial in k of degree n. In particular,

`(R/mk) grows like kn. So R is n-dimensional.

Finally, we offer one more example, showing that DVRs have dimension one. In fact,
among noetherian integrally closed local domains, DVRs are characterized by this property
(?? of ??).

Example 1.11 (The dimension of a DVR) Let R be a DVR. Then mk/mk+1 is of
length one for each k. So R/mk has length k. Thus we can take f(t) = t, so R has
dimension one.

1.3 The Hilbert function is a polynomial

While we have given a definition of dimension and computed various examples, we have
yet to check that our definition is well-defined. Namely, we have to prove Theorem 1.5.

Proof (Proof of Theorem 1.5). Fix a noetherian local ring (R,m). We are to show that
`(R/mn) is a polynomial for n� 0. We also have to bound this degree by dimR/mm/m

2,
the embedding dimension. We will do this by reducing to a general fact about graded
modules over a polynomial ring.

Let S =
⊕

nm
n/mn+1. Then S has a natural grading, and in fact it is a graded ring

in a natural way from the multiplication map

mn1 ×mn2 → mn1+n2 .

In fact, S is the associated graded ring of the m-adic filtration. Note that S0 = R/m is a
field, which we will denote by k. So S is a graded k-algebra.

Lemma 1.12 S is a finitely generated k-algebra. In fact, S can be generated by at most
Emdim(R) elements.

Proof. Let x1, . . . , xr be generators for m with r = Emdim(R). They (or rather, their
images) are thus a k-basis for m/m2. Then their images in m/m2 ⊂ S generate S. This
follows because S1 generates S as an S0-algebra: the products of the elements in m generate
the higher powers of m. N

So S is a graded quotient of the polynomial ring k[t1, . . . , tr], with ti mapping to
xi. In particular, S is a finitely generated, graded k[t1, . . . , tr]-module. Note that also
`(R/mn) = dimk(S0) + · · · + dimk(Sn−1) for any n, thanks to the filtration. This is the
invariant we are interested in.

It will now suffice to prove the following more general proposition.
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Proposition 1.13 Let M be any finitely generated graded module over the polynomial
ring k[x1, . . . , xr]. Then there exists a polynomial f+

M ∈ Q[t] of degree ≤ r, such that

f+
M (t) =

∑
s≤t

dimMs t� 0.

Applying this to M = S will give the desired result. We can forget about everything else,
and look at this problem over graded polynomial rings.

This function is called the Hilbert function.

Proof (Proof of Proposition 1.13). Note that if we have an exact sequence of graded mod-
ules over the polynomial ring,

0→M ′ →M →M ′′ → 0,

and polynomials fM ′ , fM ′′ as in the proposition, then fM exists and

fM = fM ′ + fM ′′ .

This is obvious from the definitions. Next, we observe that if M is a finitely generated
graded module, over two different polynomial rings, but with the same grading, then the
existence (and value) of fM is independent of which polynomial ring one considers. Finally,
we observe that it is sufficient to prove that fM (t) = dimMt is a polynomial in t for t� 0.

We will use these three observations and induct on n.

If n = 0, then M is a finite-dimensional graded vector space over k, and the grading
must be concentrated in finitely many degrees. Thus the result is evident as fM (t) will
just equal dimM (which will be the appropriate dimension for t� 0).

Suppose n > 0. Then consider the filtration of M

0 ⊂ ker(x1 : M →M) ⊂ ker(x2
1 : M →M) ⊂ · · · ⊂M.

This must stabilize by noetherianness at someM ′ ⊂M . Each of the quotients ker(xi1)/ ker(xi+1
1 )

is a finitely generated module over k[x1, . . . , xn]/(x1), which is a smaller polynomial ring.
So each of these quotients ker(xi+1

1 )/ ker(xi1) has a Hilbert function of degree ≤ n− 1 by
the inductive hypothesis.

Climbing up the filtration, we see that M ′ has a Hilbert function which is the sum of
the Hilbert functions of these quotients ker(xi+1

1 )/ ker(xi1). In particular, fM ′ exists. If
we show that fM/M ′ exists, then fM necessarily exists. So we might as well show that the
Hilbert function fM exists when x1 is a non-zerodivisor on M .

So, we have reduced to the case where M
x1→M is injective. Now M has a filtration

M ⊃ x1M ⊃ x2
1M ⊃ . . .

which is an exhaustive filtration of M in that nothing can be divisible by powers of x1

over and over, or the degree would not be finite. So it follows that
⋂
xm1 M = 0.
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Let N = M/x1M , which is isomorphic to xm1 M/xm+1
1 M since M

x1→ M is injective.
Here N is a finitely generated graded module over k[x2, . . . , xn], and by the inductive
hypothesis on n, we see that there is a polynomial f+

N of degree ≤ n− 1 such that

f+
N (t) =

∑
t′≤t

dimNt′ , t� 0.

Fix t� 0 and consider the k-vector space Mt, which has a finite filtration

Mt ⊃ (x1M)t ⊃ (x2
1M)t ⊃ . . .

which has successive quotients that are the graded pieces of N 'M/x1M ' x1M/x2
1M '

. . . in dimensions t, t− 1, . . . . We find that

(x2
1M)t/(x

3
1M)t ' Nt−2,

for instance. Summing this, we find that

dimMt = dimNt + dimNt−1 + . . . .

The sum above is actually finite. In fact, by finite generation, there is K � 0 such that
dimNq = 0 for q < −K. From this, we find that

dimMt =

t∑
t′=−K

dimNt′ ,
N

which implies that dimMt is a polynomial for t� 0. This completes the proof. N

Let (R,m) a noetherian local ring and M a finitely generated R-module.

Proposition 1.14 `(M/mmM) is a polynomial for m� 0.

Proof. This follows from Proposition 1.13, and in fact we have essentially seen the argu-
ment above. Indeed, we consider the associated graded module

N =
⊕

mkM/mk+1M,

which is finitely generated over the associated graded ring⊕
mk/mk+1. N

Consequently, the graded pieces of N have dimensions growing polynomially for large
degrees. This implies the result.

Definition 1.15 We define the Hilbert function HM (m) to be the unique polynomial
such that

HM (m) = `(M/mmM), m� 0.

It is clear, incidentally, that HM is integer-valued, so we see by Proposition 1.1 that
HM is a Z-linear combination of binomial coefficients.
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1.4 The dimension of a module

Let R be a local noetherian ring with maximal ideal m. We have seen (Proposition 1.14)
that there is a polynomial H(t) with

H(t) = `(R/mt), t� 0.

Earlier, we defined the dimension of R is the degree of f+
M . Since the degree of the

Hilbert function is at most the number of generators of the polynomial ring, we saw that

dimR ≤ EmdimR.

Armed with the machinery of the Hilbert function, we can extend this definition to
modules.

Definition 1.16 If R is local noetherian, and N a finite R-module, then N has a Hilbert
polynomial HN (t) which when evaluated at t � 0 gives the length `(N/mtN). We say
that the dimension of N is the degree of this Hilbert polynomial.

Clearly, the dimension of the ring R is the same thing as that of the module R.

We next show that the dimension behaves well with respect to short exact sequences.
This is actually slightly subtle since, in general, tensoring with R/mt is not exact; it
turns out to be close to being exact by the Artin-Rees lemma. On the other hand, the
corresponding fact for modules over a polynomial ring is very easy, as no tensoring was
involved in the definition.

Proposition 1.17 Suppose we have an exact sequence

0→M ′ →M →M ′′ → 0

of graded modules over a polynomial ring k[x1, . . . , xn]. Then

fM (t) = fM ′(t) + fM ′′(t), f+
M (t) = f+

M ′(t) + f+
M ′′(t).

As a result, deg fM = max deg fM ′ ,deg fM ′′.

Proof. The first part is obvious as the dimension is additive on vector spaces. The second
part follows because Hilbert functions have nonnegative leading coefficients. N

Proposition 1.18 Fix an exact sequence

0→ N ′ → N → N ′′ → 0

of finite R-modules. Then dimN = max(dimN ′,dimN ′′).

Proof. We have an exact sequence

0→ K → N/mtN → N ′′/mtN ′′ → 0
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where K is the kernel. Here K = (N ′ + mtN)/mtN = N ′/(N ′ ∩ mtN). This is not quite
N ′/mtN ′, but it’s pretty close. We have a surjection

N ′/mtN � N ′/(N ′ ∩mtN) = K.

In particular,

`(K) ≤ `(N ′/mtN ′).

On the other hand, we have the Artin-Rees lemma, which gives an inequality in the
opposite direction. We have a containment

mtN ′ ⊂ N ′ ∩mtN ⊂ mt−cN ′

for some c. This implies that `(K) ≥ `(N ′/mt−cN ′).

Define M =
⊕

mtN/mt+1N , and define M ′,M ′′ similarly in terms of N ′, N ′′. Then
we have seen that

f+
M (t− c) ≤ `(K) ≤ f+

M (t).

We also know that the length of K plus the length of N ′′/mtN ′′ is f+
M (t), i.e.

`(K) + f+
M ′′(t) = f+

M (t).

Now the length of K is a polynomial in t which is pretty similar to f+
M ′ , in that the leading

coefficient is the same. So we have an approximate equality f+
M ′(t)+f+

M ′′(t) ' f
+
M (t). This

implies the result since the degree of f+
M is dimN (and similarly for the others). N

Proposition 1.19 dimR is the same as dimR/RadR.

I.e., the dimension doesn’t change when you kill off nilpotent elements, which is what you
would expect, as nilpotents don’t affect Spec(R).

Proof. For this, we need a little more information about Hilbert functions. We thus digress
substantially.

Finally, let us return to the claim about dimension and nilpotents. Let R be a local
noetherian ring and I = Rad(R). Then I is a finite R-module. In particular, I is nilpotent,
so In = 0 for n� 0. We will show that

dimR/I = dimR/I2 = . . .

which will imply the result, as eventually the powers become zero.

In particular, we have to show for each k,

dimR/Ik = dimR/Ik+1.

There is an exact sequence

0→ Ik/Ik+1 → R/Ik+1 → R/Ik → 0.
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The dimension of these rings is the same thing as the dimensions as R-modules. So we
can use this short exact sequence of modules. By the previous result, we are reduced to
showing that

dimIk/Ik+1 ≤ dimR/Ik.

Well, note that I kills Ik/Ik+1. In particular, Ik/Ik+1 is a finitely generated R/Ik-module.
There is an exact sequence ⊕

N

R/Ik → Ik/Ik+1 → 0

which implies that dimIk/Ik+1 ≤ dim
⊕

N R/I
k = dimR/Ik. N

Example 1.20 Let p ⊂ C[x1, . . . , xn] and let R = (C[x1, . . . , xn]/p)m for some maximal
ideal m. What is dimR? What does dimension mean for coordinate rings over C?

Recall by the Noether normalization theorem that there exists a polynomial ring
C[y1, . . . , ym] contained in S = C[x1, . . . , xn]/p and S is a finite integral extension over
this polynomial ring. We claim that

dimR = m.

There is not sufficient time for that today.

1.5 Dimension depends only on the support

Let (R,m) be a local noetherian ring. Let M be a finitely generated R-module. We
defined the Hilbert polynomial of M to be the polynomial which evaluates at t � 0
to `(M/mtM). We proved last time that such a polynomial always exists, and called its
degree the dimension of M . However, we shall now see that dimM really depends only
on the support1 suppM . In this sense, the dimension is really a statement about the
topological space suppM ⊂ SpecR, not about M itself.

In other words, we will prove:

Proposition 1.21 dimM depends only on suppM .

In fact, we shall show:

Proposition 1.22 dimM = maxp∈suppM dimR/p.

Proof. By Proposition 2.9 in Chapter 5, there is a finite filtration

0 = M0 ⊂M1 ⊂ · · · ⊂Mm = M,

such that each of the successive quotients is isomorphic to R/pi ⊂ R for some prime ideal
pi. Given a short exact sequence of modules, we know that the dimension in the middle
is the maximum of the dimensions at the two ends (Proposition 1.18). Iterating this, we
see that the dimension of M is the maximum of the dimension of the successive quotients
Mi/Mi−1.

1 Recall that suppM = {p : Mp 6= 0}.
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But the pi’s that occur are all in suppM , so we find

dimM = max
pi

R/pi ≤ max
p∈suppM

dimR/p.

We must show the reverse inequality. But fix any prime p ∈ suppM . Then Mp 6= 0, so
one of the R/pi localized at p must be nonzero, as localization is an exact functor. Thus
p must contain some pi. So R/p is a quotient of R/pi. In particular,

dimR/p ≤ dimR/pi. N

Having proved this, we throw out the notation dimM , and henceforth write instead
dim suppM .

Example 1.23 Let R′ = C[x1, . . . , xn]/p. Noether normalization says that there exists a
finite injective map C[y1, . . . , ya]→ R′. The claim is that

dimR′m = a

for any maximal ideal m ⊂ R′. We are set up to prove a slightly weaker definition.
In particular (see below for the definition of the dimension of a non-local ring), by the
proposition, we find the weaker claim

dimR′ = a,

as the dimension of a polynomial ring C[y1, . . . , ya] is a. (I don’t think we have proved
this yet.)

§2 Other definitions and characterizations of dimension

2.1 The topological characterization of dimension

We now want a topological characterization of dimension. So, first, we want to study how
dimension changes as we do things to a module. Let M be a finitely generated R-module
over a local noetherian ring R. Let x ∈ m for m as the maximal ideal. You might ask

What is the relation between dim suppM and dim suppM/xM?

Well, M surjects onto M/xM , so we have the inequality ≥. But we think of dimension
as describing the number of parameters you need to describe something. The number of
parameters shouldn’t change too much with going from M to M/xM . Indeed, as one can
check,

suppM/xM = suppM ∩ V (x)

and intersecting suppM with the “hypersurface” V (x) should shrink the dimension by
one.

We thus make:
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Prediction

dim suppM/xM = dim suppM − 1.

Obviously this is not always true, e.g. if x acts by zero on M . But we want to rule that
out. Under reasonable cases, in fact, the prediction is correct:

Proposition 2.1 Suppose x ∈ m is a nonzerodivisor on M . Then

dim suppM/xM = dim suppM − 1.

Proof. To see this, we look at Hilbert polynomials. Let us consider the exact sequence

0→ xM →M →M/xM → 0

which leads to an exact sequence for each t,

0→ xM/(xM ∩mtM)→M/mtM →M/(xM + mtM)→ 0.

For t large, the lengths of these things are given by Hilbert polynomials, as the thing on
the right is M/xM ⊗R R/mt. We have

f+
M (t) = f+

M/xM (t) + `(xM/(xM ∩mtM), t� 0.

In particular, `(xM/(xM ∩mtM)) is a polynomial in t. What can we say about it? Well,
xM 'M as x is a nonzerodivisor. In particular

xM/(xM ∩mtM) 'M/Nt

where
Nt =

{
a ∈M : xa ∈ mtM

}
.

In particular, Nt ⊃ mt−1M . This tells us that `(M/Nt) ≤ `(M/mt−1M) = f+
M (t − 1) for

t� 0. Combining this with the above information, we learn that

f+
M (t) ≤ f+

M/xM (t) + f+
M (t− 1),

which implies that f+
M/xM (t) is at least the successive difference f+

M (t)− f+
M (t− 1). This

last polynomial has degree dim suppM − 1. In particular, f+
M/xM (t) has degree at least

dim suppM − 1. This gives us one direction, actually the hard one. We showed that
intersecting something with codimension one doesn’t drive the dimension down too much.

Let us now do the other direction. We essentially did this last time via the Artin-
Rees lemma. We know that Nt =

{
a ∈M : xa ∈ mt

}
. The Artin-Rees lemma tells us

that there is a constant c such that Nt+c ⊂ mtM for all t. Therefore, `(M/Nt+c) ≥
`(M/mtM) = f+

M (t), t� 0. Now remember the exact sequence 0→M/Nt →M/mtM →
M/(xM + mtM)→ 0. We see from this that

`(M/mtM) = `(M/Nt) + f+
M/xM (t) ≥ f+

M (t− c) + f+
M/xM (t), t� 0,

which implies that
f+
M/xM (t) ≤ f+

M (t)− f+
M (t− c),

so the degree must go down. And we find that deg f+
M/xM < deg f+

M . N
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This gives us an algorithm of computing the dimension of an R-module M . First,
it reduces to computing dimR/p for p ⊂ R a prime ideal. We may assume that R is a
domain and that we are looking for dimR. Geometrically, this corresponds to taking an
irreducible component of SpecR.

Now choose any x ∈ R such that x is nonzero but noninvertible. If there is no such
element, then R is a field and has dimension zero. Then compute dimR/x (recursively)
and add one.

Notice that this algorithm said nothing about Hilbert polynomials, and only talked
about the structure of prime ideals.

2.2 Recap

Last time, we were talking about dimension theory. Recall that R is a local noetherian
ring with maximal ideal m, M a finitely generated R-module. We can look at the lengths
`(M/mtM) for varying t; for t � 0 this is a polynomial function. The degree of this
polynomial is called the dimension of suppM .

Remark If M = 0, then we define dim suppM = −1 by convention.

Last time, we showed that if M 6= 0 and x ∈ m such that x is a nonzerodivisor on M
(i.e. M

x→M injective), then

dim suppM/xM = dim suppM − 1.

Using this, we could give a recursion for calculating the dimension. To compute dimR =
dim SpecR, we note three properties:

1. dimR = supp a minimal primeR/p. Intuitively, this says that a variety which is the
union of irreducible components has dimension equal to the maximum of these irre-
ducibles.

2. dimR = 0 for R a field. This is obvious from the definitions.

3. If R is a domain, and x ∈ m − {0}, then dimR/(x) + 1 = dimR. This is obvious
from the boxed formula as x is a nonzerodivisor.

These three properties uniquely characterize the dimension invariant.
More precisely, if d : {local noetherian rings} → Z≥0 satisfies the above three

properties, then d = dim.

Proof. Induction on dimR. It is clearly sufficient to prove this for R a domain. If R is a
field, then it’s clear; if dimR > 0, the third condition lets us reduce to a case covered by
the inductive hypothesis (i.e. go down). N

Let us rephrase 3 above:

3’: If R is a domain and not a field, then

dimR = sup
x∈m−0

dimR/(x) + 1.

Obviously 3’ implies 3, and it is clear by the same argument that 1,2, 3’ characterize the
notion of dimension.
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2.3 Krull dimension

We shall now define another notion of dimension, and show that it is equivalent to the
older one by showing that it satisfies these axioms.

Definition 2.2 Let R be a commutative ring. A chain of prime ideals in R is a finite
sequence

p0 ( p1 ( · · · ( pn.

This chain is said to have length n.

Definition 2.3 The Krull dimension of R is equal to the maximum length of any chain
of prime ideals. This might be ∞, but we will soon see this cannot happen for R local
and noetherian.

Remark For any maximal chain {pi, 0 ≤ i ≤ n} of primes (i.e. which can’t be expanded),
we must have that p0 is minimal prime and pn a maximal ideal.

Theorem 2.4 For a noetherian local ring R, the Krull dimension of R exists and is equal
to the usual dimR.

Proof. We will show that the Krull dimension satisfies the above axioms. For now, write
Krdim for Krull dimension.

1. First, note that Krdim(R) = maxp∈R minimal Krdim(R/p). This is because any chain
of prime ideals in R contains a minimal prime. So any chain of prime ideals in R
can be viewed as a chain in some R/p, and conversely.

2. Second, we need to check that Krdim(R) = 0 for R a field. This is obvious, as there
is precisely one prime ideal.

3. The third condition is interesting. We must check that for (R,m) a local domain,

Krdim(R) = max
x∈m−{0}

Krdim(R/(x)) + 1.

If we prove this, we will have shown that condition 3’ is satisfied by the Krull
dimension. It will follow by the inductive argument above that Krdim(R) = dim(R)
for any R. There are two inequalities to prove. First, we must show

Krdim(R) ≥ Krdim(R/x) + 1, ∀x ∈ m− 0.

So suppose k = Krdim(R/x). We want to show that there is a chain of prime ideals
of length k+1 in R. So say p0 ( · · · ( pk is a chain of length k in R/(x). The inverse
images in R give a proper chain of primes in R of length k, all of which contain (x)
and thus properly contain 0. Thus adding zero will give a chain of primes in R of
length k + 1.
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Conversely, we want to show that if there is a chain of primes in R of length k + 1,
then there is a chain of length k in R/(x) for some x ∈ m − {0}. Let us write the
chain of length k + 1:

q−1 ⊂ q0 ( · · · ( qk ⊂ R.

Now evidently q0 contains some x ∈ m − 0. Then the chain q0 ( · · · ( qk can be
identified with a chain in R/(x) for this x. So for this x, we have that KrdimR ≤
sup KrdimR/(x) + 1. N

There is thus a combinatorial definition of definition.
Geometrically, let X = SpecR for R an affine ring over C (a polynomial ring mod some

ideal). Then R has Krull dimension ≥ k iff there is a chain of irreducible subvarieties of
X,

X0 ⊃ X1 ⊃ · · · ⊃ Xk.

You will meet justification for this in Section 3.6 below.

Remark (Warning!) Let R be a local noetherian ring of dimension k. This means that
there is a chain of prime ideals of length k, and no longer chains. Thus there is a maximal
chain whose length is k. However, not all maximal chains in SpecR have length k.

Example 2.5 Let R = (C[X,Y, Z]/(XY,XZ))(X,Y,Z). It is left as an exercise to the
reader to see that there are maximal chains of length not two.

There are more complicated local noetherian domains which have maximal chains of
prime ideals not of the same length. These examples are not what you would encounter
in daily experience, and are necessarily complicated. This cannot happen for finitely
generated domains over a field.

Example 2.6 An easier way all maximal chains could fail to be of the same length is if
SpecR has two components (in which case R = R0 ×R1 for rings R0, R1).

2.4 Yet another definition

Let’s start by thinking about the definition of a module. Recall that if (R,m) is a local
noetherian ring and M a finitely generated R-module, and x ∈ m is a nonzerodivisor on
M , then

dim suppM/xM = dim suppM − 1.

Question What if x is a zerodivisor?

This is not necessarily true (e.g. if x ∈ Ann(M)). Nonetheless, we claim that even in
this case:

Proposition 2.7 For any x ∈ m,

dim suppM ≥ dim suppM/xM ≥ dim suppM − 1.

The upper bound on dimM/xM is obvious as M/xM is a quotient of M . The lower bound
is trickier.
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Proof. Let N = {a ∈M : xna = 0 for some n}. We can construct an exact sequence

0→ N →M →M/N → 0.

Let M ′′ = M/N . Now x is a nonzerodivisor on M/N by construction. We claim that

0→ N/xN →M/xM →M ′′/xM ′′ → 0

is exact as well. For this we only need to see exactness at the beginning, i.e. injectivity of
N/xN →M/xM . So we need to show that if a ∈ N and a ∈ xM , then a ∈ xN .

To see this, suppose a = xb where b ∈ M . Then if φ : M → M ′′, then φ(b) ∈ M ′′ is
killed by x as xφ(b) = φ(bx) = φ(a). This means that φ(b) = 0 as M ′′

x→M ′′ is injective.
Thus b ∈ N in fact. So a ∈ xN in fact.

From the exactness, we see that (as x is a nonzerodivisor on M ′′)

dimM/xM = max(dimM ′′/xM ′′,dimN/xN) ≥ max(dimM ′′ − 1, dimN)

≥ max(dimM ′′,dimN)− 1.

The reason for the last claim is that suppN/xN = suppN as N is x-torsion, and the
dimension depends only on the support. But the thing on the right is just dimM − 1. N

As a result, we find:

Proposition 2.8 dim suppM is the minimal integer n such that there exist elements
x1, . . . , xn ∈ m with M/(x1, . . . , xn)M has finite length.

Note that n always exists, since we can look at a bunch of generators of the maximal ideal,
and M/mM is a finite-dimensional vector space and is thus of finite length.

Proof. Induction on dim suppM . Note that dim supp(M) = 0 if and only if the Hilbert
polynomial has degree zero, i.e. M has finite length or that n = 0 (n being defined as in
the statement).

Suppose dim suppM > 0.

1. We first show that there are x1, . . . , xdimM with M/(x1, . . . , xdimM )M have finite
length. Let M ′ ⊂ M be the maximal submodule having finite length. There is an
exact sequence

0→M ′ →M →M ′′ → 0

where M ′′ = M/M ′ has no finite length submodules. In this case, we can basically
ignore M ′, and replace M by M ′′. The reason is that modding out by M ′ doesn’t
affect either n or the dimension.

So let us replace M with M ′′ and thereby assume that M has no finite length
submodules. In particular, M does not contain a copy of R/m, i.e. m /∈ Ass(M).
By prime avoidance, this means that there is x1 ∈ m that acts as a nonzerodivisor
on M . Thus

dimM/x1M = dimM − 1.
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The inductive hypothesis says that there are x2, . . . , xdimM with

(M/x1M)/(x2, . . . , xdimM )(M/xM) 'M/(x1, . . . , xdimM )M

of finite length. This shows the claim.

2. Conversely, suppose that there M/(x1, . . . , xn)M has finite length. Then we claim
that n ≥ dimM . This follows because we had the previous result that modding out
by a single element can chop off the dimension by at most 1. Recursively applying
this, and using the fact that dim of a finite length module is zero, we find

0 = dimM/(x1, . . . , xn)M ≥ dimM − n. N

Corollary 2.9 Let (R,m) be a local noetherian ring. Then dimR is equal to the minimal
n such that there exist x1, . . . , xn ∈ R with R/(x1, . . . , xn)R is artinian. Or, equivalently,
such that (x1, . . . , xn) contains a power of m.

Remark We manifestly have here that the dimension of R is at most the embedding
dimension. Here, we’re not worried about generating the maximal ideal, but simply some-
thing containing a power of it.

We have been talking about dimension. Let R be a local noetherian ring with maximal
ideal m. Then, as we have said in previous lectures, dimR can be characterized by:

1. The minimal n such that there is an n-primary ideal generated by n elements
x1, . . . , xn ∈ m. That is, the closed point m of SpecR is cut out set-theoretically
by the intersection

⋂
V (xi). This is one way of saying that the closed point can be

defined by n parameters.

2. The maximal n such that there exists a chain of prime ideals

p0 ⊂ p1 ⊂ · · · ⊂ pn.

3. The degree of the Hilbert polynomial f+(t), which equals `(R/mt) for t� 0.

2.5 Krull’s Hauptidealsatz

Let R be a local noetherian ring. The following is now clear from what we have shown:

Theorem 2.10 R has dimension 1 if and only if there is a nonzerodivisor x ∈ m such
that R/(x) is artinian.

Remark Let R be a domain. We said that a nonzero prime p ⊂ R is height one if p is
minimal among the prime ideals containing some nonzero x ∈ R.

According to Krull’s Hauptidealsatz, p has height one if and only if dimRp = 1.

We can generalize the notion of p as follows.
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Definition 2.11 Let R be a noetherian ring (not necessarily local), and p ∈ SpecR. Then
we define the height of p, denoted height(p), as dimRp. We know that this is the length
of a maximal chain of primes in Rp. This is thus the maximal length of prime ideals of R,

p0 ⊂ · · · ⊂ pn = p

that ends in p. This is the origin of the term “height.”

Remark Sometimes, the height is called the codimension. This corresponds to the
codimension in SpecR of the corresponding irreducible closed subset of SpecR.

Theorem 2.12 (Krull’s Hauptidealsatz) Let R be a noetherian ring, and x ∈ R a
nonzerodivisor. If p ∈ SpecR is minimal over x, then p has height one.

Proof. Immediate from Theorem 2.10. N

Theorem 2.13 (Artin-Tate) Let A be a noetherian domain. Then the following are
equivalent:

1. There is f ∈ A− {0} such that Af is a field.

2. A has finitely many maximal ideals and has dimension at most 1.

Proof. We follow [GD].
Suppose first that there is f with Af a field. Then all nonzero prime ideals of A

contain f . We need to deduce that A has dimension ≤ 1. Without loss of generality, we
may assume that A is not a field.

There are finitely many primes p1, . . . , pk which are minimal over f ; these are all height
one. The claim is that any maximal ideal of A is of this form. Suppose m were maximal
and not one of the pi. Then by prime avoidance, there is g ∈ m which lies in no pi. A
minimal prime P of g has height one, so by our assumptions contains f . However, it is
then one of the pi; this is a contradiction as g ∈ P. N

2.6 Further remarks

We can recast earlier notions in terms of dimension.

Remark A noetherian ring has dimension zero if and only if R is artinian. Indeed, R has
dimension zero iff all primes are maximal.

Remark A noetherian domain has dimension zero iff it is a field. Indeed, in this case (0)
is maximal.

Remark R has dimension ≤ 1 if and only if every non-minimal prime of R is maximal.
That is, there are no chains of length ≥ 2.

Remark A (noetherian) domain R has dimension ≤ 1 iff every nonzero prime ideal is
maximal.

In particular,

Proposition 2.14 R is Dedekind iff it is a noetherian, integrally closed domain of di-
mension 1.
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§3 Further topics

3.1 Change of rings

Let f : R→ R′ be a map of noetherian rings.

Question What is the relationship between dimR and dimR′?

A map f gives a map SpecR′ → SpecR, where SpecR′ is the union of various fibers
over the points of SpecR. You might imagine that the dimension is the dimension of R
plus the fiber dimension. This is sometimes true.

Now assume that R,R′ are local with maximal ideals m,m′. Assume furthermore that
f is local, i.e. f(m) ⊂ m′.

Theorem 3.1 dimR′ ≤ dimR+ dimR′/mR′. Equality holds if f : R→ R′ is flat.

Here R′/mR′ is to be interpreted as the “fiber” of SpecR′ above m ∈ SpecR. The
fibers can behave weirdly as the basepoint varies in SpecR, so we can’t expect equality in
general.

Remark Let us review flatness as it has been a while. An R-module M is flat iff the
operation of tensoring with M is an exact functor. The map f : R → R′ is flat iff
R′ is a flat R-module. Since the construction of taking fibers is a tensor product (i.e.
R′/mR′ = R′ ⊗R R/m), perhaps the condition of flatness here is not as surprising as it
might be.

Proof. Let us first prove the inequality. Say

dimR = a, dimR′/mR′ = b.

We’d like to see that

dimR′ ≤ a+ b.

To do this, we need to find a + b elements in the maximal ideal m′ that generate a m′-
primary ideal of R′.

There are elements x1, . . . , xa ∈ m that generate an m-primary ideal I = (x1, . . . , xa)
in R. There is a surjection R′/IR′ � R′/mR′. The kernel mR′/IR′ is nilpotent since I
contains a power of m. We’ve seen that nilpotents don’t affect the dimension. In particular,

dimR′/IR′ = dimR′/mR′ = b.

There are thus elements y1, . . . , yb ∈ m′/IR′ such that the ideal J = (y1, . . . , yb) ⊂ R′/IR′
is m′/IR′-primary. The inverse image of J in R′, call it J ⊂ R′, is m′-primary. However,
J is generated by the a+ b elements

f(x1), . . . , f(xa), y1, . . . , yb

if the yi lift yi.
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But we don’t always have equality. Nonetheless, if all the fibers are similar, then we
should expect that the dimension of the “total space” SpecR′ is the dimension of the
“base” SpecR plus the “fiber” dimension SpecR′/mR′. The precise condition of f flat
articulates the condition that the fibers “behave well.” Why this is so is something of a
mystery, for now. But for some evidence, take the present result about fiber dimension.

Anyway, let us now prove equality for flat R-algebras. As before, write a = dimR, b =
dimR′/mR′. We’d like to show that

dimR′ ≥ a+ b.

By what has been shown, this will be enough. This is going to be tricky since we now
need to give lower bounds on the dimension; finding a sequence x1, . . . , xa+b such that the
quotient R/(x1, . . . , xa+b) is artinian would bound above the dimension.

So our strategy will be to find a chain of primes of length a + b. Well, first we know
that there are primes

q0 ⊂ q1 ⊂ · · · ⊂ qb ⊂ R′/mR′.
Let qi be the inverse images in R′. Then the qi are a strictly ascending chain of primes
in R′ where q0 contains mR′. So we have a chain of length b; we need to extend this by
additional terms.

Now f−1(q0) contains m, hence is m. Since dimR = a, there is a chain {pi} of prime
ideals of length a going down from f−1(q0) = m. We are now going to find primes p′i ⊂ R′
forming a chain such that f−1(p′i) = pi. In other words, we are going to lift the chain pi to
SpecR′. We can do this at the first stage for i = a, where pa = m and we can set p′a = q0.
If we can indeed do this lifting, and catenate the chains qj , p

′
i, then we will have a chain

of the appropriate length.
We will proceed by descending induction. Assume that we have p′i+1 ⊂ R′ and

f−1(p′i+1) = pi+1 ⊂ R. We want to find p′i ⊂ p′i+1 such that f−1(p′i) = pi. The exis-
tence of that prime is a consequence of the following general fact.

Theorem 3.2 (Going down) Let f : R → R′ be a flat map of noetherian commutative
rings. Suppose q ∈ SpecR′, and let p = f−1(q). Suppose p0 ⊂ p is a prime of R. Then
there is a prime q0 ⊂ q with

f−1(q0) = p0.

Proof. We may replace R′ with R′q. There is still a map

R→ R′q

which is flat as localization is flat. The maximal ideal in R′q has inverse image p. So the
problem now reduces to finding some p0 in the localization that pulls back appropriately.

Anyhow, throwing out the old R and replacing with the localization, we may assume
that R′ is local and q the maximal ideal. (The condition q0 ⊂ q is now automatic.)

The claim now is that we can replace R with R/p0 and R′ with R′/p0R
′ = R′⊗R/p0.

We can do this because base change preserves flatness (see below), and in this case we can
reduce to the case of p0 = (0)—in particular, R is a domain. Taking these quotients just
replaces SpecR,SpecR′ with closed subsets where all the action happens anyhow.

Under these replacements, we now have:

283



The CRing Project, §10.3.

1. R′ is local with maximal ideal q

2. R is a domain and p0 = (0).

We want a prime of R′ that pulls back to (0) in R. I claim that any minimal prime of
R′ will work. Suppose otherwise. Let q0 ⊂ R′ be a minimal prime, and suppose x ∈
R ∩ f−1(q0)− {0}. But q0 ∈ Ass(R′). So f(x) is a zerodivisor on R′. Thus multiplication
by x on R′ is not injective.

But, R is a domain, so R
x→ R is injective. Tensoring with R′ must preserve this,

implying that R′
x→ R′ is injective because R′ is flat. This is a contradiction. N

We used:

Lemma 3.3 Let R→ R′ be a flat map, and S an R-algebra. Then S → S ⊗RR′ is a flat
map.

Proof. The construction of taking an S-module with S⊗RR′ is an exact functor, because
that’s the same thing as taking an S-module, restricting to R, and tensoring with R′. N

The proof of the fiber dimension theorem is now complete.

3.2 The dimension of a polynomial ring

Adding an indeterminate variable corresponds geometrically to taking the product with
the affine line, and so should increase the dimension by one. We show that this is indeed
the case.

Theorem 3.4 Let R be a noetherian ring. Then dimR[X] = dimR+ 1.

Interestingly, this is false if R is non-noetherian, cf. []. Let R be a ring of dimension
n.

Lemma 3.5 dimR[x] ≥ dimR+ 1.

Proof. Let p0 ⊂ · · · ⊂ pn be a chain of primes of length n = dimR. Then p0R[x] ⊂ · · · ⊂
pnR[x] ⊂ (x, pn)R[x] is a chain of primes in R[x] of length n+ 1 because of the following
fact: if q ⊂ R is prime, then so is qR[x] ⊂ R[x].2 Note also that as pn ( R, we have that
pnR[x] ( (x, pn). So this is indeed a legitimate chain. N

Now we need only show:

Lemma 3.6 Let R be noetherian of dimension n. Then dimR[x] ≤ dimR+ 1.

2This is because R[x]/qR[x] = (R/q)[x] is a domain.
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Proof. Let q0 ⊂ · · · ⊂ qm ⊂ R[x] be a chain of primes in R[x]. Let m = qm ∩ R. Then if
we localize and replace R with Rm, we get a chain of primes of length m in Rm[x]. In fact,
we get more. We get a chain of primes of length m in (R[x])qm , and a local inclusion of
noetherian local rings

Rm ↪→ (R[x])qm .

To this we can apply the fiber dimension theorem. In particular, this implies that

m ≤ dim(R[x])qm ≤ dimRm + dim(R[x])qm/m(R[x])qm .

Here dimRm ≤ dimR = n. So if we show that dim(R[x])qm/m(R[x])qm ≤ 1, we will have
seen that m ≤ n+1, and will be done. But this last ring is a localization of (Rm/mRm)[x],
which is a PID by the euclidean algorithm for polynomial rings over a field, and thus of
dimension ≤ 1. N

3.3 A refined fiber dimension theorem

Let R be a local noetherian domain, and let R → S be an injection of rings making S
into an R-algebra. Suppose S is also a local domain, such that the morphism R → S is
local. This is essentially the setup of Section 3.2, but in this section, we make the refining
assumption that S is essentially of finite type over R; in other words, S is the localization
of a finitely generated R-algebra.

Let k be the residue field of R, and k′ that of S; because R → S is local, there is
induced a morphism of fields k → k′. We shall prove, following [GD]:

Theorem 3.7 (Dimension formula)

dimS + tr.deg.S/R ≤ dimR+ tr.deg.k′/k. (10.1)

Here tr.deg.B/A is more properly the transcendence degree of the quotient field of B over
that of A. Geometrically, it corresponds to the dimension of the “generic” fiber.

Proof. Let m ⊂ R be the maximal ideal. We know that S is a localization of an algebra
of the form (R[x1, . . . , xk])/p where p ⊂ R[x1, . . . , xn] is a prime ideal q. We induct on k.

Since we can “dévissage” the extension R→ S as the composite

R→ (R[x1, . . . , xk−1]/(p ∩R[x1, . . . , xk−1])q′ → S,

(where q′ ∈ SpecR[x1, . . . , xk−1]/(p ∩R[x1, . . . , xk−1] is the pull-back of q), we see that it
suffices to prove (10.1) when k = 1, that is S is the localization of a quotient of R[x].

So suppose k = 1. Then we have S = (R[x])q/p where q ⊂ R[x] is another prime ideal
lying over m. Let us start by considering the case where q = 0.

Lemma 3.8 Let (R,m) be a local noetherian domain as above. Let S = R[x]q where
q ∈ SpecR[x] is a prime lying over m. Then (10.1) holds with equality.
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Proof. In this case, tr.deg.S/R = 1. Now q could be mR[x] or a prime ideal containing
that, which is then automatically maximal, as we know from the proof of Section 3.2.
Indeed, primes containing mR[x] are in bijection with primes of R/m[x], and these come
in two forms: zero, and those generated by one element. (Note that in the former case,
the residue field is the field of rational functions k(x) and in the second, the residue field
is finite over k.)

1. In the first case, dimS = dimR[x]mR[x] = dimR and but the residue field extension
is (R[x]mR[x])/mR[x]mR[x] = k(x), so tr.deg.k′/k = 1 and the formula is satisfied.

2. In the second case, q properly contains mR[x]. Then dimR[x]q = dimR+ 1, but the
residue field extension is finite. So in this case too, the formula is satisfied. N

Now, finally, we have to consider the case where p ⊂ R[x] is not zero, and we have
S = (R[x]/p)q for q ∈ SpecR[x]/p lying over m. In this case, tr.deg.S/R = 0. So we need
to prove

dimS ≤ dimR+ tr.deg.k′/k.

Let us, by abuse of notation, identify q with its preimage in R[x]. (Recall that SpecR[x]/p
is canonically identified as a closed subset of SpecR[x].) Then we know that dim(R[x]/p)q
is the largest chain of primes in R[x] between p, q. In particular, it is at most dimR[x]q −
heightp ≤ dimR+ 1− 1 = dimR. So the result is clear. N

In [GD], this is used to prove the geometric result that if φ : X → Y is a morphism
of varieties over an algebraically closed field (or a morphism of finite type between nice
schemes), then the local dimension (that is, the dimension at x) of the fiber φ−1(φ(x)) is
an upper semi-continuous function of x ∈ X.

3.4 An infinite-dimensional noetherian ring

We shall now present an example, due to Nagata, of an infinite-dimensional noetherian
ring. Note that such a ring cannot be local.

Consider the ring R = C[{xi,j}0≤i≤j ] of polynomials in infinitely many variables xi,j .
This is clearly an infinite-dimensional ring, but it is also not noetherian. We will localize
it suitably to make it noetherian.

Let pn ⊂ R be the ideal (x1,n, x2,n, . . . , xn,n) for all i ≤ n. Let S = R−
⋃
pn; this is a

multiplicatively closed set.

Theorem 3.9 (Nagata) The ring S−1R is noetherian and has infinite dimension.

We start with

Proposition 3.10 The ring in the statement of the problem is noetherian.

The proof is slightly messy, so we first prove a few lemmas.
Let R′ = S−1R as in the problem statement. We start by proving that every ideal

in R′ is contained in one of the pn (which, by abuse of notation, we identify with their
localizations in R′ = S−1R). In particular, the pn are the maximal ideals in R′.
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Lemma 3.11 The pn are the maximal ideals in R′.

Proof. We start with an observation:

If f 6= 0, then f belongs to only finitely many pn.

To see this, let us use the following notation. If M is a monomial, we let S(M) denote
the set of subscripts xa,b that occur and S2(M) the set of second subscripts (i.e. the b’s).
For f ∈ R, we define S(f) to be the intersection of the S(M) for M a monomial occurring
nontrivially in f . Similarly we define S2(f).

Let us prove:

Lemma 3.12 f ∈ pn iff n ∈ S2(f). Moreover, S(f) and S2(f) are finite for any f 6= 0.

Proof. Indeed, f ∈ pn iff every monomial in f is divisible by some xi,n, i ≤ n, as pn =
(xi,n)i≤n. From this the first assertion is clear. The second too, because f will contain a
nonzero monomial, and that can be divisible by only finitely many xa,b. N

From this, it is clear how to define S2(f) for any element in R′, not necessarily a polynomial
in R. Namely, it is the set of n such that f ∈ pn. It is now clear, from the second statement
of the lemma, that any f 6= 0 lies in only finitely many pn. In particular, the observation
has been proved.

Let T = {S2(f), f ∈ I − 0}. I claim that ∅ ∈ T iff I = (1). For ∅ ∈ T iff there is a
polynomial lying in no pn. Since the union

⋃
pn is the set of non-units (by construction),

we find that the assertion is clear.

Lemma 3.13 T is closed under finite intersections.

Proof. Suppose T1, T2 ∈ T . Without loss of generality, there are polynomials F1, F2 ∈ R
such that S2(F1) = T1, S2(F2) = T2. A generic linear combination aF1+bF2 will involve no
cancellation for a, b ∈ C, and the monomials in this linear combination will be the union of
those in F1 and those in F2 (scaled appropriately). So S2(aF1 + bF2) = S2(F1)∩S2(F2).N

Finally, we can prove the result that the pn are the only maximal ideals. Suppose I
was contained in no pn, and form the set T as above. This is a collection of finite sets.
Since I 6⊂ pn for each n, we find that n /∈

⋂
T∈T T . This intersection is thus empty. It

follows that there is a finite intersection of sets in T which is empty as T consists of finite
sets. But T is closed under intersections. There is thus an element in I whose S2 is empty,
and is thus a unit. Thus I = (1). N

We have proved that the pn are the only maximal ideals. This is not enough, though.
We need:

Lemma 3.14 R′pn is noetherian for each n.

Proof. Indeed, any polynomial involving the variables xa,b for b 6= n is invertible in this
ring. We see that this ring contains the field

C({xa,b, b 6= n}),

287



The CRing Project, §10.3.

and over it is contained in the field C({xa,b, ∀a, b}). It is a localization of the algebra
C({xa,b, b 6= n})[x1,n, . . . , xn,n] and is consequently noetherian by Hilbert’s basis theo-
rem. N

The proof will be completed with:

Lemma 3.15 Let R be a ring. Suppose every element x 6= 0 in the ring belongs to only
finitely many maximal ideals, and suppose that Rm is noetherian for each m ⊂ R maximal.
Then R is noetherian.

Proof. Let I ⊂ R be a nonzero ideal. We must show that it is finitely generated. We
know that I is contained in only finitely many maximal ideals m1, . . . ,mk. At each of
these maximal ideals, we know that Imi is finitely generated. Clearing denominators, we
can choose a finite set of generators in R. So we can collect them together and get a finite
set a1, . . . , aN ⊂ I which generate Imi ⊂ Rmi for each i. It is not necessarily true that
J = (a1, . . . , aN ) = I, though we do have ⊂. However, Im = Jm except at finitely many
maximal ideals n1, . . . , nM because a nonzero element is a.e. a unit. However, these nj are
not among the mi. In particular, for each j, there is bj ∈ I − nj as I 6⊂ nj . Then we find
that the ideal

(a1, . . . , aN , b1, . . . , bM ) ⊂ I N

becomes equal to I in all the localizations. So it is I, and I is finitely generated

We need only see that the ring R′ has infinite dimension. But for each n, there is a
chain of primes (x1,n) ⊂ (x1,n, x2,n) ⊂ · · · ⊂ (x1,n, . . . , xn,n) of length n−1. The supremum
of the lengths is thus infinite.

3.5 Catenary rings

Definition 3.16 A ring R is catenary if given any two primes p ( p′, any two maximal
prime chains from p to p′ have the same length.

Nagata showed that there are noetherian domains which are not catenary. We shall see
that affine rings, or rings finitely generated over a field, are always catenary.

Definition 3.17 If p ∈ SpecR, then dimp := dimR/p.

Lemma 3.18 Let S be a k-affine domain with tr.d.kS = n, and let p ∈ SpecS be height
one. Then tr.d.k(S/p) = n− 1.

Proof. Case 1: assume S = k[x1, . . . , xn] is a polynomial algebra. In this case, height 1
primes are principal, so p = (f) for some f . Say f has positive degree with respect to x1,
so f = gr(x2, . . . , xn)xr1 + · · · . We have that k[x2, . . . , xn] ∩ (f) = (0) (just look at degree
with respect to x1). It follows that k[x2, . . . , xn] ↪→ S/(f), so x̄2, . . . , x̄n are algebraically
independent in S/p. By x̄1 is algebraic over Q(k[x̄2, . . . , x̄n]) as witnessed by f . This,
tr.d.kS/p = n− 1.

Case 2: reduction to case 1. Let R = k[x1, . . . , xn] be a Noether normalization for S,
and let p0 = p ∩ R. Observe that Going Down applies (because S is a domain and R is
normal). It follows that htR(p0) = htS(p) = 1. By case 1, we get that tr.d.(R/p0) = n−1.
By (∗), we get that tr.d.R/p0 = tr.d.(S/p). N

288



The CRing Project, §10.3.

Theorem 3.19 Any k-affine algebra S is catenary (even if S is not a domain). In fact,
any saturated prime chain from p to p′ has length dimp − dimp′. If S is a domain, then
all maximal ideals have the same height.

Proof. Consider any chain p ( p1 ( · · · ( pr = p′. Then we get the chain

S/p� S/p1 � · · ·� S/pr = S/p′

Here pi/pi−1 is height 1 in S/pi−1, so each arrow decreases the transcendence degree by
exactly 1. Therefore, tr.d.kS/p

′ = tr.d.kS/p− r.

r = tr.d.kS/p− tr.d.kS/p′ = dimS/p− dimS/p′ = dimp− dimp′.

To get the last statement, take p = 0 and p′ = m. Then we get that ht(m) = dimS. N

Note that the last statement fails in general.

Example 3.20 Take S = k × k[x1, . . . , xn]. Then ht(0 × k[x1, . . . , xn]) = 0, but ht
(
k ×

(x1, . . . , xn)
)

= n.

But that example is not connected.

Example 3.21 S = k[x, y, z]/(xy, xz).

But this example is not a domain. In general, for any prime p in any ring S, we have

ht(p) + dimp ≤ dimS.

Theorem 3.22 Let S be an affine algebra, with minimal primes {p1, . . . , pr}. Then the
following are equivalent.

1. dimpi are all equal.

2. ht(p) + dimp = dimS for all primes p ∈ SpecS. In particular, if S is a domain, we
get this condition.

Proof. (1⇒ 2) ht(p) is the length of some saturated prime chain from p to some minimal
prime pi. This length is dimpi − dimp = dimS − dimp (by condition 1). Thus, we get (2).

(2⇒ 1) Apply (2) to the minimal prime pi to get dimpi = dimS for all i. N

We finish with a (non-affine) noetherian domain S with maximal ideals of different heights.
We need the following fact.
Fact: If R is a ring with a ∈ R, then there is a canonical R-algebra isomorphism R[x]/(ax−
1) ∼= R[a−1], x↔ a−1.

Example 3.23 Let
(
R, (pi)

)
be a DVR with quotient field K. Let S = R[x], and assume

for now that we know that dimS = 2. Look at m2 = (pi, x) and m1 = (pix − 1). Note
that m1 is maximal because S/m1 = K. It is easy to show that ht(m1) = 1. However,
m2 ) (x) ) (0), so ht(m2) = 2.
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3.6 Dimension theory for topological spaces

The present subsection (which consists mostly of exercises) is a digression that may illu-
minate the notion of Krull dimension.

Definition 3.24 Let X be a topological space.3 Recall that X is irreducible if cannot
be written as the union of two proper closed subsets F1, F2 ( X.

We say that a subset of X is irreducible if it is irreducible with respect to the induced
topology.

In general, this notion is not valid from the topological spaces familiar from analysis.
For instance:

Exercise 10.1 Points are the only irreducible subsets of R.

Nonetheless, irreducible sets behave very nicely with respect to certain operations. As
you will now prove, if U ⊂ X is an open subset, then the irreducible closed subsets of U
are in bijection with the irreducible closed subsets of X that intersect U .

Exercise 10.2 A space is irreducible if and only if every open set is dense, or alternatively
if every open set is connected.

Exercise 10.3 Let X be a space, Y ⊂ X an irreducible subset. Then Y ⊂ X is irre-
ducible.

Exercise 10.4 Let X be a space, U ⊂ X an open subset. Then the map Z → Z ∩ U
gives a bijection between the irreducible closed subsets of X meeting U and the irreducible
closed subsets of U . The inverse is given by Z ′ → Z ′.

As stated above, the notion of irreducibility is useless for spaces like manifolds. In
fact, by ?? 10.2, a Hausdorff space cannot be irreducible unless it consists of one point.
However, for the highly non-Hausdorff spaces encountered in algebraic geometry, this
notion is very useful.

Let R be a commutative ring, and X = SpecR.

Exercise 10.5 A closed subset F ⊂ SpecR is irreducible if and only if it can be written
in the form F = V (p) for p ⊂ R prime. In particular, SpecR is irreducible if and only if
R has one minimal prime.

In fact, spectra of rings are particularly nice: they are sober spaces.

Definition 3.25 A space X is called sober if to every irreducible closed F ⊂ X, there
is a unique point ξ ∈ F such that F = {ξ}. This point is called the generic point.

Exercise 10.6 Check that if X is any topological space and ξ ∈ X, then the closure {ξ}
of the point ξ is irreducible.

3We do not include the empty space.
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Exercise 10.7 Show that SpecR for R a ring is sober.

Exercise 10.8 Let X be a space with a cover {Xα} by open subsets, each of which is a
sober space. Then X is a sober space. (Hint: any irreducible closed subset must intersect
one of the Xα, so is the closure of its intersection with that one.)

We now come to the main motivation of this subsection, and the reason for its inclusion
here.

Definition 3.26 Let X be a topological space. Then the dimension (or combinatorial
dimension) of X is the maximal k such that a chain

F0 ( F1 ( · · · ( Fk ⊂ X

with the Fi irreducible, exists. This number is denoted dimX and may be infinite.

Exercise 10.9 What is the Krull dimension of R?

Exercise 10.10 Let X =
⋃
Xi be the finite union of subsets Xi ⊂ X.

Exercise 10.11 Let R be a ring. Then dim SpecR is equal to the Krull dimension of R.

Most of the spaces one wishes to work with in standard algebraic geometry have a
strong form of compactness. Actually, compactness is the wrong word, since the spaces of
algebraic geometry are not Hausdorff.

Definition 3.27 A space is noetherian if every descending sequence of closed subsets
F0 ⊃ F1 ⊃ . . . stabilizes.

Exercise 10.12 If R is noetherian, SpecR is noetherian as a topological space.

3.7 The dimension of a tensor product of fields

The following very clear result gives us the dimension of the tensor product of fields.

Theorem 3.28 (Grothendieck-Sharp) Let K,L be field extensions of a field k. Then

dimK ⊗k L = min(tr.deg.K, tr.deg.L).

This result is stated in the errata of [GD], vol IV (4.2.1.5), but that did not make it well-
known; apparently it was independently discovered and published again by R. Y. Sharp,
ten years later.4 Note that in general, this tensor product is not noetherian.

4Thanks to Georges Elencwajg for a helpful discussion at http://math.stackexchange.com/

questions/56669/a-tensor-product-of-a-power-series/56794.
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Proof. We start by assuming K is a finitely generated, purely transcendental extension of
k. Then K is the quotient field of a polynomial ring k[x1, . . . , xn]. It follows that K ⊗k L
is a localization of L[x1, . . . , xn], and consequently of dimension at most n = tr.deg.K.

Now the claim is that if tr.deg.L > n, then we have equality

dimK ⊗k L = n.

To see this, we have to show that K ⊗k L admits an L-homomorphism to L. For then
there will be a maximal ideal m of K ⊗k L which comes from a maximal ideal M of
L[x1, . . . , xn] (corresponding to this homomorphism). Consequently, we will have (K ⊗k
L)m = (L[x1, . . . , xn])M, which has dimension n.

So we need to produce this homomorphism K ⊗k L → L. Since K = k(x1, . . . , xn)
and L has transcendence degree more than n, we just choose n algebraically independent
elements of L, and use that to define a map of k-algebras K → L. By the universal
property of the tensor product, we get a section K ⊗k L → L. This proves the result in
the case where K is a finitely generated, purely transcendental extension.

Now we assume that K has finite transcendence degree over k, but is not necessarily
purely transcendental. Then K contains a subfield E which is purely transcendental over
k and such that E/K is algebraic. Then K ⊗k L is integral over its subring E ⊗k L. The
previous analysis applies to E ⊗k L, and by integrality the dimensions of the two objects
are the same.

Finally, we need to consider the case when K is allowed to have infinite transcendence
degree over k. Again, we may assume that K is the quotient field of the polynomial
ring k[{xα}] (by the integrality argument above). We need to show that if L has larger
transcendence degree than K, then dimK⊗kL =∞. As before, there is a section K⊗kL→
L, and K ⊗k L is a localization of the polynomial ring L[{xα}]. If we take the maximal
ideal in L[{xα}] corresponding to this section K ⊗k L → L, it is of the form (xα − tα)α
for the tα ∈ L. It is easy to check that the localization of L[{xα}] at this maximal ideal,
which is a localization of K ⊗k L, has infinite dimension. N
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Chapter 11

Completions

The algebraic version of completion is essentially analogous to the familiar process of
completing a metric space as in analysis, i.e. the process whereby R is constructed from
Q. Here, however, the emphasis will be on how the algebraic properties and structure
pass to the completion. For instance, we will see that the dimension is invariant under
completion for noetherian local rings.

Completions are used in geometry and number theory in order to give a finer picture
of local structure; for example, taking completions of rings allows for the recovery of a
topology that looks more like the Euclidean topology as it has more open sets than the
Zariski topology. Completions are also used in algebraic number theory to allow for the
study of fields around a prime number (or prime ideal).

§1 Introduction

1.1 Motivation

Let R be a commutative ring. Consider a maximal ideal m ∈ SpecR. If one thinks of
SpecR as a space, and R as a collection of functions on that space, then Rm is to be
interpreted as the collection of “germs” of functions defined near the point m. (In the
language of schemes, Rm is the stalk of the structure sheaf.)

However, the Zariski topology is coarse, making it difficult small neighborhoods of m.
Thus the word “near” is to be taken with a grain of salt.

Example 1.1 Let X be a compact Riemann surface, and let x ∈ X. Let R be the ring
of holomorphic functions on X − {x} which are meromorphic at x. In this case, SpecR
has the ideal (0) and maximal ideals corresponding to functions vanishing at some point
in X − {x}. So SpecR is X − {x} together with a “generic” point.

Let us just look at the closed points. If we pick y ∈ X − {x}, then we can consider
the local ring Ry =

{
s−1r, s(y) 6= 0

}
. This ring is a direct limit of the rings O(U) of

holomorphic functions on open sets U that extend meromorphically to X. Here, however,
U ranges only over open subsets of X containing y that are the nonzero loci of elements
R. Thus U really ranges over complements of finite subsets. It does not range over open
sets in the complex topology.

Near y, X looks like C in the complex topology. In the Zariski topology, this is not
the case. Each localization Ry actually remembers the whole Riemann surface. Indeed,
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the quotient field of Ry is the rational function field of X, which determines X. Thus Ry
remembers too much, and it fails to give a truly local picture near y.

We would like a variant of localization that would remember much less about the global
topology.

1.2 Definition

Definition 1.2 Let R be a commutative ring and I ⊂ R an ideal. Then we define the
completion of R at I as

R̂I = lim←−R/I
n.

By definition, this is the inverse limit of the quotients R/In, via the tower of commutative
rings

· · · → R/I3 → R/I2 → R/I

where each map is the natural reduction map. Note that R̂I is naturally an R-algebra. If
the map R→ R̂I is an isomorphism, then R is said to be I-adically complete.

In general, though, we can be more general. Suppose R is a commutative ring with a
linear topology. Consider a neighborhood basis at the origin consisting of ideals {Iα}.

Definition 1.3 The completion R̂ of the topological ring R is the inverse limit R-algebra

lim←−R/Iα,

where the maps R/Iα → R/Iβ for Iα ⊂ Iβ are the obvious ones. R̂ is given a structure of
a topological ring via the inverse limit topology.

If the map R→ R̂ is an isomorphism, then R is said to be complete.

The collection of ideals {Iα} is a directed set, so we can talk about inverse limits over
it. When we endow R with the I-adic topology, we see that the above definition is a
generalization of Definition 1.2.

Exercise 11.1 Let R be a linearly topologized ring. Then the map R→ R̂ is injective if
and only if

⋂
Iα = 0 for the Iα open ideals; that is, if and only if R is Hausdorff.

Exercise 11.2 If R/Iα is finite for each open ideal Iα ⊂ R, then R̂ is compact as a
topological ring. (Hint: Tychonoff’s theorem.)

TO BE ADDED: Notation needs to be worked out for the completion
The case of a local ring is particularly important. Let R be a local ring and m its

maximal ideal. Then the completion of R with respect to m, denoted R̂, is the inverse
limit R̂ = lim←(R/mnR). We then topologize R̂ by setting powers of m to be basic open
sets around 0. The topology formed by these basic open sets is called the “Krull” or
“m-adic topology.”

In fact, the case of local rings is the most important one. Usually, we will complete
R at maximal ideals. If we wanted to study R near a prime p ∈ SpecR, we might first
replace R by Rp, which is a local ring; we might make another approximation to R by
completing Rp. Then we get a complete local ring.
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Definition 1.4 Let R be a ring, M an R-module, I ⊂ R an ideal. We define the com-
pletion of M at I as

M̂I = lim←−M/InM.

This is an inverse limit of R-modules, so it is an R-module. Furthermore, it is even an
R̂I -module, as one easily checks. It is also functorial.

In fact, we get a functor

R−modules→ R̂I −modules.

1.3 Classical examples

Let us give some examples.

Example 1.5 Recall that in algebraic number theory, a number field is a finite dimen-
sional algebraic extension of Q. Sitting inside of Q is the ring of integers, Z. For any
prime number p ∈ Z, we can localize Z to the prime ideal (p) giving us a local ring Z(p).
If we take the completion of this local ring we get the p-adic numbers Qp. Notice that
since Z(p)/p

n ∼= Z/p, this is really the same as taking the inverse limit lim← Z/pn.

Example 1.6 Let X be a Riemann surface. Let x ∈ X be as before, and let R be as
before: the ring of meromorphic functions on X with poles only at x. We can complete R
at the ideal my ⊂ R corresponding to y ∈ X − {x}. This is always isomorphic to a power
series ring

C[[t]]

where t is a holomorphic coordinate at y.
The reason is that if one considers R/mn

y , one always gets C[t]/(tn), where t corresponds
to a local coordinate at y. Thus these rings don’t remember much about the Riemann
surface. They’re all isomorphic, for instance.

Remark There is always a map R→ R̂I by taking the limit of the maps R/Ii.

1.4 Noetherianness and completions

A priori, one might think this operation of completion gives a big mess. The amazing
thing is that for noetherian rings, completion is surprisingly well-behaved.

Proposition 1.7 Let R be noetherian, I ⊂ R an ideal. Then R̂I is noetherian.

Proof. Choose generators x1, . . . , xn ∈ I. This can be done as I is finitely generated
Consider a power series ring

R[[t1, . . . , tn]];

the claim is that there is a map R[[t1 . . . tn]]→ R̂I sending each ti to xi ∈ R̂I . This is not
trivial, since we aren’t talking about a polynomial ring, but a power series ring.

To build this map, we want a compatible family of maps

R[[t1, . . . , tn]]→ R[t1, . . . , tn]/(t1, . . . , tn)k → R/Ik.

295



The CRing Project, §11.1.

where the second ring is the polynomial ring where homogeneous polynomials of degree
≥ k are killed. There is a map from R[[t1, . . . , tn]] to the second ring that kills monomials
of degree ≥ k. The second map R[t1, . . . , tn]/(t1, . . . , tn)k → R/Ik sends ti → xi and is
obviously well-defined.

So we get the map

φ : R[[t1, . . . , tn]]→ R̂I ,

which I claim is surjective. Let us prove this. Suppose a ∈ R̂I . Then a can be thought of
as a collection of elements (ak) ∈ R/Ik which are compatible with one another. We can
lift each ak to some ak ∈ R in a compatible manner, such that

ak+1 = ak + bk, bk ∈ Ik.

Since bk ∈ Ik, we can write it as

bk = fk(x1, . . . , xn)

for fk a polynomial in R of degree k, by definition of the generators in Ik.

I claim now that

a = φ
(∑

fk(t1, . . . , tn)
)
.

The proof is just to check modulo Ik for each k. This we do by induction. When one
reduces modulo Ik, one gets ak (as one easily checks).

As we have seen, R̂I is the quotient of a power series ring. In the homework, it was
seen that R[[t1, . . . , tn]] is noetherian; this is a variant of the Hilbert basis theorem proved
in class. So R̂I is noetherian. N

In fact, following [Ser65], we shall sometimes find it convenient to note a generalization
of the above argument.

Lemma 1.8 Suppose A is a filtered ring, M,N filtered A-modules and φ : M → N a
morphism of filtered modules. Suppose gr(φ) surjective and M,N complete; then φ is
surjective.

Proof. This will be a straightforward “successive approximation” argument. Indeed, let
{Mn} , {Nn} be the filtrations on M,N . Suppose n ∈ N . We know that there is m0 ∈M
such that

n− φ(m0) ∈ N1

since M/M1 → N/N1 is surjective. Similarly, we can choose m1 ∈M1 such that

n− φ(m0)− φ(m1) ∈M2

because n− φ(m0) ∈ N1 and M1/M2 → N1/N2 is surjective. We inductively continue the
sequence m2,m3, . . . such that it tends to zero rapidly; we then have that n−φ (

∑
mi) ∈⋂

Ni, so n = φ (
∑
mi) as N is complete. N
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Theorem 1.9 Suppose A is a filtered ring. Let M be a filtered A-module, separated with
respect to its topology. If gr(M) is noetherian over gr(A), then M is a noetherian A-
module.

Proof. If N ⊂ M , then we can obtain an induced filtration on N such that gr(N) is
a submodule of gr(M). Since noetherianness equates to the finite generation of each
submodule, it suffices to show that if gr(M) is finitely generated, so is M .

Suppose gr(M) is generated by homogeneous elements e1, . . . , en of degrees d1, . . . , dn,
represented by elements e1, . . . , en ∈M . From this we can define a map

An →M

sending the ith basis vector to ei. This will induce a surjection gr(An)→ gr(M). We will
have to be careful, though, exactly how we define the filtration on An, because the di may
have large degrees, and if we are not careful, the map on gr’s will be zero.

We choose the filtration such that at the mth level, we get the subgroup of An such
that the ith coordinate is in In−di (for {In} the filtration of A). It is then clear that the
associated map

gr(An)→ gr(M)

has image containing each ei. Since An is complete with respect to this topology, we find
that An → M is surjective by Lemma 1.8. This shows that M is finitely generated and
completes the proof. N

Corollary 1.10 Suppose A is a ring, complete with respect to the I-adic topology. If A/I
is noetherian and I/I2 a finitely generated A-module, then A is noetherian.

Proof. Indeed, we need to show that gr(A) is a noetherian ring (by Theorem 1.9). But
this is the ring

A/I ⊕ I/I2 ⊕ I2/I3 ⊕ . . . .

It is easy to see that this is generated by I/I2 as an A/I-algebra. By Hilbert’s basis
theorem, this is noetherian under the conditions of the result. N

Corollary 1.10 gives another means of showing that if a ring A is noetherian, then its
completion Â with respect to an ideal I ⊂ A is noetherian. For the algebra gr(A) (where
A is given the I-adic topology) is noetherian because it is finitely generated over A/I.
Moreover, gr(Â) = gr(A), so Â is noetherian.

§2 Exactness properties

The principal result of this section is:

Theorem 2.1 If R is noetherian and I ⊂ R an ideal, then the construction M → M̂I is
exact when restricted to finitely generated modules.
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Let’s be more precise. If M is finitely generated, and 0→ M ′ → M → M ′′ → 0 is an
exact sequence,1 then

0→ M̂ ′I → M̂I → M̂ ′′I → 0

is also exact.
We shall prove this theorem in several pieces.

2.1 Generalities on inverse limits

For a moment, let us step back and think about exact sequences of inverse limits of abelian
groups. Say we have a tower of exact sequences of abelian groups

0 // ...

��

// ...

��

// ...

��

// 0

0 // A2

��

// B2

��

// C2

��

// 0

0 // A1

��

// B1

��

// C1

��

// 0

0 // A0
// B0

// C0
// 0

.

Then we get a sequence

0→ lim←−An → lim←−Bn → lim←−Cn → 0.

In general, it is not exact. But it is left-exact.

Proposition 2.2 Hypotheses as above, 0→ lim←−An → lim←−Bn → lim←−Cn is exact.

Proof. It is obvious that φ ◦ ψ = 0.
Let us first show that φ : lim←−An → lim←−Bn is injective. So suppose a is in the projective

limit, represented by a compatible sequence of elements (ak) ∈ Ak. If φ maps to zero, all
the ak go to zero in Bk. Injectivity of Ak → Bk implies that each ak is zero. This implies
φ is injective.

Now let us show exactness at the next step. Let ψ : lim←−Bn → lim←−Cn and let b = (bk)
be in kerψ. This means that each bk gets killed when it maps to Ck. This means that
each bk comes from something in ak. These ak are unique by injectivity of Ak → Bk. It
follows that the ak have no choice but to be compatible. Thus (ak) maps into (bk). So b
is in the image of φ. N

So far, so good. We get some level of exactness. But the map on the end is not
necessarily surjective. Nonetheless:

Proposition 2.3 ψ : lim←−Bn → lim←−Cn is surjective if each An+1 → An is surjective.

1The ends are finitely generated by noetherianness.
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Proof. Say c ∈ lim←−Cn, represented by a compatible family (ck). We have to show that
there is a compatible family (bk) ∈ lim←−Bn which maps into c. It is easy to choose the bk
individually since Bk → Ck is surjective. The problem is that a priori we may not get
something compatible.

We construct bk by induction on then, therefore. Assume that bk which lifts ck has
been constructed. We know that ck receives a map from ck+1.

ck+1

��
bk // ck

.

Choose any x ∈ Bk+1 which maps to ck+1. However, x might not map down to bk, which
would screw up the compatibility conditions. Next, we try to adjust x. Consider x′ ∈ Bk
to be the image of x under Bk+1 → Bk. We know that x′− bk maps to zero in Ck, because
ck+1 maps to ck. So x′ − bk comes from something in Ak, call it a.

x // ck+1

��
bk // ck

.

But a comes from some a ∈ Ak+1. Then we define

bk+1 = x− a,

which adjustment doesn’t change the fact that bk+1 maps to ck+1. However, this adjust-
ment makes bk+1 compatible with bk. Then we construct the family bk by induction. We
have seen surjectivity. N

Now, let us study the exactness of completions.

Proof (Proof of Theorem 2.1). Let us try to apply the general remarks above to studying
the sequence

0→ M̂ ′I → M̂I → M̂ ′′I → 0.

Now M̂I = lim←−M/In. We can construct surjective maps

M/In �M ′′/In

whose inverse limits lead to M̂I → M̂ ′′I . The image is M/(M ′ + InM). What is the
kernel? Well, it is M ′ + InM/InM . This is equivalently

M ′/M ′ ∩ InM.

So we get an exact sequence

0→M ′/M ′ ∩ InM →M/InM →M ′′/InM ′′ → 0.
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By the above analysis of exactness of inverse limits, we get an exact sequence

0→ lim←−M
′/(InM ∩M ′)→ M̂I → M̂ ′′I → 0.

We of course have surjective maps M ′/InM ′ →M ′/(InM∩M ′) though these are generally
not isomorphisms. Something “divisible by In” in M but in M ′ is generally not divisible
by In in M ′. Anyway, we get a map

lim←−M
′/InM ′ → lim←−M

′/InM ∩M ′

where the individual maps are not necessarily isomorphisms. Nonetheless, I claim that
the map on inverse limits is an isomorphism. This will imply that completion is indeed
an exact functor.

But this follows because the filtrations {InM ′} , {InM ∩M ′} are equivalent in view of
the Artin-Rees lemma, Theorem 3.1. N

Last time, we were talking about completions. We showed that if R is noetherian and
I ⊂ R an ideal, an exact sequence

0→M ′ →M →M → 0

of finitely generated R-modules leads to a sequence

0→ M̂ ′I → M̂I → M̂ ;I → 0

which is also exact. We showed this using the Artin-Rees lemma.

Remark In particular, for finitely generated modules over a noetherian ring, completion
is an exact functor: if A→ B → C is exact, so is the sequence of completions. This can
be seen by drawing in kernels and cokernels, and using the fact that completions preserve
short exact sequences.

2.2 Completions and flatness

Suppose that M is a finitely generated R-module. Then there is a surjection Rn � M ,
whose kernel is also finitely generated as R is noetherian. It follows that M is finitely
presented. In particular, there is a sequence

Rm → Rn →M → 0.

We get an exact sequence
R̂m → R̂n → M̂ → 0

where the second map is just multiplication by the same m-by-n matrix as in the first
case.

Corollary 2.4 If M is finitely generated and R noetherian, there is a canonical isomor-
phism

M̂I 'M ⊗R R̂I .
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Proof. We know that there is a mapM → M̂I , so the canonical morphism φM : M⊗RR̂I →
M̂I exists (because this induces a map from M ⊗R R̂I). We need to check that it is an
isomorphism.

If there is an exact sequence M ′ →M →M ′′ → 0, there is a commutative diagram

M ′ ⊗R R̂I
φM′
��

//M ⊗R R̂I
φM
��

//M ′′ ⊗R R̂I

��

// 0

M̂ ′I
// M̂I

// M̂ ′′I
// 0

.

Exactness of completion and right-exactness of ⊗ implies that this diagram is exact. It
follows that if φM , φM ′ are isomorphisms, so is φM ′′ .

But any M ′′ appears at the end of such a sequence with M ′,M are free by the finite
presentation argument above. So it suffices to prove φ an isomorphism for finite frees,
which reduces to the case of φR an isomorphism. That is obvious. N

Corollary 2.5 If R is noetherian, then R̂I is a flat R-module.

Proof. Indeed, tensoring with R̂I is exact (because it is completion, and completion is
exact) on the category of finitely generated R-modules. Exactness on the category of all
R-modules follows by taking direct limits, since every module is a direct limit of finitely
generated modules, and direct limits preserve exactness. N

Remark Warning: M̂I is, in general, not M ⊗R R̂I when M is not finitely generated.
One example to think about is M = Z[t], R = Z. The completion of M at I = (p) is the
completion of Z[t] at pZ[t], which contains elements like

1 + pt+ p2t2 + . . . ,

which belong to the completion but not to R̂I ⊗M = Zp[t].

Remark By the Krull intersection theorem, if R is a local noetherian ring, then the map
from R→ R̂ is an injection.

§3 Hensel’s lemma

One thing that you might be interested in doing is solving Diophantine equations. Say
R = Z; you want to find solutions to a polynomial f(X) ∈ Z[X]. Generally, it is very
hard to find solutions. However, there are easy tests you can do that will tell you if there
are no solutions. For instance, reduce mod a prime. One way you can prove that there
are no solutions is to show that there are no solutions mod 2.

But there might be solutions mod 2 and yet you might not be sure about solutions
in Z. So you might try mod 4, mod 8, and so on—you get a whole tower of problems
to consider. If you manage to solve all these equations, you can solve the equations in
the 2-adic integers Z2 = Ẑ(2). But the Krull intersection theorem implies that Z→ Z2 is
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injective. So if you expected that there was a unique solution in Z, you might try looking
at the solutions in Z2 to be the solutions in Z.

The moral is that solving an equation over Z2 is intermediate in difficulty between Z/2
and Z. Nonetheless, it turns out that solving an equation mod Z/2 is very close to solving
it over Z2, thanks to Hensel’s lemma.

3.1 The result

Theorem 3.1 (Hensel’s Lemma) Let R be a noetherian ring, I ⊂ R an ideal. Let
f(X) ∈ R[X] be a polynomial such that the equation f(X) = 0 has a solution a ∈ R/I.
Suppose, moreover, that f ′(a) is invertible in R/I.

Then a lifts uniquely to a solution of the equation f(X) = 0 in R̂I .

Example 3.2 Let R = Z, I = (5). Consider the equation f(x) = x2 + 1 = 0 in R. This
has a solution modulo five, namely 2. Then f ′(2) = 4 is invertible in Z/5. So the equation
x2 + 1 = 0 has a solution in Z5. In other words,

√
−1 ∈ Z5.

Let’s prove Hensel’s lemma.

Proof. Now we have a ∈ R/I such that f(a) = 0 ∈ R/I and f ′(a) is invertible. The claim
is going to be that for each m ≥ 1, there is a unique element an ∈ R/In such that

an → a (I), f(an) = 0 ∈ R/In.

Uniqueness implies that this sequence (an) is compatible, and thus gives the required
element of the completion. It will be a solution of f(X) = 0 since it is a solution at each
element of the tower.

Let us now prove the claim. For n = 1, a1 = a necessarily. The proof is induction on
n. Assume that an exists and is unique. We would like to show that an+1 exists and is
unique. Well, if it is going to exist, when we reduce an+1 modulo In, we must get an or
uniqueness at the n-th step would fail.

So let a be any lifting of an to R/In+1. Then an+1 is going to be that lifting plus some
ε ∈ In/In+1. We want

f(a+ ε) = 0 ∈ R/In+1.

But this is

f(a) + εf ′(a)

because ε2 = 0 ∈ R/In+1. However, this lets us solve for ε, because then necessarily

ε = −f(a)
f ′(a) ∈ I

n. Note that f ′(a) ∈ R/In+1 is invertible. If you believe this for a moment,

then we have seen that ε exists and is unique; note that ε ∈ In because f(a) ∈ In.

Lemma 3.3 f ′(a) ∈ R/In+1 is invertible.

Proof. If we reduce this modulo R/I, we get the invertible element f ′(a) ∈ R/I. Note
also that the I/In+1 is a nilpotent ideal in R/In+1. So we are reduced to showing, more
generally:
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Lemma 3.4 Let A be a ring,2 J a nilpotent ideal.3 Then an element x ∈ A is invertible
if and only if its reduction in A/J is invertible.

Proof. One direction is obvious. For the converse, say x ∈ A has an invertible image. This
implies that there is y ∈ A such that xy ≡ 1 mod J . Say

xy = 1 +m,

where m ∈ J . But 1 +m is invertible because

1

1 +m
= 1−m+m2 ± . . . .

N

The expression makes sense as the high powers ofm are zero. So this means that y(1+m)−1

is the inverse to x. N

This was one of many versions of Hensel’s lemma. There are many ways you can
improve on a statement. The above version says something about “nondegenerate” cases,
where the derivative is invertible. There are better versions which handle degenerate cases.

Example 3.5 Consider x2 − 1; let’s try to solve this in Z2. Well, Z2 is a domain, so the
only solutions can be ±1. But these have the same reduction in Z/2. The lifting of the
solution is non-unique.

The reason why Hensel’s lemma fails is that f ′(±1) = ±2 is not invertible in Z/2. But
it is not far off. If you go to Z/4, we do get two solutions, and the derivative is at least
nonzero at those places.

One possible extension of Hensel’s lemma is to allow the derivative to be noninvertible,
but at least to bound the degree to which it is noninvertible. From this you can get
interesting information. But then you may have to look at equations R/In instead of just
R/I, where n depends on the level of noninvertibility.

Let us describe the multivariable Hensel lemma.

Theorem 3.6 Let f1, . . . , fn be polynomials in n variables over the ring R. Let J be the
Jacobian matrix ( ∂fi∂xj

). Suppose ∆ = detJ ∈ R[x1, . . . , xn].

If the system {fi(x) = 0} has a solution a ∈ (R/I)n in R/I for some ideal I satisfying
the condition that ∆(a) is invertible, then there is a unique solution of {fi(x) = 0} in R̂nI
which lifts a.

The proof is the same idea: successive approximation, using the invertibility of ∆.

2E.g. R/In+1.
3E.g. J = I/In+1.
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3.2 The classification of complete DVRs (characteristic zero)

Let R be a complete DVR with maximal ideal m and quotient field F . We let k := R/m;
this is the residue field and is, e.g., the integers mod p for the p-adic integers.

The main result that we shall prove is the following:

Theorem 3.7 Suppose k is of characteristic zero. Then R ' k[[X]], the power series
ring in one variable, with respect to the usual discrete valuation on k[[X]].

The “usual discrete valuation” on the power series ring is the order at zero. Inci-
dentally, this applies to the (non-complete) subring of C[[X]] consisting of power series
that converge in some neighborhood of zero, which is the ring of germs of holomorphic
functions at zero; the valuation again measures the zero at z = 0.

To prove it (following [Ser79]), we need to introduce another concept. A system of
representatives is a set S ⊂ R such that the reduction map S → k is bijective. A
uniformizer is a generator of the maximal ideal m. Then:

Proposition 3.8 If S is a system of representatives and π a uniformizer, we can write
each x ∈ R uniquely as

x =
∞∑
i=0

siπ
i, where si ∈ S.

Proof. Given x, we can find by the definitions s0 ∈ S with x − s0 ∈ πR. Repeating, we
can write x− s0 π ∈ R as x− s0 π− s1 ∈ πR, or x− s0 − s1π ∈ π2R. Repeat the process
inductively and note that the differences x−

∑n
i=0 siπ

i ∈ πn+1R tend to zero.

In the p-adic numbers, we can take {0, . . . , p − 1} as a system of representatives,
so we find each p-adic integer has a unique p-adic expansion x =

∑∞
i=0 xip

i for xi ∈
{0, . . . , p− 1}. N

We now prove the first theorem.

Proof. Note that Z− 0 ⊂ R gets sent to nonzero elements in the residue field k, which is
of characteristic zero. This means that Z− 0 ⊂ R consists of units, so Q ⊂ R.

Let L ⊂ R be a subfield. Then L ' L ⊂ k; if t ∈ k − L, I claim that there is L′ ⊃ R
containing L with t ∈ L′.

If t is transcendental, lift it to T ∈ R; then T is transcendental over L and is invertible
in R, so we can take L′ := L(T ).

If the minimal polynomial of t over L is f(X) ∈ k[X], we have f(t) = 0. Moreover,

f
′
(t) 6= 0 because these fields are of characteristic zero and all extensions are separable.

So lift f(X) to f(X) ∈ R[X]; by Hensel lift t to u ∈ R with f(u) = 0. Then f is
irreducible in L[X] (otherwise we could reduce a factoring to get one of f ∈ L[X]), so
L[u] = L[X]/(f(X)), which is a field L′.

So if K ⊂ R is the maximal subfield (use Zorn’s lemma), this is our system of repre-
sentatives by the above argument. N
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§4 Henselian rings

There is a substitute for completeness that captures the essential properties: Henselian-
ness. A ring is Henselian if it satisfies Hensel’s lemma, more or less. We mostly follow
[Ray70] in the treatment.

4.1 Semilocal rings

To start with, we shall need a few preliminaries on semi-local rings.

Fix a local ring A with maximal ideal m ⊂ A. Fix a finite A-algebra B; by definition,
B is a finitely generated A-module.

Proposition 4.1 Hypotheses as above, the maximal ideals of B are in bijection with the
prime ideals of B containing mB, or equivalently the prime ideals of B = B ⊗A A/m.

Proof. We have to show that every maximal ideal of B contains mB. Suppose n ⊂ B was
maximal and was otherwise. Then by Nakayama’s lemma, n + mB 6= B is a proper ideal
strictly containing n; this contradicts maximality.

It is now clear that the maximal ideals of B are in bijection naturally with those of
B. However, B is an artinian ring, as it is finite over the field A/m, so every prime ideal
in it is maximal. N

The next thing to observe is that B, as an artinian ring, decomposes as a product of
local artinian rings. In fact, this decomposition is unique. However, this does not mean
that B itself is a product of local rings (B is not necessarily artinian). Nonetheless, if such
a splitting exists, it is necessarily unique.

Proposition 4.2 Suppose R =
∏
Ri is a finite product of local rings Ri. Then the Ri

are unique.

Proof. To give a decomposition R =
∏
Ri is equivalent to giving idempotents ei. If we had

another decomposition R =
∏
Sj , then we would have new idempotents fj . The image

of each fj in each Ri is either zero or one as a local ring has no nontrivial idempotents.
From this, one can easily deduce that the fj ’s are sums of the ei’s, and if the Sj are local,
one sees that the Sj ’s are just the Ri’s permuted. N

In fact, there is a canonical way of determining the factors Ri. A finite product of local
rings as above is semi-local ; the maximal ideals mi are finite in number, and, furthermore,
the canonical map

R→
∏

Rmi

is an isomorphism.

In general, this splitting fails for semi-local rings, and in particular for rings finite over
a local ring. We have seen that this splitting nonetheless works for rings finite over a field.

To recapitulate, we can give a criterion for when a semi-local ring splits as above.
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Proposition 4.3 Let R be a semilocal ring with maximal ideals m1, . . . ,mk. Then R splits
into local factors if and only if, for each i, there is an idempotent ei ∈

⋂
j 6=imj−mi. Then

the rings Rei are local and R =
∏
Rei.

Proof. If R splits into local factors, then clearly we can find such idempotents. Conversely,
suppose given the ei. Then for each i 6= j, eiej is an idempotent eij that belongs to all
the maximal ideals mk. So it is in the Jacobson radical. But then 1− eij is invertible, so
eij(1− eij) = 0 implies that eij = 0.

It follows that the {ei} are orthogonal idempotents. To see that R =
∏
Rei as rings,

we now need only to see that the {ei} form a complete set; that is,
∑
ei = 1. But the

sum
∑
ei is an idempotent itself since the ei are mutually orthogonal. Moreover, the sum∑

ei belongs to no mi, so it is invertible, thus equal to 1. The claim is now clear, since
each Rei is local by assumption. N

Note that if we can decompose a semilocal ring into a product of local rings, then
we can go no further in a sense—it is easy to check that a local ring has no nontrivial
idempotents.

4.2 Henselian rings

Definition 4.4 A local ring (R,m) is henselian if every finite R-algebra is a product of
local R-algebras.

It is clear from the remarks of the previous section that the decomposition as a product
of local algebras is unique. Furthermore, we have already seen:

Proposition 4.5 A field is henselian.

Proof. Indeed, then any finite algebra over a field is artinian (as a finite-dimensional vector
space). N

This result was essentially a corollary of basic facts about artinian rings. In general,
though, henselian rings are very far from artinian. For instance, we will see that every
complete local ring is henselian.

We continue with a couple of further easy claims.

Proposition 4.6 A local ring that is finite over a henselian ring is henselian.

Proof. Indeed, if R is a henselian local ring and S a finite R-algebra, then every finite
S-algebra is a finite R-algebra, and thus splits into a product of local rings. N

We have seen that henselianness of a local ring (R,m) with residue field k is equivalent
to the condition that every finite R-algebra S splits into a product of local rings. Since
S ⊗R k always splits into a product of local rings, and this splitting is unique, we see that
if a splitting of S exists, it necessarily lifts the splitting of S ⊗R k.

Since a “splitting” is the same thing (by Proposition 4.3) as a complete collection of
idempotents, one for each maximal ideal, we are going to characterize henselian rings by
the property that one can lift idempotents from the residue ring.
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Definition 4.7 A local ring (R,m) satisfies lifting idempotents if for every finite R-
algebra S, the canonical (reduction) map between idempotents of S and those of S/mS is
surjective.

Recall that there is a functor Idem from rings to sets that sends each ring to its
collection of idempotents. So the claim is that the natural map Idem(S)→ Idem(S/mS)
is a surjection.

In fact, in this case, we shall see that the map Idem(S)→ Idem(S/mS) is even injective.

Proposition 4.8 The map from idempotents of S to those of S/mS is always injective.

We shall not even use the fact that S is a finite R-algebra here.

Proof. Suppose e, e′ ∈ S are idempotents whose images in S/mS are the same. Then

(e− e′)3 = e3 − 3e2e′ + 3e′2e− e′3 = e3 − e′3 = e− e.

Thus if we let x = e− e′, we have x3 − x = 0, and x belongs to mS. Thus

x(1− x2) = 0,

and 1−x2 is invertible in S (because x2 belongs to the Jacobson radical of S). Thus x = 0
and e = e′. N

With this, we now want a characterization of henselian rings in terms of the lifting
idempotents property.

Proposition 4.9 Suppose (R,m) satisfies lifting idempotents, and let S be a finite R-
algebra. Then given orthogonal idempotents e1, . . . , en of S/mS, there are mutually or-
thogonal lifts {ei} ∈ S.

The point is that we can make the lifts mutually orthogonal. (Recall that idempotents
are orthogonal if their product is zero.)

Proof. Indeed, by assumption we can get lifts {ei} which are idempotent; we need to show
that they are mutually orthogonal. But in any case eiej for i 6= j is an idempotent, which
lies in mS ⊂ S and thus in the Jacobson radical. It follows that eiej = 0, proving the
orthogonality. N

Proposition 4.10 A local ring is henselian if and only if it satisfies lifting idempotents.

Proof. Suppose first (R,m) satisfies lifting idempotents. Let S be any finite R-algebra.
Then S/mS is artinian, so factors as a product of local artinian rings

∏
Si. This factoriza-

tion corresponds to idempotents ei ∈ S/mS. We can lift these to orthogonal idempotents
ei ∈ S by Proposition 4.9. These idempotents correspond to a decomposition

S =
∏

Si
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which lifts the decomposition S =
∏
Si. Since the Si are local, so are the Si. Thus R is

henselian.
Conversely, suppose R henselian. Let S be a finite R-algebra and let e ∈ S = S/mS

be idempotent. Since S is a product of local rings, e is a finite sum of the primitive
idempotents in S. By henselianness, each of these primitive idempotents lifts to S, so e
does too. N

Proposition 4.11 Let R be a local ring and I ⊂ R an ideal consisting of nilpotent ele-
ments. Then R is henselian if and only if R/I is.

Proof. One direction is clear by Proposition 4.6. For the other, suppose R/I is henselian.
Let m ⊂ R be the maximal ideal. Let S be any finite R-algebra; we have to show
surjectivity of

Idem(S)→ Idem(S/mS).

However, we are given that, by henselianness of S/I,

Idem(S/IS)→ Idem(S/mS)

is a surjection. Now we need only observe that Idem(S) → Idem(S/IS) is a bijection.
This follows because idempotents in S (resp. S/IS) correspond to disconnections of SpecS
(resp. SpecS/IS) by ??. However, as I consists of nilpotents, SpecS and SpecS/IS are
homeomorphic naturally. N

4.3 Hensel’s lemma

We now want to show that Hensel’s lemma is essentially what characterizes henselian
rings, which explains the name. Throughout, we use the symbol to denote reduction mod
an ideal (usually m or m times another ring).

Proposition 4.12 Let (R,m) be a local ring with residue field k. Then R is henselian if
and only if, whenever a monic polynomial P ∈ R[X] satisfies

P = QR ∈ k[X],

for some relatively prime polynomials Q,R ∈ k[X], then the factorization lifts to a factor-
ization

P = QR ∈ R[X].

This notation should be improved.

Proof. Suppose R henselian and suppose P is a polynomial whose reduction admits such
a factorization. Consider the finite R-algebra S = R[X]/(P ); since S = S/mS can be
represented as k[X]/(P ), it admits a splitting into components

S = k[X]/(Q)× k[X]/(R).

Since R is henselian, this splitting lifts to S, and we get a splitting

S = S1 × S2.

Here S1⊗ k ' k[X]/(Q) and S2⊗ k ' k[X]/(R). The image of X in S1⊗ k is annihilated
by Q, and the image of X in S2 ⊗ k is annihilated by R.
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Lemma 4.13 Suppose R is a local ring, S a finite R-algebra generated by an element
x ∈ S. Suppose the image x ∈ S = S⊗R k satisfies a monic polynomial equation u(x) = 0.
Then there is a monic polynomial U lifting u such that U(x) = 0 (in S).

Proof. Let x ∈ S be the generating element that satisfies u(x) = 0, and let x ∈ S be a lift
of it. Suppose u has rank n. Then 1, x, . . . , xn−1 spans S by Nakayama’s lemma. Thus
there is a monic polynomial U of degree n that annihilates x; the reduction must be a
multiple of u, hence u.

Returning to the proposition, we see that the image of the generator X in S1, S2 must
satisfy polynomial equations Q,R that lift Q,R. Thus X satisfies QR in S[X]/(P ); in
other words, QR is a multiple of P , hence equal to P . Thus we have lifted the factorization
P = QR. This proves that factorizations can be lifted.

Now, let us suppose that factorizations can always be lifted for finite R-algebras. We
are now going to show that R satisfies lifting idempotents. Suppose S is a finite R-algebra,
e a primitive idempotent in S. We can lift e to some element e′ ∈ S. Since e′ is contained
in a finite R-algebra that contains R, we know that e′ is integral over R, so that we can
find a map R[X]/(P )→ S sending the generator X 7→ e′, for some polynomial P . We are
going to use the fact that R[X]/(P ) splits to lift the idempotent e.

Let m1, . . . ,mk be the maximal ideals of S. These equivalently correspond to the
points of SpecS. We know that e′ belongs precisely to one of the mi (because a primitive
idempotent in S is one on one maximal ideal and zero elsewhere). Call this m1, say.

We have a map SpecS → SpecR[X]/(P ) coming from the map φ : R[X]/(P ) → S.
We claim that the image of m1 is different from the images of the mj , j > 1. Indeed,
b ∈ mj precisely for j > 1, so the image of m1 does not contain X. However, the image of
mj , j > 1 does contain X.

Consider a primitive idempotent for R[X]/(P ) corresponding to φ−1(m1), say f . Then
f belongs to every other maximal ideal of R[X]/(P ) but not to φ−1(m1). Thus φ(f),
which is idempotent, belongs to m1 but not to any other maximal ideal of S. It follows
that φ(f) must lift e, and we have completed the proof. N

Corollary 4.14 If every monogenic,4 finitely presented and finite R-algebra is a product
of local rings, then R is henselian.

Proof. Indeed, the proof of the above result shows that if R[X]/(P ) splits for every monic
P , then R is henselian. N

From the above result, we can get a quick example of a non-complete henselian ring:

Example 4.15 The integral closure of the localization Z(p) in the ring Zp of p-adic integers
is a henselian ring. Indeed, it is first of all a discrete valuation ring (as we can restrict
the valuation on Zp; note that an element of Qp which is algebraic over Q and has norm
at most one is integral over Z(p)). This follows from the criterion of Proposition 4.12.
If a monic polynomial P factors in the residue field, then it factors in Zp, and if P has
coefficients integral over Z(p), so does any factor.

4That is, generated by one element.
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Example 4.16 If k is a complete field with a nontrivial absolute value and X is any
topological space, we can consider for each open subset U ⊂ X the ring A(U) of continuous
maps U → k. As U ranges over the open subsets containing an element x, the colimit
lim−→A(U) (the “local ring” at x) is a local henselian ring. See [Ray70].

Proposition 4.17 Let (Ri,mi) be an inductive system of local rings and local homomor-
phisms. If each Ri is henselian, then the colimit lim−→Ri is henselian too.

Proof. We already know (??) that the colimit is a local ring, and that the maximal ideal
of lim−→Ri is the colimit lim−→mi. Finally, given any monic polynomial in lim−→Ri with a
factoring in the residue field, the polynomial and the factoring come from some finite Ri;
the henselianness of Ri allows us to lift the factoring. N

4.4 Example: Puiseux’s theorem

Using the machinery developed here, we are going to prove:

Theorem 4.18 Let K be an algebraically closed field of characteristic zero. Then any
finite extension of the field of meromorphic power series5 K((T )) is of the form K((T 1/n))
for some n.

In particular, we see that any finite extension of K((T )) is abelian, even cyclic. The idea
is going to be to look at the integral closure of K[[T ]] in the finite extension, argue that
it itself is a DVR, and then refine an “approximate” root in this DVR of the equation
αn = T to an exact one.

Proof. Let R = K[[T ]] be the power series ring; it is a complete, and thus henselian, DVR.
Let L be a finite extension of K((T )) of degree n and S the integral closure of R in S,
which we know to be a DVR. This is a finite R-algebra (cf. ??), so S is a product of
local domains. Since S is a domain, it is itself local. It is easy to see that if n ⊂ S is the
maximal ideal, then S is n-adically complete (for instance because the maximal ideal of
R is a power of n, and S is a free R-module).

Let m ⊂ R be the maximal ideal. We have the formula ef = n, because there is only
one prime of S lying above m. But f = 1 as the residue field of R is algebraically closed.
Hence e = n, and the extension is totally ramified.

Let α ∈ S be a uniformizer; we know that α is congruent, modulo n2, to something
in R as the residue extension is trivial. Then αn is congruent to something in R, which
must be a uniformizer by looking at the valuation. By rescaling, we may assume

αn ≡ T mod n2.

Since the polynomial Xn − T is separable in the residue field, we can (using Hensel’s
lemma) refine α to a new α′ ≡ α mod n2 with

α′n = T.

5That is, the quotient field of K[[T ]].
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Then α′ is also a uniformizer at n (as α′ ≡ α mod n2). It follows that R[α′] must in fact
be equal to S,6 and thus L is equal to K((T ))(α′) = K((T 1/n)). N

6??; a citation here is needed.
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Chapter 12

Regularity, differentials, and smoothness

In this chapter, we shall introduce two notions. First, we shall discuss regular local rings.
On varieties over an algebraically closed field, regularity corresponds to nonsingularity of
the variety at that point. (Over non-algebraically closed fields, the connection is more sub-
tle.) This will be a continuation of the local algebra done earlier in the chapter Chapter 10
on dimension theory.

We shall next introduce the module of Kähler differentials of a morphism of rings
A → B, which itself can measure smoothness (though this connection will not be fully
elucidated until a later chapter). The module of Kähler differentials is the algebraic analog
of the cotangent bundle to a manifold, and we will show that for an affine ring, it can be
computed very explicitly. For a smooth variety, we will see that this module is projective,
and hence a good candidate of a vector bundle.

Despite the title, we shall actually wait a few chapters before introducing the general
theory of smooth morphisms.

§1 Regular local rings

We shall start by introducing the concept of a regular local ring, which is one where the
embedding dimension and Krull dimension coincide.

1.1 Regular local rings

Let A be a local noetherian ring with maximal ideal m ⊂ A and residue field k = A/m.
Endow A with the m-adic topology, so that there is a natural graded k-algebra gr(A) =⊕

mi/mi+1. This is a finitely generated k-algebra; indeed, a system of generators for the
ideal m (considered as elements of mm2) generates gr(A) over k. As a result, we have a
natural surjective map of graded k-algebras.

Symkm/m
2 → gr(A). (12.1)

Here Sym denotes the symmetric algebra.

Definition 1.1 The local ring (A,m) is called regular if the above map is an isomor-
phism, or equivalently if the embedding dimension of A is equal to the Krull dimension.
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We want to show the “equivalently” in the definition is justified. One direction is easy:
if (12.1) is an isomorphism, then gr(A) is a polynomial ring with dimkm/m

2 generators.
But the dimension of A was defined in terms of the growth of dimkm

i/mi+1 = (grA)i. For
a polynomial ring on r generators, however, the ith graded piece has dimension a degree-r
polynomial in i (easy verification). As a result, we get the claim in one direction.

However, we still have to show that if the embedding dimension equals the Krull
dimension, then (12.1) is an isomorphism. This will follow from the next lemma.

Lemma 1.2 If the inequality

dim(A) ≤ dimk(m/m
2)

is an equality, then (12.1) is an isomorphism.

Proof. Suppose (12.1) is not an isomorphism. Then there is an element f ∈ Symkm/m
2

which is not zero and which maps to zero in gr(A); we can assume f homogeneous, since
the map of graded rings is graded.

Now the claim is that if k[x1, . . . , xn] is a polynomial ring and f 6= 0 a homogeneous
element, then the Hilbert polynomial of k[x1, . . . , xn]/(f) is of degree less than n. This
will easily imply the lemma, since (12.1) is always a surjection, and because Symkm/m

2’s
Hilbert polynomial is of degree dimkm/m

2. Now if deg f = d, then the dimension of
(k[x1, . . . , xn]/f)i (where i is a degree) is dim(k[x1, . . . , xn])i = dim(k[x1, . . . , xn])i−d. It
follows that if P is the Hilbert polynomial of the polynomial ring, that of the quotient is
P (·)− P (· − d), which has a strictly smaller degree. N

We now would like to establish a few properties of regular local rings.

Let A be a local ring and Â its completion. Then dim(A) = dim(Â), because A/mn =
Â/m̂n, so the Hilbert functions are the same. Similarly, gr(A) = gr(Â). However, by Â is
also a local ring. So applying the above lemma, we see:

Proposition 1.3 A noetherian local ring A is regular if and only if its completion Â is
regular.

Regular local rings are well-behaved. We are eventually going to show that any regular
local ring is in fact a unique factorization domain. Right now, we start with a much simpler
claim:

Proposition 1.4 A regular local ring is a domain.

This is a formal consequence of the fact that gr(A) is a domain and the filtration on A is
Hausdorff.

Proof. Let a, b 6= 0. Note that
⋂
mn = 0 by the Krull intersection theorem (Theorem 3.4),

so there are k1 and k2 such that a ∈ mk1 − mk1+1 and b ∈ mk2 − mk2+1. Let a, b be
the images of a, b in gr(A) (in degrees k1, k2); neither is zero. But then āb̄ 6= 0 ∈ gr(A),
because gr(A) = Sym(m/m2) is a domain. So ab 6= 0, as desired. N
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Exercise 12.1 Prove more generally that if A is a filtered ring with a descending filtration
of ideals I1 ⊃ I2 ⊃ . . . such that

⋂
Ik = 0, and such that the associated graded algebra

gr(A) is a domain, then A is itself a domain.

Later we will prove the aforementioned fact that a regular local ring is a factorial
ring. One consequence of that will be the following algebro-geometric fact. Let X =
SpecC[X1, . . . , Xn]/I for some ideal I; so X is basically a subset of Cn plus some nonclosed
points. Then if X is smooth, we find that C[X1, . . . , Xn]/I is locally factorial. Indeed,
smoothness implies regularity, hence local factoriality. The whole apparatus of Weil and
Cartier divisors now kicks in.

Exercise 12.2 Nevertheless, it is possible to prove directly that a regular local ring (A,m)
is integrally closed. To do this, we shall use the fact that the associated graded gr(A) is
integrally closed (as a polynomial ring). Here is the argument:

a) Let C be a noetherian domain with quotient field K. Then C is integrally closed if
and only if for every x ∈ K such that there exists d ∈ A with dxn ∈ A for all n, we
have x ∈ A. (In general, this fails for C non-noetherian; then this condition is called
being completely integrally closed.)

b) Let C be a noetherian domain. Suppose on C there is an exhaustive filtration {Cv}
(i.e. such that

⋂
Cv = 0) and such that gr(C) is a completely integrally closed domain.

Suppose further that every principal ideal is closed in the topology on C (i.e., for each
principal ideal I, we have I =

⋂
I + Cv.) Then C is integrally closed too. Indeed:

(a) Suppose b/a, a, b ∈ C is such that (b/a)n is contained in a finitely generated
submodule of K, say d−1A for some d ∈ A. We need to show that b ∈ Ca + Cv
for all v. Write b = xa + r for r ∈ Cw − Cw+1. We will show that “w” can be
improved to w+ 1 (by changing x). To do this, it suffices to write r ∈ Ca+Cw+1.

(b) By hypothesis, dbn ∈ Can for all n. Consequently drn ∈ Can for all n.

(c) Let r be the image of r in gr(C) (in some possibly positive homogeneous degree;
choose the unique one such that the image of r is defined and not zero). Choosing
d, a similarly, we get drn lies in the ideal of an for all n. This implies r is a multiple
of a. Deduce that r ∈ Ca+ Cw+1.

c) The hypotheses of the previous part apply to a regular local ring, which is thus inte-
grally closed.

The essential part of this argument is explained in [Bou98], ch. 5, §1.4. The application
to regular local rings is mentioned in [GD], vol. IV, §16.

We now give a couple of easy examples. More interesting examples will come in the
future. Let R be a noetherian local ring with maximal ideal m and residue field k.

Example 1.5 If dim(R) = 0, i.e. R is artinian, then R is regular iff the maximal ideal is
zero, i.e. if R is a field. Indeed, the requirement for regularity is that dimkm/m

2 = 0, or
m = 0 (by Nakayama). This implies that R is a field.
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Recall that dimkm/m
2 is the size of the minimal set of generators of the ideal m, by

Nakayama’s lemma. As a result, a local ring is regular if and only if the maximal ideal
has a set of generators of the appropriate size. This is a refinement of the above remarks.

Example 1.6 If dim(R) = 1, then R is regular iff the maximal ideal m is principal (by
the preceding observation). The claim is that this happens if and only if R is a DVR.
Certainly a DVR is regular, so only the other direction is interesting. But it is easy to see
that a local domain whose maximal ideal is principal is a DVR (i.e. define the valuation
of x in terms of the minimal i such that x /∈ mi).

We find:

Proposition 1.7 A one-dimensional regular local ring is the same thing as a DVR.

Finally, we extend the notion to general noetherian rings:

Definition 1.8 A general noetherian ring is called regular if every localization at a
maximal ideal is a regular local ring.

In fact, it turns out that if a noetherian ring is regular, then so are all its localizations.
This fact relies on a fact, to be proved in the distant future, that the localization of a
regular local ring at a prime ideal is regular.

1.2 Quotients of regular local rings

We now study quotients of regular local rings. In general, if (A,m) is a regular local ring
and f1, . . . , fk ∈ m, the quotient A/(f1, . . . , fk) is far from being regular. For instance, if
k is a field and A is k[x](x) (geometrically, this is the local ring of the affine line at the
origin), then A/x2 = k[ε]/ε2 is not a regular local ring; it is not even a domain. In fact,
the local ring of any variety at a point is a quotient of a regular local ring, and this is
because any variety locally sits inside affine space.1

Proposition 1.9 If (A,mA) is a regular local ring, and f ∈ m is such that f ∈ mA−m2
A.

Then A′ = A/fA is also regular of dimension dim(A)− 1.

Proof. First let us show the dimension part of the statement. We know from Proposi-
tion 2.1 that the dimension has to drop precisely by one (since f is a nonzerodivisor on A
by Proposition 1.4).

Now we want to show that A′ = A/fA is regular. Let mA′ = m/fA be the maximal
ideal of A′. Then we should show that dimA′/mA′

(mA′/m
2
A′) = dim(A′), and it suffices to

see that

dimA′/mA′
(mA′/m

2
A′) ≤ dimA/mA(mA/m

2
A)− 1. (12.2)

In other words, we have to show that the embedding dimension drops by one.

1Incidentally, the condition that a noetherian local ring (A,m) is a quotient of a regular local ring (B, n)
imposes conditions on A: for instance, it has to be catenary. As a result, one can obtain examples of local
rings which cannot be expressed as quotients in this way.
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Note that the residue fields k = A/mA, A
′/mA′ are naturally isomorphic. To see (12.2),

we use the natural surjection of k-vector spaces

mA/m
2
A → mA′/m

2
A′ .

Since there is a nontrivial kernel (the class of f is in the kernel), we obtain the inequality
(12.2). N

Corollary 1.10 Consider elements f1, . . . fm in m such that f̄1, . . . f̄m ∈ m/m2 are linearly
independent. Then A/(f1, . . . fm) is regular with dim(A/(f1, . . . fm)) = dim(A)−m

Proof. This follows from Proposition 1.9 by induction. One just needs to check that in
A1 = A/(f1), m1 = m/(f1), we have that f2, . . . fm are still linearly independent in m1/m

2
1.

This is easy to check. N

Remark In fact, note in the above result that each fi is a nonzerodivisor onA/(f1, . . . , fi−1),
because a regular local ring is a domain. We will later say that the {fi} form a regular
sequence.

We can now obtain a full characterization of when a quotient of a regular local ring
is still regular; it essentially states that the above situation is the only possible case.
Geometrically, the intuition is that we are analyzing when a subvariety of a smooth va-
riety is smooth; the answer is when the subvariety is cut out by functions with linearly
independent images in the maximal ideal mod its square.

This corresponds to the following fact: if M is a smooth manifold and f1, . . . , fm
smooth functions such that the gradients {dfi} are everywhere independent, then the
common zero locus of the {fi} is a smooth submanifold of M , and conversely every smooth
submanifold of M locally looks like that.

Theorem 1.11 Let A0 be a regular local ring of dimension n, and let I ⊂ A0 be a proper
ideal. Let A = A0/I. Then the following are equivalent

1. A is regular.

2. There are elements f1, . . . fm ∈ I such that f̄1, . . . f̄m are linearly independent in
mA0/m

2
A0

where m = n− dim(A) such that (f1, . . . fm) = I.

Proof. (2) ⇒ (1) This is exactly the statement of Corollary 1.10.
(1) ⇒ (2) Let k be the residue field of A (or A0, since I is contained in the maximal
ideal). We see that there is an exact sequence

I ⊗A0 k → mA0/m
2
A0
→ mA/m

2
A → 0.

We can obtain this from the exact sequence I → A0 → A→ 0 by tensoring with k.
By assumption A0 and A are regular local, so

dimA0/mA0
(mA0/m

2
A0

) = dim(A0) = n
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and

dimA0/mA0
(mA/m

2
A) = dim(A)

so the image of I⊗A0 k in mA0/m
2
A0

has dimension m = n−dim(A). Let f̄1, . . . f̄m be a set
of linearly independent generators of the image of I ⊗A0 k in mA0/m

2
A0

, and let f1, . . . fm
be liftings to I. The claim is that the {fi} generate I.

Let I ′ ⊂ A0 be the ideal generated by f1, . . . fm and consider A′ = A0/I
′. Then by

Corollary 1.10, we know that A′ is a regular local ring with dimension n −m = dim(A).
Also I ′ ⊂ I so we have an exact sequence

0→ I/I ′ → A′ → A→ 0

But Proposition 1.4, this means that A′ is a domain, and we have just seen that it has the
same dimension as A. Now if I/I ′ 6= 0, then A would be a proper quotient of A′, and hence
of a smaller dimension (because quotienting by a nonzerodivisor drops the dimension).
This contradiction shows that I = I ′, which means that I is generated by the sequence
{fi} as claimed. N

So the reason that k[x](x)/(x
2) was not regular is that x2 vanishes to too high an order:

it lies in the square of the maximal ideal.
We can motivate the results above further with:

Definition 1.12 In a regular local ring (R,m), a regular system of parameters is a
minimal system of generators for m, i.e. elements of m that project to a basis of m/m2.

So a quotient of a regular local ring is regular if and only if the ideal is generated by a
portion of a system of parameters.

1.3 Regularity and smoothness

We now want to connect the intuition (described in the past) that, in the algebro-geometric
context, regularity of a local ring corresponds to smoothness of the associated variety (at
that point).

Namely, let R be be the (reduced) coordinate ring C[x1, . . . , xn]/I of an algebraic
variety. Let m be a maximal ideal corresponding to the origin, so generated by (x1, . . . , xn).
Suppose I ⊂ m, which is to say the origin belongs to the corresponding variety. Then
MaxSpecR ⊂ SpecR is the corresponding subvariety of Cn, which is what we apply the
intuition to. Note that 0 is in this subvariety.

Then we claim:

Proposition 1.13 Rm is regular iff MaxSpecR is a smooth submanifold near 0.

Proof. We will show that regularity implies smoothness. The other direction is omitted
for now.

Note that S = C[x1, . . . , xn]m is clearly a regular local ring of dimension n (Cn is
smooth, intuitively), and Rm is the quotient S/I. By Theorem 1.11, we have a good
criterion for when Rm is regular. Namely, it is regular if and only if I is generated by
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elements (without loss of generality, polynomials) f1, . . . , fk whose images in the quotient
mS/m

2
S (where we write mS to emphasize that this is the maximal ideal of S).

But we know that this “cotangent space” corresponds to cotangent vectors in Cn, and
in particular, we can say the following. There are elements ε1, . . . , εn ∈ mS/m

2
S that form a

basis for this space (namely, the images of x1, . . . , xn ∈ mS). If f is a polynomial vanishing
at the origin, then the image of f in mS/m

2
S takes only the linear terms—that is, it can

be identified with ∑ ∂f

∂xi
|0εi,

which is essentially the gradient of f .
It follows that Rm is regular if and only if I is generated (in Rm, so we should really say

IRm) by a family of polynomials vanishing at zero with linearly independent gradients,
or if the variety is cut out by the vanishing of such a family of polynomials. However,
we know that this implies that the variety is locally a smooth manifold (by the inverse
function theorem). N

The other direction is a bit trickier, and will require a bit of “descent.” For now,
we omit it. But we have shown something in both directions: the ring Rm is regular if
and only if I is generated locally (i.e., in Rm by a family of polynomials with linearly
independent gradients). Hartshorne uses this as the definition of smoothness in [Har77],
and thus obtains the result that a variety over an algebraically closed field (not necessarily
C!) is smooth if and only if its local rings are regular.

Remark (Warning) This argument proves that if R ' K[x1, . . . , xn]/I for K alge-
braically closed, then Rm is regular local for some maximal ideal m if the corresponding
algebraic variety is smooth at the corresponding point. We proved this in the special case
K = C and m the ideal of the origin.

If K is not algebraically closed, we can’t assume that any maximal ideal corresponds
to a point in the usual sense. Moreover, if K is not perfect, regularity does not imply
smoothness. We have not quite defined smoothness, but here’s a definition: smoothness
means that the local ring you get by base-changing K to the algebraic closure is regular.
So what this means is that regularity of affine rings over a field K is not preserved under
base-change from K to K.

Example 1.14 Let K be non-perfect of characteristic p. Let a not have a pth root.
Consider K[x]/(xp − a). This is a regular local ring of dimension zero, i.e. is a field. If K
is replaced by its algebraic closure, then we get K[x]/(xp − a), which is K[x]/(x− a1/p)p.
This is still zero-dimensional but is not a field. Over the algebraic closure, the ring fails
to be regular.

1.4 Regular local rings look alike

So, as we’ve seen, regularity corresponds to smoothness. Complex analytically, all smooth
points are the same though—they’re locally Cn. Manifolds have no local invariants. We’d
like an algebraic version of this. The vague claim is that all regular local rings of the same
dimension “look alike.” We have already seen one instance of this phenomenon: a regular

319



The CRing Project, §12.2.

local ring’s associated graded is uniquely determined by its dimension (as a polynomial
ring). This was in fact how we defined the notion, in part. Now we would like to transfer
this to statements about things closer to R.

Let (R,m) be a regular local ring. Assume now for simplicity that the residue
field of k = R/m maps back into R. In other words, R contains a copy of its residue
field, or there is a section of R → k. This is always true in the case we use for geometric
intuition—complex algebraic geometry—as the residue field at any maximal ideal is just
C (by the Nullstellensatz), and one works with C-algebras.

Choose generators y1, . . . , yn ∈ m where n = dimkm/m
2 is the embedding dimension.

We get a map in the other direction

φ : k[Y1, . . . , Yn]→ R, Yi 7→ yi,

thanks to the section k → R. This map from the polynomial ring is not an isomorphism
(the polynomial ring is not local), but if we let m ⊂ R be the maximal ideal and n =
(y1, . . . , yn), then the map on associated gradeds is an isomorphism (by definition). That
is, φ : nt/nt+1 → mt/mt+1 is an isomorphism for each t ∈ Z≥0.

Consequently, φ induces an isomorphism

k[Y1, . . . , Yn]/nt ' R/mt

for all t, because it is an isomorphism on the associated graded level. So this in turn is
equivalent, upon taking inverse limits, to the statement that φ induces an isomorphism

k[[Y1, . . . , Yn]]→ R̂

at the level of completions.
We can now conclude:

Theorem 1.15 Let R be a regular local ring of dimension n. Suppose R contains a copy
of its residue field k. Then, as k-algebras, R̂ ' k[[Y1, . . . , Ym]].

Finally:

Corollary 1.16 A complete noetherian regular local ring that contains a copy of its
residue field k is a power series ring over k.

It now makes sense to say:

All complete regular local rings of the same dimension look alike.
(More precisely, this is true when R is assumed to contain a copy of its residue
field, but this is not a strong assumption in practice. One can show that this
will be satisfied if R contains any field.2)

We won’t get into the precise statement of the general structure theorem, when the
ring is not assumed to contain its residue field, but a safe intuition to take away from this
is the above bolded statement. Note that “looking alike” requires the completeness, be-
cause completions are intuitively like taking analytically local invariants (while localization
corresponds to working Zariski locally, which is much weaker).

2This is not always satisfied—take the p-adic integers, for instance.
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§2 Kähler differentials

2.1 Derivations and Kähler differentials

Let R be a ring with the maximal ideal m. Then there is a R/m-vector space m/m2. This
is what we would like to think of as the “cotangent space” of SpecR at m. Intuitively, the
cotangent space is what you get by differentiating functions which vanish at the point, but
differentiating functions that vanish twice should give zero. This is the moral justification.
(Recall that on a smooth manifold M , if Op is the local ring of smooth functions defined
in a neighborhood of p ∈ M , and mp ⊂ Op is the maximal ideal consisting of “germs”
vanishing at p, then the cotangent space T ∗pM is naturally mp/m

2
p.)

A goal might be to generalize this. What if you wanted to think about all points at
once? We’d like to describe the “cotangent bundle” to SpecR in an analogous way. Let’s
try and describe what would be a section to this cotangent bundle. A section of Ω∗SpecR

should be the same thing as a “1-form” on SpecR. We don’t know what a 1-form is yet,
but at least we can give some examples. If f ∈ R, then f is a “function” on SpecR, and
its “differential” should be a 1-form. So there should be a “df” which should be a 1-form.
This is analogous to the fact that if g is a real-valued function on the smooth manifold
M , then there is a 1-form dg.

We should expect the rules d(fg) = df + dg and d(fg) = f(dg) + g(df) as the usual
rules of differentiation. For this to make sense, 1-forms should be an R-module. Before
defining the appropriate object, we start with:

Definition 2.1 Let R be a commutative ring, M an R-module. A derivation from R to
M is a map D : R→M such that the two identities below hold:

D(fg) = Df +Dg (12.3)

D(fg) = f(Dg) + g(Df). (12.4)

These equations make sense as M is an R-module.
Whatever a 1-form on SpecR might be, there should be a derivation

d : R→ {1–forms} .

An idea would be to define the 1-forms or the “cotangent bundle” ΩR by a universal
property. It should be universal among R-modules with a derivation.

To make this precise:

Proposition 2.2 There is an R-module ΩR and a derivation duniv : R → ΩR satisfying
the following universal property. For all R-modules M , there is a canonical isomorphism

HomR(ΩR,M) ' Der(R,M)

given by composing the universal duniv with a map ΩR →M .

That is, any derivation d : R→M factors through this universal derivation in a unique
way. Given the derivation d : R → M , we can make the following diagram commutative

321



The CRing Project, §12.2.

in a unique way such that ΩR →M is a morphism of R-modules:

R
d //

��

M

ΩR

duniv
=={{{{{{{{

Definition 2.3 ΩR is called the module of Kähler differentials of R.

Let us now verify this proposition.

Proof. This is like the verification of the tensor product. Namely, build a free gadget and
quotient out to enforce the desired relations.

Let ΩR be the quotient of the free R-module generated by elements da for a ∈ R by
enforcing the relations

1. d(a+ b) = da+ db.

2. d(ab) = adb+ bda.

By construction, the map a → da is a derivation R → ΩR. It is easy to see that it is
universal. Given a derivation d′ : R→M , we get a map ΩR →M sending da→ d′(a), a ∈
R. N

The philosophy of Grothendieck says that we should do this, as with everything, in a
relative context. Indeed, we are going to need a slight variant, for the case of a morphism
of rings.

2.2 Relative differentials

On a smooth manifold M , the derivation d from smooth functions to 1-forms satisfies an
additional property: it maps the constant functions to zero. This is the motivation for
the next definition:

Definition 2.4 Let f : R → R′ be a ring-homomorphism. Let M be an R′-module. A
derivation d : R′ →M is R-linear if d(f(a)) = 0, a ∈ R. This is equivalent to saying that
d is an R-homomorphism by the Leibnitz rule.

Now we want to construct an analog of the “cotangent bundle” taking into account
linearity.

Proposition 2.5 Let R′ be an R-algebra. Then there is a universal R-linear derivation

R′
duniv→ ΩR′/R.

Proof. Use the same construction as in the absolute case. We get a map R′ → ΩR′

as before. This is not generally R-linear, so one has to quotient out by the images of
d(f(r)), r ∈ R. In other words, ΩR′/R is the quotient of the free R′-module on symbols
{dr′, r′ ∈ R′} with the relations:
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1. d(r′1r
′
2) = r′1d(r′2) + d(r′1)r′2.

2. d(r′1 + r′2) = dr′1 + dr′2.

3. dr = 0 for r ∈ R (where we identify r with its image f(r) in R′, by abuse of
notation). N

Definition 2.6 ΩR′/R is called the module of relative Kähler differentials, or simply
Kähler differentials.

Here ΩR′/R also corepresents a simple functor on the category of R′-modules: given
an R′-module M , we have

HomR′(ΩR′/R,M) = DerR(R′,M),

where DerR denotes R-derivations. This is a subfunctor of the functor DerR(R′, ·), and so
by Yoneda’s lemma there is a natural map ΩR′ → ΩR′/R. We shall expand on this in the
future.

2.3 The case of a polynomial ring

Let us do a simple example to make this more concrete.

Example 2.7 Let R′ = C[x1, . . . , xn], R = C. In this case, the claim is that there is an
isomorphism

ΩR′/R ' R′n.

More precisely, ΩR′/R is free on dx1, . . . , dxn. So the cotangent bundle is “free.” In general,
the module ΩR′/R will not be free, or even projective, so the intuition that it is a vector
bundle will be rather loose. (The projectivity will be connected to smoothness of R′/R.)

Proof. The construction f →
(
∂f
∂xi

)
gives a map R′ → R′n. By elementary calculus, this

is a derivation, even an R-linear derivation. We get a map

φ : ΩR′/R → R′n

by the universal property of the Kähler differentials. The claim is that this map is an

isomorphism. The map is characterized by sending df to
(
∂f
∂xi

)
. Note that dx1, . . . , dxn

map to a basis of R′n because differentiating xi gives 1 at i and zero at j 6= i. So we see
that φ is surjective.

There is a map ψ : R′n → ΩR′/R sending (ai) to
∑
aidxi. It is easy to check that

φ ◦ ψ = 1 from the definition of φ. What we still need to show is that ψ ◦ φ = 1. Namely,
for any f , we want to show that ψ ◦ φ(df) = df for f ∈ R′. This is precisely the claim
that df =

∑ ∂f
∂xi
dxi. Both sides are additive in f , indeed are derivations, and coincide on

monomials of degree one, so they are equal. N

By the same reasoning, one can show more generally:
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Proposition 2.8 If R is any ring, then there is a canonical isomorphism

ΩR[x1,...,xn]/R '
n⊕
i=1

R[x1, . . . , xn]dxi,

i.e. it is R[x1, . . . , xn]-free on the dxi.

This is essentially the claim that, given an R[x1, . . . , xn]-module M and elements
m1, . . . ,mn ∈M , there is a unique R-derivation from the polynomial ring into M sending
xi 7→ mi.

2.4 Exact sequences of Kähler differentials

We now want to prove a few basic properties of Kähler differentials, which can be seen
either from the explicit construction or in terms of the functors they represent, by formal
nonsense. These results will be useful in computation.

Recall that if φ : A → B is a map of rings, we can define a B-module ΩB/A which
is generated by formal symbols dx|x∈B and subject to the relations d(x + y) = dx + dy,
d(a) = 0, a ∈ A, and d(xy) = xdy + ydx. By construction, ΩB/A is the receptacle from
the universal A-linear derivation into a B-module.

Let A→ B → C be a triple of maps of rings. There is an obvious map dx→ dx

ΩC/A → ΩC/B

where both sides have the same generators, except with a few additional relations on
ΩC/B. We have to quotient by db, b ∈ B. In particular, there is a map ΩB/A → ΩC/A,
dx→ dx, whose images generate the kernel. This induces a map

C ⊗B ΩB/A → ΩC/A.

The image is the C-module generated by db|b∈B, and this is the kernel of the previous
map. We have proved:

Proposition 2.9 (First exact sequence) Given a sequence A→ B → C of rings, there
is an exact sequence

C ⊗B ΩB/A → ΩC/A → ΩC/B → 0.

Proof (Second proof). There is, however, a more functorial means of seeing this sequence,
which we now describe. Namely, let us consider the category of C-modules, and the
functors corepresented by these three objects. We have, for a C-module M :

HomC(ΩC/B,M) = DerB(C,M)

HomC(ΩC/A,M) = DerA(C,M)

HomC(C ⊗B ΩB/A,M) = HomB(ΩB/A,M) = DerA(B,M).

By Yoneda’s lemma, we know that a map of modules is the same thing as a natural trans-
formation between the corresponding corepresentable functors, in the reverse direction. It
is easy to see that there are natural transformations

DerB(C,M)→ DerA(C,M), DerA(C,M)→ DerA(B,M)
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obtained by restriction in the second case, and by doing nothing in the first case (a
B-derivation is automatically an A-derivation). The induced maps on the modules of
differentials are precisely those described before; this is easy to check (and we could have
defined the maps by these functors if we wished). Now to say that the sequence is right
exact is to say that for each M , there is an exact sequence of abelian groups

0→ DerB(C,M)→ DerA(C,M)→ DerA(B,M).

But this is obvious from the definitions: an A-derivation is a B-derivation if and only if
the restriction to B is trivial. This establishes the claim. N

Next, we are interested in a second exact sequence. In the past (Example 2.7), we
computed the module of Kähler differentials of a polynomial algebra. While this was a
special case, any algebra is a quotient of a polynomial algebra. As a result, it will be
useful to know how ΩB/A behaves with respect to quotienting B.

Let A→ B be a homomorphism of rings and I ⊂ B an ideal. We would like to describe
ΩB/I/A. There is a map

ΩB/A → ΩB/I/A

sending dx to dx for x the reduction of x in B/I. This is surjective on generators, so it
is surjective. It is not injective, though. In ΩB/I/A, the generators dx, dx′ are identified
if x ≡ x′ mod I. Moreover, ΩB/I/A is a B/I-module. This means that there will be
additional relations for that. To remedy this, we can tensor and consider the morphism

ΩB/A ⊗B B/I → ΩB/I/A → 0.

Let us now define a map

φ : I/I2 → ΩB/A ⊗B B/I,

which we claim will generate the kernel. Given x ∈ I, we define φ(x) = dx. If x ∈ I2, then
dx ∈ IΩB/A so φ is indeed a map of abelian groups I/I2 → ΩB/A ⊗B B/I. Let us check
that this is a B/I-module homorphism. We would like to check that φ(xy) = yφ(x) for
x ∈ I in ΩB/A/IΩB/A. This follows from the Leibnitz rule, φ(xy) = yφ(x) + xdy ≡ xφ(x)
mod IΩB/A. So φ is also defined. Its image is the submodule of ΩB/A/IΩB/A generated by
dx, x ∈ I. This is precisely what one has to quotient out by to get ΩB/I/A. In particular:

Proposition 2.10 (Second exact sequence) Let B be an A-algebra and I ⊂ B an
ideal. There is an exact sequence

I/I2 → ΩB/A ⊗B B/I → ΩB/I/A → 0.

These results will let us compute the module of Kähler differentials in cases we want.

Example 2.11 Let B = A[x1, . . . , xn]/I for I an ideal. We will compute ΩB/A.
First, ΩA[x1,...,xn]/A ⊗B ' Bn generated by symbols dxi. There is a surjection of

Bn → ΩB/A → 0
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whose kernel is generated by dx, x ∈ I, by the second exact sequence above. If I =
(f1, . . . , fm), then the kernel is generated by {dfi}. It follows that ΩB/A is the cokernel of
the map

Bm → Bn

that sends the ith generator of Bm to dfi thought of as an element in the free B-module
Bn on generators dx1, . . . , dxn. Here, thanks to the Leibnitz rule, dfi is given by formally
differentiating the polynomial, i.e.

dfi =
∑
j

∂fi
∂xj

dxj .

We have thus explicitly represented ΩB/A as the cokernel of the matrix
(
∂fi
∂xj

)
.

In particular, the above example shows:

Proposition 2.12 If B is a finitely generated A-algebra, then ΩB/A is a finitely generated
B-module.

Given how Ω behaves with respect to localization, we can extend this to the case where B
is essentially of finite type over A (recall that this means B is a localization of a finitely
generated A-algebra).

Let R = C[x1, . . . , xn]/I be the coordinate ring of an algebraic variety. Let m ⊂ R be
the maximal ideal. Then ΩR/C is what one should think of as containing information of
the cotangent bundle of SpecR. One might ask what the fiber over a point m ∈ SpecR
is, though. That is, we might ask what ΩR/C ⊗R R/m is. To see this, we note that there
are maps

C→ R→ R/m ' C.

There is now an exact sequence by Proposition 2.9

m/m2 → ΩR/C ⊗R R/m→ ΩR/m/C → 0,

where the last thing is zero as R/m ' C by the Nullstellensatz. The upshot is that
ΩR/C ⊗R R/m is a quotient of m/m2.

In fact, the natural map m/m2 → ΩR/C ⊗R C (given by d) is an isomorphism of C-
vector spaces. We have seen that it is surjective, so we need to see that it is injective.
That is, if V is a C-vector space, then we need to show that the map

HomC(ΩR/C ⊗R C, V )→ HomC(m/m2, V )

is surjective. This means that given any C-linear map λ : m/m2 → V , we can extend this
to a derivation R→ V (where V becomes an R-module by R/m ' C, as usual). But this
is easy: given f ∈ R, we write f = f0 + c for c ∈ C and f0 ∈ m, and have the derivation
send f to λ(f0). (Checking that this is a well-defined derivation is straightforward.)

This goes through if C is replaced by any algebraically closed field. We have found:
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Proposition 2.13 Let (R,m) be the localization of a finitely generated algebra over an
algebraically closed field k at a maximal ideal m. Then there is a natural isomorphism:

ΩR/k ⊗R k ' m/m2.

This result connects the Kähler differentials to the cotangent bundle: the fiber of the
cotangent bundle at a point in a manifold is, similarly, the maximal ideal modulo its
square (where the “maximal ideal” is the maximal ideal in the ring of germs of functions
at that point).

2.5 Kähler differentials and base change

We now want to show that the formation of Ω is compatible with base change. Namely,
let B be an A-algebra, visualized by a morphism A → B. If A → A′ is any morphism of
rings, we can think of the base-change A′ → A′ ⊗A B; we often write B′ = A′ ⊗A B.

Proposition 2.14 With the above notation, there is a canonical isomorphism of B′-
modules:

ΩB/A ⊗A A′ ' ΩB′/A′ .

Note that, for a B-module, the functors ⊗AA′ and ⊗BB′ are the same. So we could have
as well written ΩB/A ⊗B B′ ' ΩB′/A′ .

Proof. We will use the functorial approach. Namely, for a B′-module M , we will show
that there is a canonical isomorphism

HomB′(ΩB/A ⊗A A′,M) ' HomB′(ΩB′/A′ ,M).

The right side represents A′-derivations B′ → M , or DerA′(B
′,M). The left side repre-

sents HomB(ΩB/A,M), or DerA(B,M). Here the natural map of modules corresponds by
Yoneda’s lemma to the restriction

DerA′(B
′,M)→ DerA(B,M).

We need to see that this restriction map is an isomorphism. But given an A-derivation
B → M , this is to say that extends in a unique way to an A′-linear derivation B′ → M .
This is easy to verify directly. N

We next describe how Ω behaves with respect to forming tensor products.

Proposition 2.15 Let B,B′ be A-algebras. Then there is a natural isomorphism

ΩB⊗AB′/A ' ΩB/A ⊗A B′ ⊕B ⊗A ΩB′/A.

Since Ω is a linearization process, it is somewhat natural that it should turn tensor products
into direct sums.

Proof. The “natural map” can be described in the leftward direction. For instance, there
is a natural map ΩB/A⊗AB′ → ΩB⊗AB′/A. We just need to show that it is an isomorphism.
For this, we essentially have to show that to give an A-derivation of B ⊗A B′ is the same
as giving a derivation of B and one of B′. This is easy to check. N
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2.6 Differentials and localization

We now show that localization behaves extremely nicely with respect to the formation
of Kähler differentials. This is important in algebraic geometry for knowing that the
“cotangent bundle” can be defined locally.

Proposition 2.16 Let f : A→ B be a map of rings. Let S ⊂ B be multiplicatively closed.
Then the natural map

S−1ΩB/A → ΩS−1B/A

is an isomorphism.

So the formation of Kähler differentials commutes with localization.

Proof. We could prove this by the calculational definition, but perhaps it is better to prove
it via the universal property. If M is any S−1B-module, then we can look at

HomS−1B(ΩS−1B/A,M)

which is given by the group of A-linear derivations S−1B →M , by the universal property.
On the other hand,

HomS−1B(S−1ΩB/A,M)

is the same thing as the set of B-linear maps ΩB/A →M , i.e. the set of A-linear derivations
B →M .

We want to show that these two are the same thing. Given an A-derivation S−1B →
M , we get an A-derivation B → M by pulling back. We want to show that any A-linear
derivation B → M arises in this way. So we need to show that any A-linear derivation
d : B →M extends uniquely to an A-linear d : S−1B →M . Here are two proofs:

1. (Lowbrow proof.) For x/s ∈ S−1B, with x ∈ B, s ∈ S, we define d(x/s) = dx/s −
xds/s2 as in calculus. The claim is that this works, and is the only thing that works.
One should check this—exercise.

2. (Highbrow proof.) We start with a digression. Let B be a commutative ring, M a
B-module. Consider B ⊕M , which is a B-module. We can make it into a ring (via
square zero multiplication) by multiplying

(b, x)(b′, x′) = (bb′, bx′ + b′x).

This is compatible with the B-module structure on M ⊂ B ⊕M . Note that M
is an ideal in this ring with square zero. Then the projection π : B ⊕ M → B
is a ring-homomorphism as well. There is also a ring-homomorphism in the other
direction b → (b, 0), which is a section of π. There may be other homomorphisms
B → B ⊕M .

You might ask what all the right inverses to π are, i.e. ring-homomorphisms φ :
B → B ⊕M such that π ◦ φ = 1B. This must be of the form φ : b → (b, db) where
d : B → M is some map. It is easy to check that φ is a homomorphism precisely
when d is a derivation.
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Suppose now A→ B is a morphism of rings making B an A-algebra. Then B ⊕M
is an A-algebra via the inclusion a → (a, 0). Then you might ask when φ : b →
(b, db), B → B ⊕ M is an A-homomorphism. The answer is clear: when d is an
A-derivation.

Recall that we were in the situation of f : A → B a morphism of rings, S ⊂ B a
multiplicatively closed subset, and M an S−1B-module. The claim was that any
A-linear derivation d : B →M extends uniquely to d : S−1B →M . We can draw a
diagram

B ⊕M

��

// S−1B ⊕M

��
A // B // S−1B

.

This is a cartesian diagram. So given a section of A-algebras B → B ⊕M , we have
to construct a section of A-algebras S−1B → S−1B ⊕M . We can do this by the
universal property of localization, since S acts by invertible elements on S−1B⊕M .
(To see this, note that S acts by invertible elements on S−1B, and M is a nilpotent
ideal.) N

Finally, we note that there is an even slicker argument. (We learned this from [Qui].)
Namely, it suffices to show that ΩS−1B/B = 0, by the exact sequences. But this is a
S−1B-module, so we have

ΩS−1B/B = ΩS−1B/B ⊗B S−1B,

because tensoring with S−1B localizes at S, but this does nothing to a S−1B-module! By
the base change formula (Proposition 2.14), we have

ΩS−1B/B ⊗B S−1B = ΩS−1B/S−1B = 0,

where we again use the fact that S−1B ⊗B S−1B ' S−1B.

2.7 Another construction of ΩB/A

Let B be an A-algebra. We have constructed ΩB/A by quotienting generators by relations.
There is also a simple and elegant “global” construction one sometimes finds useful in
generalizing the procedure to schemes.

Consider the algebra B⊗AB and the map B⊗AB → B given by multiplication. Note
that B acts on B ⊗A B by multiplication on the first factor: this is how the latter is a
B-module, and then the multiplication map is a B-homomorphism. Let I ⊂ B ⊗A B be
the kernel.

Proposition 2.17 There is an isomorphism of B-modules

ΩB/A ' I/I2

given by the derivation b 7→ 1⊗ b− b⊗ 1, from B to I/I2.
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Proof. It is clear that the maps

b→ 1⊗ b, b→ b⊗ 1 : B → B ⊗A B

are A-linear, so their difference is too. The quotient d : B → I/I2 is thus A-linear too.
First, note that if c, c′ ∈ B, then 1⊗ c− c⊗ 1, 1⊗ c′− c′⊗ 1 ∈ I. Their product is thus

zero in I/I2:

(1⊗ c− c⊗ 1)(1⊗ c′ − c′ ⊗ 1) = 1⊗ cc′ + cc′ ⊗ 1− c⊗ c′ − c′ ⊗ c ∈ I2.

Next we must check that d : B → I/I2 is a derivation. So fix b, b′ ∈ B; we have

d(bb′) = 1⊗ bb′ − bb′ ⊗ 1

and
bdb′ = b(1⊗ b′ − b′ ⊗ 1), b′db = b′(1⊗ b− b⊗ 1).

The second relation shows that

bdb′ + b′db = b⊗ b′ − bb′ ⊗ 1 + b′ ⊗ b− bb′ ⊗ 1.

Modulo I2, we have as above b⊗ b′ + b′ ⊗ b ≡ 1⊗ bb′ + bb′ ⊗ 1, so

bdb′ + b′db ≡ 1⊗ bb′ − bb′ ⊗ 1 mod I2,

and this last is equal to d(bb′) by definition. So we have an A-linear derivation d : B →
I/I2. It remains to be checked that this is universal. In particular, we must check that
the induced

φ : ΩB/A → I/I2

sending db→ 1⊗ b− b⊗1. is an isomorphism. We can define the inverse ψ : I/I2 → ΩB/A

by sending
∑
bi ⊗ b′i ∈ I to

∑
bidb

′
i. This is clearly a B-module homomorphism, and it is

well-defined mod I2.
It is clear that ψ(φ(db)) = db from the definitions, since this is

ψ(1⊗ b− b⊗ 1) = 1(db)− bd1 = db,

as d1 = 0. So ψ ◦ φ = 1ΩB/A . It follows that φ is injective. We will check now that it is
surjective. Then we will be done.

Lemma 2.18 Any element in I is a B-linear combination of elements of the form 1 ⊗
b− b⊗ 1.

Every such element is the image of db under φ by definition of the derivation B → I/I2.
So this lemma will complete the proof.

Proof. Let Q =
∑
ci ⊗ di ∈ I. By assumption,

∑
cidi = 0 ∈ B. We have by this last

identity

Q =
∑

((ci ⊗ di)− (cidi ⊗ 1)) =
∑

ci(1⊗ di − di ⊗ 1). N

So Q is in the submodule spanned by the {1⊗ b− b⊗ 1}b∈B. N
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§3 Introduction to smoothness

3.1 Kähler differentials for fields

Let us start with the simplest examples—fields.

Example 3.1 Let k be a field, k′/k an extension.

Question What does Ωk′/k look like? When does it vanish?

Ωk′/k is a k′-vector space.

Proposition 3.2 Let k′/k be a separable algebraic extension of fields. Then Ωk′/k = 0.

Proof. We will need a formal property of Kähler differentials that is easy to check, namely
that they are compatible with filtered colimits. If B = lim−→Bα for A-algebras Bα, then
there is a canonical isomorphism

ΩB/A ' lim−→ΩBα/A.

One can check this on generators and relations, for instance.

Given this, we can reduce to the case of k′/k finite and separable.

Remark Given a sequence of fields and morphisms k → k′ → k′′, then there is an exact
sequence

Ωk′/k ⊗ k′′ → Ωk′′/k → Ωk′′/k′ → 0.

In particular, if Ωk′/k = Ωk′′/k′ = 0, then Ωk′′/k = 0. This is a kind of dévissage argument.

Anyway, recall that we have a finite separable extension k′/k where k′ = k(x1, . . . , xn).3

We will show that

Ωk(x1,...,xi)/k(x1,...,xi−1) = 0 ∀i,

which will imply by the devissage argument that Ωk′/k = 0. In particular, we are reduced
to showing the proposition when k′ is generated over k by a single element x. Then we
have that

k′ ' k[X]/(f(X))

for f(X) an irreducible polynomial. Set I = (f(X)). We have an exact sequence

I/I2 → Ωk[X]/k ⊗k[X] k
′ → Ωk′/k → 0

The middle term is a copy of k′ and the first term is isomorphic to k[X]/I ' k′. So there
is an exact sequence

k′ → k′ → Ωk′/k → 0.

The first term is, as we have computed, multiplication by f ′(x); however this is nonzero
by separability. Thus we find that Ωk′/k = 0. N

3We can take n = 1 by the primitive element theorem, but shall not need this.
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Remark The above result is not true for inseparable extensions in general.

Example 3.3 Let k be an imperfect field of characteristic p > 0. There is x ∈ k such
that x1/p /∈ k, by definition. Let k′ = k(x1/p). As a ring, this looks like k[t]/(tp − x).
In writing the exact sequence, we find that Ωk′/k = k′ as this is the cokernel of the map

k′ → k′ given by multiplication d
dt |x1/p(t

p − x). That polynomial has identically vanishing
derivative, though. We find that a generator of Ωk′/k is dt where t is a pth root of x, and
Ωk′/k ' k.

Now let us consider transcendental extensions. Let k′ = k(x1, . . . , xn) be a purely
transcendental extension, i.e. the field of rational functions of x1, . . . , xn.

Proposition 3.4 If k′ = k(x1, . . . , xn), then Ωk′/k is a free k′-module on the generators
dxi.

This extends to an infinitely generated purely transcendental extension, because Kähler
differentials commute with filtered colimits.

Proof. We already know this for the polynomial ring k[x1, . . . , xn]. However, the rational
function field is just a localization of the polynomial ring at the zero ideal. So the result
will follow from Proposition 2.16. N

We have shown that separable algebraic extensions have no Kähler differentials, but
that purely transcendental extensions have a free module of rank equal to the transcen-
dence degree.

We can deduce from this:

Corollary 3.5 Let L/K be a field extension of fields of char 0. Then

dimLΩL/K = trdeg(L/K).

Proof (Partial proof). Put the above two facts together. Choose a transcendence basis
{xα} for L/K. This means that L is algebraic over K({xα}) and the {xα} are algebraically
independent. Moreover L/K({xα}) is separable algebraic. Now let us use a few things
about these cotangent complexes. There is an exact sequence:

ΩK({xα}) ⊗K({xα}) L→ ΩL/K → ΩL/K({xα}) → 0

The last thing is zero, and we know what the first thing is; it’s free on the dxα. So we
find that ΩL/K is generated by the elements dxα. If we knew that the dxα were linearly
independent, then we would be done. But we don’t, yet. N

This is not true in characteristic p. If L = K(α1/p) for α ∈ K and α1/p /∈ K, then
ΩL/K 6= 0.
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3.2 Regularity, smoothness, and Kähler differentials

From this, let us revisit a statement made last time. Let K be an algebraically closed field,
let R = k[x1, . . . , xn]/I and let m ⊂ R be a maximal ideal. Recall that the Nullstellensatz
implies that R/m ' k. We were studying

ΩR/k.

This is an R-module, so ΩR/k ⊗R k makes sense. There is a surjection

m/m2 → ΩR/k ⊗R k → 0,

that sends x→ dx.

Proposition 3.6 This map is an isomorphism.

Proof. We construct a map going the other way. Call the map m/m2 → ΩR/k ⊗R k as φ.
We want to construct

ψ : ΩR/k ⊗R k → m/m2.

This is equivalent to giving an R-module map

ΩR/k → m/m2,

that is a derivation ∂ : R → m/m2. This acts via ∂(λ + x) = x for λ ∈ k, x ∈ m. Since
k + m = R, this is indeed well-defined. We must check that ∂ is a derivation. That is, we
have to compute ∂((λ+ x)(λ′ + x′)). But this is

∂(λλ′ + (λx′ + λ′x) + xx′).

The definition of ∂ is to ignore the constant term and look at the nonconstant term mod
m2. So this becomes

λx′ + λ′x = (∂(λ+ x))(x′ + λ′) + (∂(λ′ + x′))(x+ λ)

because xx′ ∈ m2, and because m acts trivially on m/m2. Thus we get the map ψ in the
inverse direction, and one checks that φ, ψ are inverses. This is because φ sends x → dx
and ψ sends dx→ x. N

Corollary 3.7 Let R be as before. Then Rm is regular iff dimRm = dimkΩR/k ⊗R R/m.

In particular, the modules of Kähler differentials detect regularity for certain rings.

Definition 3.8 Let R be a noetherian ring. We say that R is regular if Rm is regular for
every maximal ideal m. (This actually implies that Rp is regular for all primes p, though
we are not ready to see this. It will follow from the fact that the localization of a regular
local ring at a prime ideal is regular.)

Let R = k[x1, . . . , xn]/I be an affine ring over an algebraically closed field k. Then:
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Proposition 3.9 TFAE:

1. R is regular.

2. “R is smooth over k” (to be defined)

3. ΩR/k is a projective module over R of rank dimR.

A finitely generated projective module is locally free. So the last statement is that (ΩR/k)p
is free of rank dimR for each prime p.

Remark A projective module does not necessarily have a well-defined rank as an integer.
For instance, if R = R1 × R2 and M = R1 × 0, then M is a summand of R, hence is
projective. But there are two candidates for what the rank should be. The problem is
that SpecR is disconnected into two pieces, and M is of rank one on one piece, and of
rank zero on the other. But in this case, it does not happen.

Remark The smoothness condition states that locally on SpecR, we have an isomorphism
with k[y1, . . . , yn]/(f1, . . . , fm) with the gradients ∇fi linearly independent. Equivalently,
if Rm is the localization of R at a maximal ideal m, then Rm is a regular local ring, as we
have seen.

Proof. We have already seen that 1 and 2 are equivalent. The new thing is that they
are equivalent to 3. First, assume 1 (or 2). First, note that ΩR/k is a finitely generated
R-module; that’s a general observation:

Proposition 3.10 If f : A → B is a map of rings that makes B a finitely generated
A-algebra, then ΩB/A is a finitely generated B-module.

Proof. We’ve seen this is true for polynomial rings, and we can use the exact sequence. If
B is a quotient of a polynomial ring, then ΩB/A is a quotient of the Kähler differentials
of the polynomial ring. N

Return to the main proof. In particular, ΩR/k is projective if and only if (ΩR/k)m is
projective for every maximal ideal m. According to the second assertion, we have that Rm

looks like (k[y1, . . . , yn]/(f1, . . . , fm))n for some maximal ideal n, with the gradients ∇fi
linearly independent. Thus (ΩR/k)m = ΩRm/k looks like the cokernel of

Rmm → Rnm

where the map is multiplication by the Jacobian matrix
(
∂fi
∂yj

)
. By assumption this matrix

has full rank. We see that there is a left inverse of the reduced map km → kn. We can lift
this to a map Rnm → Rmm . Since this is a left inverse mod m, the composite is at least an
isomorphism (looking at determinants). Anyway, we see that ΩR/k is given by the cokernel
of a map of free module that splits, hence is projective. The rank is n−m = dimRm.

Finally, let us prove that 3 implies 1. Suppose ΩR/k is projective of rank dimR. So this
means that ΩRm/k is free of dimension dimRm. But this implies that (ΩR/k)⊗RR/m is free
of the appropriate rank, and that is—as we have seen already—the embedding dimension
m/m2. So if 3 holds, the embedding dimension equals the usual dimension, and we get
regularity. N
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Corollary 3.11 Let R = C[x1, . . . , xn]/p for p a prime. Then there is a nonzero f ∈ R
such that R[f−1] is regular.

Geometrically, this says the following. SpecR is some algebraic variety, and SpecR[f−1]
is a Zariski open subset. What we are saying is that, in characteristic zero, any algebraic
variety has a nonempty open smooth locus. The singular locus is always smaller than the
entire variety.

Proof. ΩR/C is a finitely generated R-module. Let K(R) be the fraction field of R. Now

ΩR/C ⊗R K(R) = ΩK(R)/C

is a finite K(R)-vector space. The dimension is trdeg(K(R)/C). That is also d = dimR,
as we have seen. Choose elements x1, . . . , xd ∈ ΩR/C which form a basis for ΩK(R)/C.
There is a map

Rd → ΩR/C

which is an isomorphism after localization at (0). This implies that there is f ∈ R such
that the map is an isomorphism after localization at f .4 We find that ΩR[f−1]/C is free of
rank d for some f , which is what we wanted. N

This argument works over any algebraically closed field of characteristic zero, or really
any field of characteristic zero.

Remark (Warning) Over imperfect fields in characteristic p, two things can happen:

1. Varieties need not be generically smooth

2. ΩR/k can be projective with the wrong rank

(Nothing goes wrong for algebraically closed fields of characteristic p.)

Example 3.12 Here is a silly example. Say R = k[y]/(yp − x) where x ∈ K has no pth
root. We know that ΩR/k is free of rank one. However, the rank is wrong: the variety has
dimension zero.

Last time, were trying to show that ΩL/K is free on a transcendence basis if L/K is
an extension in characteristic zero. So we had a tower of fields

K → K ′ → L,

where L/K ′ was separable algebraic. We claim in this case that

ΩL/K ' ΩK′/K ⊗K′ L.

This will prove the result. But we had not done this yesterday.

Proof. This doesn’t follow directly from the previous calculations. Without loss of gener-
ality, L is finite over K ′, and in particular, L = K ′[x]/(f(x)) for f separable. The claim
is that

ΩL/K ' (ΩK′/K ⊗K′ L⊕K ′dx)/f ′(x)dx+ . . .

When we kill the vector f ′(x)dx+ . . . , we kill the second component. N

4There is an inverse defined over the fraction field, so it is defined over some localization.
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Chapter 13

Various topics

This chapter is currently a repository for various topics that may or may not reach a
status worthy of their own chapters in the future, but in any event should be included.

§1 Linear algebra over rings

1.1 The determinant trick

We want to understand what IN = N means.
Let I ⊂ R and RM finitely generated. Let E = EndR(M), which is not commutative

in general. We may view M as an E-module EM . Since every element in R commutes
with all of E, E is an R-algebra (i.e. There is a homomorphism R → E sending R into
the center of E).

Lemma 1.1 (Determinant Trick)

1. Every φ ∈ E such that φ(M) ⊂ IM satisfies a monic equation of the form φn +
a1φ

n−1 + · · ·+ an = 0, where each ai ∈ I, i.e. φ is “integral over I”.

2. IM = M if and only if (1− a)M = 0 for some a ∈ I.

Proof. (1) Fix a finite set of generators, M = Rm1 + · · ·+ Rmn. Then we have φ(mi) =∑
j aijmj , with aij ∈ I by assumption. Let A = (aij). Then these equations tell us

that (Iφ − A)~m = 0. Multiplying by the adjoint of the matrix Iφ − A, we get that
det(Iφ − A)mi = 0 for each i. It follows that det(Iφ − A) = 0 ∈ E. But det(Iφ − A) =
φn + a1φ

n−1 + · · ·+ an for some ai ∈ I.
(2) The “if” part is clear. The “only if” part follows from (1), applied to φ = idM . N

Remark Determinant trick (part 2) actually includes Nakayama’s Lemma, because if I
is in RadR, (1− a) is a unit, so M = (1− a)M = 0.

Corollary 1.2 For a finitely generated ideal I ⊂ R, I = I2 if and only if I = eR for
some e = e2.

Proof. (⇐) clear.
(⇒) Apply determinant trick (part 2) to the case M = RI. We get (1 − e)I = 0 for

some e ∈ I, so (1 − e)a = 0 for each a ∈ I, so a = ea, so I is generated by e. Letting
a = e, we see that e is idempotent. N
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Corollary 1.3 (Vasconcelos-Strooker Theorem) For any finitely generated module
M over any commutative R. If φ ∈ EndR(M) is onto, then it is injective.

Proof. We can view M as a module over R[t], where t acts by φ. Apply the determinant
trick (part 2) to I = t · R[t] ⊂ R[t]. We have that IM = M because φ is surjective, so
m = φ(m0) = t ·m0 ∈ IM . It follows that there is some th(t) such that (1− th(t))M = 0.
In particular, if m ∈ kerφ, we have that 0 = (1− h(t)t)m = 1 ·m = m, so φ is injective.N

1.2 Determinantal ideals

Definition 1.4 An ideal I ⊂ R is called dense if rI = 0 implies r = 0. This is denoted
I ⊂d R. This is the same as saying that RI is a faithful module over R.

If I is a principal ideal, say Rb, then I is dense exactly when b ∈ C(R). The easiest case
is when R is a domain, in which case an ideal is dense exactly when it is non-zero.

If R is an integral domain, then by working over the quotient field, one can define the
rank of a matrix with entries in R. But if R is not a domain, rank becomes tricky. Let
Di(A) be the i-th determinantal ideal in R, generated by all the determinants of i × i
minors of A. We define D0(A) = R. If i ≥ min{n,m}, define Di(A) = (0).

Note that Di+1(A) ⊃ Di(A) because you can expand by minors, so we have a chain

R = D0(A) ⊃ D1(A) ⊃ · · · ⊃ (0).

Definition 1.5 Over a non-zero ring R, the McCoy rank (or just rank) of A to be the
maximum i such that Di(A) is dense in R. The rank of A is denoted rk(A).

If R is an integral domain, then rk(A) is just the usual rank. Note that over any ring,
rk(A) ≤ min{n,m}.

If rk(A) = 0, then D1(A) fails to be dense, so there is some non-zero element r such
that rA = 0. That is, r zero-divides all of the entries of A.

If A ∈Mn,n(R), then A has rank n (full rank) if and only if detA is a regular element.

Exercise 13.1 Let R = Z/6Z, and let A = diag(0, 2, 4), diag(1, 2, 4), diag(1, 2, 3),
diag(1, 5, 5) (3× 3 matrices). Compute the rank of A in each case.

Solution A D1(A) D2(A) D3(A)

diag(0, 2, 4) (2) (2) (0) 3 · (2) = 0, so rk = 0
diag(1, 2, 4) R (2) (2) 3 · (2) = 0, so rk = 1
diag(1, 2, 3) R R (2) 3 · (2) = 0, so rk = 2
diag(1, 5, 5) R R R so rk = 3
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1.3 Lecture 2

Let A ∈Mn,m(R). If R is a field, the rank of A is the dimension of the image of A : Rm →
Rn, and m − rk(A) is the dimension of the null space. That is, whenever rk(A) < m,
there is a solution to the system of linear equations

0 = A · x (13.1)

which says that the columns αi ∈ Rn of A satisfy the dependence
∑
xiαi = 0. The

following theorem of McCoy generalizes this so that R can be any non-zero commutative
ring.

Theorem 1.6 (McCoy) If R is not the zero ring, the following are equivalent:

1. The columns α1, . . . , αm are linearly dependent.

2. Equation 13.1 has a nontrivial solution.

3. rk(A) < m.

Corollary 1.7 If R 6= 0, the following hold

(a) If n < m (i.e. if there are “more variables than equations”), then Equation 13.1 has
a nontrivial solution.

(b) R has the “strong rank property”: Rm ↪→ Rn =⇒ m ≤ n.

(c) R has the “rank property”: Rn � Rm =⇒ m ≤ n.

(d) R has the “invariant basis property”: Rm ∼= Rn =⇒ m = n.

Proof (Proof of Corollary). (a) If n < m, then rk(A) ≤ min{n,m} = n < m, so by
Theorem 1.6, Equation 13.1 has a non-trivial solution.

(a ⇒ b) If m > n, then by (a), any R-linear map Rm → Rn has a kernel. Thus,
Rm ↪→ Rn implies m ≤ n.

(b⇒ c) If Rn � Rm, then since Rm is free, there is a section Rm ↪→ Rn (which must
be injective), so m ≤ n.

(c⇒ d) If Rm ∼= Rn, then we have surjections both ways, so m ≤ n ≤ m, so m = n.N

Corollary 1.8 Let R 6= 0, and A some n × n matrix. Then the following are equivalent
(1) detA ∈ C(R); (2) the columns of A are linearly independent; (3) the rows of A are
linearly independent.

Proof. The columns are linearly independent if and only if Equation 13.1 has no non-
trivial solutions, which occurs if and only if the rank of A is equal to n, which occurs if
and only if detA is a non-zero-divisor.

The transpose argument shows that detA ∈ C(R) if and only if the rows are indepen-
dent. N
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Proof (Proof of the Theorem). 0 = Ax =
∑
αixi if and only if the αi are dependent, so

(1) and (2) are equivalent.
(2⇒ 3) Let x ∈ Rm be a non-zero solution to A ·x = 0. If n < m, then rk(A) ≤ n < m

and we’re done. Otherwise, let B be any m×m minor of A (so B has as many columns
as A, but perhaps is missing some rows). Then Bx = 0; multiplying by the adjoint of B,
we get (detB)x = 0, so each xi annihilates detB. Since x 6= 0, some xi is non-zero, and
we have shown that xi · Dm(A) = 0, so rk(A) < m.

(3⇒ 2) Assume r = rk(A) < m. We may assume r < n (adding a row of zeros to A if
needed). Fix a nonzero element a such that a · Dr+1(A) = 0. If r = 0, then take x to be
the vector with an a in each place. Otherwise, there is some r×r minor not annihilated by
a. We may assume it is the upper left r×r minor. Let B be the upper left (r+1)× (r+1)
minor, and let d1, . . . , dr+1 be the cofactors along the (r + 1)-th row. We claim that the
column vector x = (ad1, . . . , adr+1, 0, . . . , 0) is a solution to Equation 13.1 (note that it
is non-zero because adr+1 6= 0 by assumption). To check this, consider the product of x
with the i-th row, (ai1, . . . , aim). This will be equal to a times the determinant of B′, the
matrix B with the (r+ 1)-th row replaced by the i-th row of A. If i ≤ r, the determinant
of B′ is zero because it has two repeated rows. If i > r, then B′ is an (r + 1) × (r + 1)
minor of A, so its determinant is annihilated by a. N

Corollary 1.9 Suppose a module RM over a non-zero ring R is generated by β1, . . . , βn ∈
M . If M contains n linearly independent vectors, γ1, . . . , γn, then the βi form a free basis.

Proof. Since the βi generate, we have γ = β · A for some n × n matrix A. If Ax = 0 for
some non-zero x, then γ ·x = βAx = 0, contradicting independence of the γi. By Theorem
1.6, rk(A) = n, so d = det(A) is a regular element.

Over R[d−1], there is an inverse B to A. If β · y = 0 for some y ∈ Rn, then γBy =
βy = 0. But the γi remain independent over R[d−1] since we can clear the denominators
of any linear dependence to get a dependence over R (this is where we use that d ∈ C(R)),
so By = 0. But then y = A · 0 = 0. Therefore, the βi are linearly independent, so they
are a free basis for M . N

§2 Finite presentation

2.1 Compact objects in a category

Let C be a category. In general, colimits tell one how to map out of them, not into them,
and there is no a priori reason to assume that if F : I → C is a functor, that

lim−→
i

Hom(X,Fi)→ Hom(X, lim−→Fi) (13.2)

is an isomorphism. In practice, though, it often happens that when I is filtered, the above
map is an isomorphism. For simplicity, we shall restrict to the case when I is a directed
set (which is naturally a category); in this case, we call the limits inductive.

Definition 2.1 The object X is called compact if (13.2) is an isomorphism whenever I
is inductive.

342



The CRing Project, §13.2.

The following example motivates the term “compact.”

Example 2.2 Let C be the category of Hausdorff topological spaces and closed inclusions
(so that we do not obtain a full subcategory of the category of topological spaces), and
let X be a compact space. Then X is a compact object in C.

Indeed, suppose {Xi}i∈I is an inductive system of Hausdorff spaces and closed inclu-
sions. Suppose given a map f : X → lim−→Xi. Then each Xi is a closed subspace of the
colimit, so we need to show that f(X) lands inside one of the Xi. This will easily imply
compactness.

Suppose not. Then f(X) contains, for each i, a point xi that belongs to no Xj , j < i.
Choose a countable subset T ⊂ I (if I is finite, then this is automatic!). For each t ∈ T ,
we get an element xt ∈ f(X) that belongs to no Xi for i < t. Note that if t′ ∈ T , then it
follows that Xt′ ∩ {xt} is finite.

In particular, if F ⊂ {xt} is any subset, then Xt′ ∩ F is closed for each t′ ∈ T . Thus
lim−→T

Xt′ contains the set F as a closed subset, and since this embeds as a closed subset of
lim−→Xi, F is thus closed in there too. The induced topology on {xt} is thus the discrete
one.

We have thus seen that the set {xt} is an infinite, discrete closed subset of lim−→Xi.
However, it is a subset of f(X) as well, which is compact, so it is itself compact; this is a
contradiction.

This example allows one to run the “small object argument” of Quillen for the category
of topological spaces, and in particular to construct the Quillen model structure on it. See
[Hov07]. As an simple example, we may note that if we have a sequence of closed subspaces
(such as the skeleton filtration of a CW complex)

X1 ⊂ X2 ⊂ . . .

it then follows easily from this that (where [K,−] denotes homotopy classes of maps)

[K, lim−→Xi] = lim−→[K,Xi]

for any compact space K. Taking K to be a sphere, one finds that the homotopy group
functors commute with inductive limits of closed inclusions.

This notion is closely related to that of “smallness” introduced in Definition 2.18
to prove an object can be imbedded in an injective module. For instance, smallness with
respect to any limit ordinal and the class of all maps is basically equivalent to compactness
in this sense.

TO BE ADDED: this should be clarified. Can we replace any inductive limit by an
ordinal one, assuming there’s no largest element?

2.2 Finitely presented modules

Let us recall that a module M over a ring R is said to be finitely presented if there is an
exact sequence

Rm → Rn →M → 0.
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In particular, M can be described by a “finite amount of data:” M is uniquely determined
by the matrix describing the map Rm → Rn. Thus, to hom out of M into an R-module
N is to specify the images of the n generators (that are the images of the standard basis
elements in Rn), that is to pick n elements of N , and these images are required to satisfy
m relations (that come from the map Rm → Rn).

Note that the theory of finitely presented modules is only special and new when one
works with a non-noetherian rings; over a noetherian ring, every finitely generated module
is finitely presented. Nonetheless, the techniques described here are useful even if one
restricts one’s attention to noetherian rings.

Exercise 13.2 Show that a finitely generated projective module is finitely presented.

Proposition 2.3 In the category of R-modules, the compact objects are the finitely pre-
sented ones.

Proof. First, let us show that a finitely presented module is in fact finite. Suppose M
is finitely presented and {Ni, i ∈ I} is an inductive system of modules. Suppose given
M → lim−→Ni; we show that it factors through one of the Ni.

There are finitely many generators m1, . . . ,mn, and in the colimit

N = lim−→Ni,

they must all lie in the image of some Nj , j ∈ I. Thus we can choose r
(j)
1 , . . . , r

(j)
n such

that r
(j)
k and mk both map to the same thing in lim−→Ni. This alone does not enable us to

conclude that M → lim−→Ni factors through Nj , since the relations between the m1, . . . ,mn

may not be satisfied between the putative liftings r
(j)
k to Nj .

However, we know that the relations are satisfied when we push down to the colimit.
Since there are only finitely many relations that we need to have satisfied, we can choose

j′ > j such that the relations all do become satisfied by the images of the r
(j)
k in Nj′ . We

thus get a lifting M → Nj′ .
We see from this that the map

lim−→HomR(M,Ni)→ lim−→HomR(M, lim−→Ni)

is in fact surjective. To see that it is injective, note that if two maps f, g : M → Nj

become the same map M → lim−→Ni, then the finite set of generators m1, . . . ,mn must
both be mapped to the same thing in some Nj′ , j

′ > j.
Now suppose M is a compact object in the category of R-modules. First, we claim

that M is finitely generated. Indeed, we know that M is the inductive limit of its finitely
generated submodules. Thus we get a map

M → lim−→
MF⊂M,f. gen

MF ,

and by hypothesis it factors as M →MF for some MF . This implies that M →MF →M
is the identity, and so M = MF and M is finitely generated.
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Finally, we need to see that M is finitely presented. Choose a surjection

Rn �M

and let the kernel be K. We would like to show that K is finitely generated. Now
M ' Rn/K, and consequently M is the inductive limit lim−→Rn/KF for KF ranging over
the finitely generated submodules of K. It follows that the natural isomorphism M '
lim−→Rn/KF factors as M → Rn/KF for some KF , which is thus an isomorphism. Hence
M is finitely presented. N

The above argument shows, incidentally, that ifM is finitely generated, then lim−→HomR(M,Ni)→
lim−→HomR(M, lim−→Ni) is always injective.

TO BE ADDED: any module is an inductive limit of finitely presented modules TO
BE ADDED: Lazard’s theorem on flat modules

2.3 Finitely presented algebras

Let R be a commutative ring.

Definition 2.4 An R-algebra A is called finitely presented if A is isomorphic to an R-
algebra of the form R[x1, . . . , xn]/I, where I ⊂ R[x1, . . . , xn] is a finitely generated ideal
in the polynomial ring. A morphism of rings φ : R → R′ is called finitely presented if
it makes R′ into a finitely presented R-algebra.

For instance, a quotient of R by a finitely generated ideal is a finitely presented R-
algebra. If R is noetherian, then by the Hilbert basis theorem, an R-algebra is finitely
presented if and only if it is finitely generated.

Proposition 2.5 The finitely presented R-algebras are the compact objects in the category
of R-algebras.

We leave the proof to the reader, as it is analogous to Proposition 2.3.
The notion of a finitely presented algebra is analogous to that of a finitely presented

module, insofar as a finitely presented algebra can be specified by a finite amount of
“data.” Namely, this data consists of the generators x1, . . . , xn and the finitely many
relations that they are required to satisfy (these finitely many relations can be taken to be
generators of I). Thus, to hom out of A is “easy:” to map into an R-algebra B, we need
to specify n elements of B, which have to satisfy the finitely many relations that generate
the ideal I.

Like most nice types of morphisms, finitely presented morphisms have a “sorite.”

Proposition 2.6 (Le sorite for finitely presented morphisms) Finitely presented mor-
phisms are preserved under composite and base-change. That is, if φ : A→ B is a finitely
presented morphism, then:

1. If A′ is any A-algebra, then φ⊗A′ : A′ → B ⊗A A′ is finitely presented.

2. If ψ : B → C is finitely presented, then C is a finitely presented over A (that is,
ψ ◦ φ is finitely presented).
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Proof. First, we show that finitely presented morphisms are preserved under base-change.
Suppose B is finitely presented over A, thus isomorphic to a quotient A[x1, . . . , xn]/I,
where I is a finitely generated ideal in the polynomial ring. Then for any A-algebra A′,
we have that

B ⊗A A′ = A′[x1, . . . , xn]/I ′

where I ′ is the ideal in A′[x1, . . . , xn] generated by I. (This follows by right-exactness of
the tensor product.) Thus I ′ is finitely presented and B ⊗A A′ is finitely presented over
A′.

Next, we show that finitely presented morphisms are closed under composition. Sup-
pose A → B and B → C are finitely presented morphisms. Then B is isomorphic as
A-algebra to A[x1, . . . , xn/I and C is isomorphic as B-algebra to B[y1, . . . , ym]/J , where
I, J are finitely generated ideals. Thus C ' A[x1, . . . , xn, y1, . . . , ym]/(I + J) for I + J
the ideal generated by I, J in A[x1, . . . , xn, y1, . . . , ym]. This is clearly a finitely generated
ideal. N

Finitely presented morphisms have a curious cancellation property that we tackle next.
In algebraic geometry, one often finds properties P of morphisms of schemes such that if
a composite

X
f→ Y

g→ Z

has P, then so does f (possibly with weak conditions on g). One example of this (in any
category) is the class of monomorphisms. A more interesting example (for schemes) is the
property of separatedness; the interested reader may consult [GD].

In our case, we shall illustrate this cancellation phenomenon in the category of com-
mutative rings. Since arrows for schemes go in the opposite direction as arrows of rings,
this will look slightly different.

Proposition 2.7 Suppose we have a composite

A
f→ B

g→ C

such that g ◦ f : A→ C is finitely presented, and f is of finite type (that is, B is a finitely
generated A-algebra). Then g : B → C is finitely presented.

Proof. We shall prove this using the fact that the codiagonal map in the category of
commutative rings is finitely presented if the initial map is finitely generated:

Lemma 2.8 Let S be a finitely generated R-algebra. Then the map S⊗RS → S is finitely
presented.

Proof. We shall show that the kernel I of S ⊗R S → S is a finitely generated ideal. This
will clearly imply the claim, as S ⊗R S → S is obviously a surjection.

To see this, let α1, . . . , αn ∈ S be generators for S as an R-algebra. The claim is that
the elements 1 ⊗ αi − αi ⊗ 1 generate I as an S ⊗R S-module. Clearly these live in I.
Conversely, it is clear I is generated by elements of the form x ⊗ 1 − 1 ⊗ x (because if
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z =
∑
xk ⊗ yk ∈ I, then z =

∑
(xk ⊗ 1) (1⊗ yk − yk ⊗ yk) +

∑
xkyk ⊗ 1 and the last term

vanishes by definition of I).
In other words, if we define d(α) = α ⊗ 1 − 1 ⊗ α for α ∈ S, then I is generated by

elements d(α). Now d is clearly R-linear, and we have the identity

d(αβ) = αβ ⊗ 1− 1⊗ αβ
= αβ ⊗ 1− α⊗ β + α⊗ β − 1⊗ αβ
= (α⊗ 1)d(β) + (1⊗ β)d(α).

Thus d(αβ) is in the S⊗R S-module spanned by d(α) and d(β). From this, it is clear that
d(α1), d(α2), . . . , d(αn) generate I as a S ⊗R S-module. N

From this lemma, we will be able to prove the theorem as follows. We can write
g : B → C as the composite

B → B ⊗A C → C

where the first map is the base-change of the finitely presented morphism A → C and
the second morphism is the base-change of the finitely presented morphism B⊗AB → B.
Thus the composite B → C is finitely presented. N

§3 Inductive limits of rings

We shall now find ourselves in the following situation. We shall have an inductive system
{Aα}α∈I of rings, indexed by a directed set I. With A = lim−→Aα, we will be interested in
relating categories of modules and algebras over A to the categories over Aα.

The basic idea will be as follows. Given an object (e.g. module)M of finite presentation
of A, we will be able to find an object Mα of finite presentation over some Aα such that
M is obtained from Mα by base-change Aα → A. Moreover, given a morphism M → N
of objects over A, we will be able to “descend” this to a morphism Mα → Nα of objects
of finite presentation over some Aα, which will induce M → N by base-change. In other
words, the category of objects over A of finite presentation will be the inductive limit of
the categories of such objects over the Aα.

3.1 Prologue: fixed points of polynomial involutions over C

Following [Ser09], we give an application of these ideas to a simple concrete problem.
This will help illustrate some of them, even though we have not formally developed the
machinery yet.

If k is an algebraically closed field, a map kn → kn is called polynomial if each of the
components is a polynomial function in the input coordinates. So if we identify kn with
the closed points of Spec k[x1, . . . , xn], then a polynomial function is just the restriction
to to the closed points of an endomorphism of Spec k[x1, . . . , xn] induced by an algebra
endomorphism.

Theorem 3.1 Let F : Cn → Cn be a polynomial map with F ◦ F = 1Cn. Then F has a
fixed point.
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We can phrase this alternatively as follows. Let σ : C[x1, . . . , xn]→ C[x1, . . . , xn] be a
C-involution. Then the map on the Spec’s has a fixed point (which is a closed point1).

Proof. It is clear that the presentation of σ involves only a finite amount of data, so as in
?? we can construct a finitely generated Z-algebra R ⊂ C and an involution

σ : R[x1, . . . , xn]→ R[x1, . . . , xn]

such that σ is obtained from σ by base-changing R → C. We can assume that 1
2 ∈ R as

well. To see this explicitly, we simply need only add to R the coefficients of the polynomials
σ(x1), . . . , σ(xn), and 1

2 , and consider the Z-algebra they generate.

Suppose now the system of equations σ(x1, . . . , xn)−(x1, . . . , xn) has no solution in Cn.
This is equivalent to stating that a finite system of polynomials (namely, the σ(xi)− xi)
generate the unit ideal in C[x1, . . . , xn], so that there are polynomials Pi ∈ C[x1, . . . , xn]
such that

∑
Pi (σ(xi)− xi) = 1.

Let us now enlarge R so that the coefficients of the Pi lie in R. Since the coefficients
of the σ(xi) are already in R, we find that the polynomials σ(xi) − xi will generate the
unit ideal in R[x1, . . . , xn]. If R′ is a homomorphic image of R, then this will be true in
R′[x1, . . . , xn].

Choose a maximal ideal m ⊂ R. Then R/m is a finite field, and σ becomes an involution

(R/m)[x1, . . . , xn]→ (R/m)[x1, . . . , xn].

If we let k be the algebraic closure of R/m, then we have an involution

σ̃ : k[x1, . . . , xn]→ k[x1, . . . , xn].

But the induced map by σ̃ on kn has no fixed points. This follows because the σ̃(xi)− xi
generate the unit ideal in k[x1, . . . , xn] (because we can consider the images of the Pi in
k[x1, . . . , xn]). Moreover, chark 6= 2 as 1

2 ∈ R, so 2 is invertible in k as well.

So from the initial fixed-point-free involution F (or σ), we have induced a polynomial
map kn → kn with no fixed points. We need only now prove:

Lemma 3.2 If k is the algebraic closure of Fp for p 6= 2, then any involution F : kn → kn

which is a polynomial map has a fixed point.

Proof. This is very simple. There is a finite field Fq in which the coefficients of F all lie;
thus F induces a map

Fnq → Fnq N

which is necessarily an involution. But an involution on a finite set of odd cardinality
necessarily has a fixed point (or all orbits would be even). N

1One can show that if there is a fixed point, there is a fixed point that is a closed point.
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Remark An alternative approach to the above proof is to use a little bit of model theory.
There is a general principle due to Abraham Robinson, that can be stated roughly as
follows. If a sentence P in the first-order logic of fields (that is, one is allowed to refer
to the elements 0, 1 and to addition and multiplication; in addition, one is allowed to
make existential and universal quantifications, negations, disjunctions, and conjunctions)
has the property that P is true for an algebraically closed field of characteristic p for each
p� 0, then P holds in every algebraically closed field of characteristic zero. This principle
follows from a combination of the compactness theorem and the fact that the theory of
algebraically closed fields of a fixed characteristic is complete: any statement is true in all
of them, or in none of them.

Consider the statement Sn,d that for any polynomial map F : kn → kn consisting of
polynomials of degree ≤ d such that F ◦F , there is (x1, . . . , xn) ∈ kn with F (x1, . . . , xn) =
(x1, . . . , xn). Then Sn,d is clearly a statement of first-order logic. Lemma 3.2 shows that
Sn,d holds in Fp whenever p > 2. Thus, Sn,d holds in C by Robinson’s principle.

These types of model-theoretic arguments can be used to prove the Ax-Grothendieck
theorem: an injective polynomial map Cn → Cn is surjective. See [Mar02].

3.2 The inductive limit of categories

TO BE ADDED: general formalism to clarify all this

3.3 The category of finitely presented modules

Throughout, we let {Aα}α∈I be an inductive system of rings, and A = lim−→Aα. We are
going to relate the category of finitely presented modules over A to the categories of finitely
presented modules over the Aα.

We start by showing that any module over A “descends” to one of the Aα.

Proposition 3.3 Suppose M is a finitely presented module over A. Then there is α ∈ I
and a finitely presented Aα-module Mα such that M 'Mα ⊗Aα A.

Proof. Indeed, M is the cokernel of a morphism

f : Am → An

by definition. This morphism is described by a m-by-n (or n-by-m, depending on conven-
tions) matrix with coefficients in A. Each of these finitely many coefficients must come
from various Aα in the image (by definition of the inductive limit), and choosing α “large”
we can assume that every coefficient in the matrix is in the image of Aα → A. Then we
have a morphism

fα : Amα → Anα

that induces f by base-change to A. Then we may let Mα be the cokernel of fα since the
tensor product is right-exact. N

Now, we want to show that if the base-change of two finitely presented modules over
Aα to A become isomorphic, then they “become isomorphic” at some Aβ (for β > α). We
shall actually prove a more general result. Namely, we shall see that a morphism at the
colimit “descends” to one of the steps.
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Proposition 3.4 We keep the same notation as above. Suppose Mα, Nα are finitely pre-
sented modules over Aα. Write Mβ = Mα ⊗Aα Aβ, Nβ = Nα ⊗Aα Aβ for each β > α and
M,N for the base-changes to N .

Suppose there is a morphism f : M → N . Then there is β ≥ α such that f is obtained
by base-changing a morphism fβ : Mβ → Nβ. If fβ, fγ are any two morphisms that do
this, then there is δ ≥ β, γ such that fβ, fγ become equal when base-changed to Aδ.

The conclusion of this result is then

HomA(M,N) = lim−→
β

HomAβ (Mβ, Nβ).

The last part is essentially the “uniqueness” that we were discussing previously.

Proof. Suppose the transition maps Aα → Aβ are denoted φαβ, and the natural maps
Aα → A are denoted φα.

We know that there are exact sequences

Amα
M→ Anα →Mα → 0,

and
Apα → Nα → 0.

These are preserved by tensoring with A. Here M is a suitable matrix. So we get exact
sequences

Am
φα(M)→ An →M → 0

Ap → N → 0 N

and the projectivity of Ap shows that the map An →M → N can be lifted to a map An →
Ap given by some matrix M′ with coefficients in A. We know that there is M′◦φα(M) = 0
because the map factors through M .

Now M′ can be written as φβ(M′′) for some matrix with coefficients in Aβ, or in other
words a map Anβ → Apβ. We would like to use this to get a map Mβ → Apβ → Nβ, but for

this we need to check that Anβ → Apβ pulls back to zero in Amβ . In other words, we need

that M′′φαβ(M) = 0. This need not be true, but we know that it is true if base-change
to a bigger β (since this matrix product is zero in the colimit). This allows us to get the
map Mβ → Nβ.

Finally, we need uniqueness. Suppose fβ : Mβ → Nβ and fγ : Mγ → Nγ both are such
that the base-changes to A are the same morphism M → N . We need to find a δ as in the
proposition. By replacing β, γ with a mutual upper bound, we may suppose that β = γ;
we shall write the two morphisms as fβ, gβ then.

Consider the pull-backs Anβ
fβ ,gβ→ Nβ. These uniquely determine fβ, gβ (since the map

Anβ → Mβ is a surjection). These pull-backs are specified by n elements of Nβ. If the
base-changes of fβ, gβ via φβ : Aβ → A are the same, then these n elements of Nβ become
the same in N = lim−→β′

N ⊗Aβ Aβ′ ; thus they become equal at some finite stage, so there

is β′ > β such that the base changes fβ′ = gβ′ .
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Remark The idea of the above proof was to exploit the idea that the homomorphism
carries a finite amount of data, that is the images of the generators and the condition that
these images satisfy finitely many relations. In essence, it is analogous to the argument
that finitely presented modules over a fixed ring are compact objects in that category.

Remark In fact, we can give an alternative (and slightly simpler) argument for Proposi-
tion 3.4. We know that

HomAβ (Mβ, Nβ) = HomAα(Mα, Nβ)

by the adjoint property of the tensor product, and similarly

HomA(M,N) = HomAα(Mα, N).

So the assertion we are trying to prove is

HomAα(Mα, N) = lim−→
β

HomAα(Mα, Nβ),

which follows from Proposition 2.3.

Exercise 13.3 Give a proof of the following claim. If M is a finitely generated module
over a noetherian ring R, p ∈ SpecR is such that Mp is free over Rp, then there is f ∈ R−p
such that Mf is free over Rf .

3.4 The category of finitely presented algebras

We can treat the category of finitely presented algebras over such an inductive limit in a
similar manner. As before, let {Aα}α∈I be an inductive system of rings with A = lim−→Aα.
For each α, there is a functor from the category of finitely presented Aα-algebras to the
category of finitely presented A-algebras sending C 7→ C ⊗Aα A. (Note that morphisms
of finite presentation are preserved under base-change by Proposition 2.6.)

Proposition 3.5 Suppose B is a finitely presented A-algebra. Then there is α ∈ I and a
finitely presented Aα-algebra Bα such that B ' Bα ⊗Aα A.

Proof. This is analogous to the proof of Proposition 3.3. N

TO BE ADDED: analog of the next result

3.5 Spec and inductive limits

Suppose {Aα}α∈I is an inductive system of commutative rings, as before; we let A =
lim−→Aα. Since Spec is a contravariant functor, we thus find that SpecAα is a projective

system of topological spaces.2 We are now interested in relating SpecA to the individual
SpecAα.

2Or schemes.

351



The CRing Project, §13.3.

Proposition 3.6 SpecA is the projective limit lim←− SpecAα in the category of topological
spaces.

Recall that if {Xα} is a projective system of topological spaces with transition maps
φβα : Xβ → Xα whenever α ≤ β, then the projective limit lim←−Xα can be constructed
as follows. One considers the subset of

∏
Xα consisting of sequences (xα) such that

φβα(xα) = xβ for every α ≤ β. One can easily check that this has the universal property
of the projective limit.

Proof. Let us first verify that the assertion is true as sets. There are maps

SpecA→ SpecAα

for each α ∈ I, which are obviously compatible (since the {Aα} form an inductive system)
so that they lead to a (continuous) map of topological spaces

SpecA→ lim←− SpecAα.

We first verify injectivity. Suppose two primes p, p′ were sent to the same element of
lim←− SpecAα. This means that if φα : Aα → A is the natural morphism for each α, we have

φ−1
α (p) = φ−1

α (p′) for all α. It follows that the intersections of p, p′ with the image of Aα
are identical; since A is the union of φα(Aα) over all α, this implies p = p′.

Now let us verify surjectivity. Suppose given a sequence pα of primes in Aα, for each
α, such that pα is the pre-image of pβ under Aα → Aβ whenever α ≤ β. We want to form
a prime ideal p ∈ SpecA pulling back to all these. To do this, we decide that x ∈ p if and
only if there exists α ∈ I such that x ∈ φα(pα) (recall that φα : Aα → A is the natural
map). This does not depend on the choice of α, and one verifies easily that this is a prime
ideal with the appropriate properties.

We now have to show that the map SpecA→ lim←− SpecAα is in fact a homeomorphism.
We have seen that it is continuous and bijective, so we must prove that it is open. If a ∈ A,
we will be done if we can show that the image of the basic open set D(a) ⊂ SpecA is open
in lim←− SpecAα.

Suppose a = φβ(aβ) for some aβ ∈ Aβ. Then the claim is that the image of D(a) is
precisely the subset of lim←− SpecAβ such that the βth coordinate (which is in SpecAβ!)
lies in D(aβ). This is clearly an open set, so if we prove this, then we are done. Indeed,
if p ∈ D(α) ⊂ SpecA, then clearly the preimage in Aβ cannot contain aβ (since aβ maps
to a). Conversely, if we have a compatible sequence {pα} of primes such that pβ ∈ D(aβ),
then the above construction of a prime p ∈ SpecA from this shows that a /∈ p. N
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Chapter 14

Homological Algebra

Homological algebra begins with the notion of a differential object, that is, an object with

an endomorphism A
d→ A such that d2 = 0. This equation leads to the obvious inclusion

Im(d) ⊂ ker(d), but the inclusion generally is not equality. We will find that the difference
between ker(d) and Im(d), called the homology, is a highly useful variant of a differential
object: its first basic property is that if an exact sequence

0→ A′ → A→ A′′ → 0

of differential objects is given, the homology of A is related to that of A′, A′′ through a
long exact sequence. The basic example, and the one we shall focus on, is where A is a
chain complex, and d the usual differential. In this case, homology simply measures the
failure of a complex to be exact.

After introducing these preliminaries, we develop the theory of derived functors. Given
a functor that is only left or right-exact, derived functors allow for an extension of a
partially exact sequence to a long exact sequence. The most important examples to us,
Tor and Ext, provide characterizations of flatness, projectivity, and injectivity.

§1 Complexes

1.1 Chain complexes

The chain complex is the most fundamental construction in homological algebra.

Definition 1.1 Let R be a ring. A chain complex is a collection of R-modules {Ci}
(for i ∈ Z) together with boundary operators ∂i : Ci → Ci−1 such that ∂i−1∂i = 0. The
boundary map is also called the differential. Often, notation is abused and the indices
for the boundary map are dropped.

A chain complex is often simply denoted C∗.

In practice, one often has that Ci = 0 for i < 0.

Example 1.2 All exact sequences are chain complexes.

Example 1.3 Any sequence of abelian groups {Ci}i∈Z with the boundary operators iden-
tically zero forms a chain complex.
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We will see plenty of more examples in due time.
At each stage, elements in the image of the boundary Ci+1 → Ci lie in the kernel of

∂i : Ci → Ci−1. Let us recall that a chain complex is exact if the kernel and the image
coincide. In general, a chain complex need not be exact, and this failure of exactness is
measured by its homology.

Definition 1.4 Let C∗ The submodule of cycles Zi ⊂ Ci is the kernel ker(∂i). The
submodule of boundaries Bi ⊂ Ci is the image Im(∂i+1). Thus homology is said to be
“cycles mod boundaries,” i.e. Zi/Bi.

To further simplify notation, often all differentials regardless of what chain complex
they are part of are denoted ∂, thus the commutativity relation on chain maps is f∂ = ∂f
with indices and distinction between the boundary operators dropped.

Definition 1.5 Let C∗ be a chain complex with boundary map ∂i. We define the ho-
mology of the complex C∗ via Hi(C∗) = ker(∂i)/Im(∂i+1).

Example 1.6 In a chain complex C∗ where all the boundary maps are trivial, Hi(C∗) =
Ci.

Often we will bundle all the modules Ci of a chain complex together to form a graded
module C∗ =

⊕
iCi. In this case, the boundary operator is a endomorphism that takes

elements from degree i to degree i−1. Similarly, we often bundle together all the homology
modules to give a graded homology module H∗(C∗) =

⊕
iHi(C∗).

Definition 1.7 A differential module is a module M together with a morphism d :
M →M such that d2 = 0.

Thus, given a chain complex C∗, the module
⊕
Ci is a differential module with the

direct sum of all the differentials ∂i. A chain complex is just a special kind of differential
module, one where the objects are graded and the differential drops the grading by one.

1.2 Functoriality

We have defined chain complexes now, but we have no notion of a morphism between
chain complexes. We do this next; it turns out that chain complexes form a category
when morphisms are appropriately defined.

Definition 1.8 A morphism of chain complexes f : C∗ → D∗, or a chain map, is a
sequence of maps fi : Ci → Di such that f∂ = ∂′f where ∂ is the boundary map of C∗
and ∂′ of D∗ (again we are abusing notation and dropping indices).

There is thus a category of chain complexes where the morphisms are chain maps.
One can make a similar definition for differential modules. If (M,d) and (N, d′) are dif-

ferential modules, then a morphism of differential modules (M,d)→ (N, d′) is a morphism
of modules M → N such that the diagram

M

��

d //M

��
N

d′ // N
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commutes. There is therefore a category of differential modules, and the map C∗ →
⊕
Ci

gives a functor from the category of chain complexes to that of differential modules.

Proposition 1.9 A chain map C∗ → D∗ induces a map in homology Hi(C)→ Hi(D) for
each i; thus homology is a covariant functor from the category of chain complexes to the
category of graded modules.

More precisely, each Hi is a functor from chain complexes to modules.

Proof. Let f : C∗ → D∗ be a chain map. Let ∂ and ∂′ be the differentials for C∗ and D∗
respectively. Then we have a commutative diagram:

Ci+1
∂i+1−−−−→ Ci −−−−→

∂i
Ci−1yfi+1

yfi yfi−1

Di+1

∂′i+1−−−−→ Di −−−−→
∂′i

Di−1

(14.1)

Now, in order to check that a chain map f induces a map f∗ on homology, we need
to check that f∗(Im(∂)) ⊂ Im(∂′) and f∗(ker(∂)) ⊂ ker(∂). We first check the condition
on images: we want to look at fi(Im(∂i+1)). By commutativity of f and the boundary
maps, this is equal to ∂′i+1(Im(fi+1). Hence we have fi(Im(∂i+1)) ⊂ Im(∂′i+1). For the
condition on kernels, let x ∈ ker(∂i). Then by commutativity, ∂′i(fi(x)) = fi−1∂i(x) = 0.
Thus we have that f induces for each i a homomorphism fi : Hi(C∗)→ Hi(D∗) and hence
it induces a homomorphism on homology as a graded module. N

Exercise 14.1 Define the homology H(M) of a differential module (M,d) via ker d/ Im d.
Show that M 7→ H(M) is a functor from differential modules to modules.

1.3 Long exact sequences

TO BE ADDED: OMG! We have all this and not the most basic theorem of them all.

Definition 1.10 If M is a complex then for any integer k, we define a new complex M [k]
by shifting indices, i.e. (M [k])i := M i+k.

Definition 1.11 If f : M → N is a map of complexes, we define a complex Cone(f) :=
{N i ⊕M i+1} with differential

d(ni,mi+1) := (diN (ni) + (−1)i · f(mi+1, di+1
M (mi+1))

Remark: This is a special case of the total complex construction to be seen later.

Proposition 1.12 A map f : M → N is a quasi-isomorphism if and only if Cone(f) is
acyclic.

355



The CRing Project, §14.1.

Proposition 1.13 Note that by definition we have a short exact sequence of complexes

0→ N → Cone(f)→M [1]→ 0

so by Proposition 2.1, we have a long exact sequence

· · · → H i−1(Cone(f))→ H i(M)→ H i(N)→ H i(Cone(f))→ . . .

so by exactness, we see that H i(M) ' H i(N) if and only if H i−1(Cone(f)) = 0 and
H i(Cone(f)) = 0. Since this is the case for all i, the claim follows. �

1.4 Cochain complexes

Cochain complexes are much like chain complexes except the arrows point in the opposite
direction.

Definition 1.14 A cochain complex is a sequence of modules Ci for i ∈ Z with
coboundary operators, also called differentials, ∂i : Ci → Ci+1 such that ∂i+1∂i = 0.

The theory of cochain complexes is entirely dual to that of chain complexes, and
we shall not spell it out in detail. For instance, we can form a category of cochain
complexes and chain maps (families of morphisms commuting with the differential).
Moreover, given a cochain complex C∗, we define the cohomology objects to be hi(C∗) =
ker(∂i)/Im(∂i−1); one obtains cohomology functors.

It should be noted that the long exact sequence in cohomology runs in the opposite
direction. If 0→ C ′∗ → C∗ → C ′′∗ → 0 is a short exact sequence of cochain complexes, we
get a long exact sequence

· · · → H i(C ′)→ H i(C)→ H i(C ′′)→ H i+1(C ′)→ H i+1(C)→ . . . .

Similarly, we can also turn cochain complexes and cohomology modules into a graded
module.

Let us now give a standard example of a cochain complex.

Example 1.15 (The de Rham complex) Readers unfamiliar with differential forms
may omit this example. Let M be a smooth manifold. For each p, let Cp(M) be the
R-vector space of smooth p-forms on M . We can make the {Cp(M)} into a complex by
defining the maps

Cp(M)→ Cp+1(M)

via ω → dω, for d the exterior derivative. (Note that d2 = 0.) This complex is called the
de Rham complex of M , and its cohomology is called the de Rham cohomology. It
is known that the de Rham cohomology is isomorphic to singular cohomology with real
coefficients.

It is a theorem, which we do not prove, that the de Rham cohomology is isomorphic
to the singular cohomology of M with coefficients in R.
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1.5 Long exact sequence

1.6 Chain Homotopies

In general, two maps of complexes C∗ ⇒ D∗ need not be equal to induce the same mor-
phisms in homology. It is thus of interest to determine conditions when they do. One
important condition is given by chain homotopy: chain homotopic maps are indistinguish-
able in homology. In algebraic topology, this fact is used to show that singular homology
is a homotopy invariant. We will find it useful in showing that the construction (to be
given later) of a projective resolution is essentially unique.

Definition 1.16 Let C∗, D∗ be chain complexes with differentials di. A chain homotopy
between two chain maps f, g : C∗ → D∗ is a series of homomorphisms hi : Ci → Di−1

satisfying f i − gi = dhi + hn+1d. Again often notation is abused and the condition is
written f − g = dh+ hd.

Proposition 1.17 If two morphisms of complexes f, g : C∗ → D∗ are chain homotopic,
they are taken to the same induced map after applying the homology functor.

Proof. Write {di} for the various differentials (in both complexes). Let m ∈ Zi(C), the
group of i-cycles. Suppose there is a chain homotopy h between f, g (that is, a set of
morphisms Ci → Di−1). Then

f i(m)− gi(m) = hi+1 ◦ di(m) + di−1 ◦ hi(m) = di−1 ◦H i(m) ∈ =(di−1)

which is zero in the cohomology H i(D). N

Corollary 1.18 If two chain complexes are chain homotopically equivalent (there are
maps f : C∗ → D∗ and g : D∗ → C∗ such that both fg and gf are chain homotopic to the
identity), they have isomorphic homology.

Proof. Clear. N

Example 1.19 Not every quasi-isomorphism is a homotopy equivalence. Consider the
complex

· · · → 0→ Z/·2→ Z→ 0→ 0→ . . .

so H0 = Z/2Z and all cohomologies are 0. We have a quasi-isomorphism from the above
complex to the complex

· · · → 0→ 0→ Z/2Z→ 0→ 0→ . . .

but no inverse can be defined (no map from Z/2Z→ Z).

Proposition 1.20 Additive functors preserve chain homotopies

Proof. Since an additive functor F is a homomorphism onHom(−,−), the chain homotopy
condition will be preserved; in particular, if t is a chain homotopy, then F (t) is a chain
homotopy. N
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In more sophisticated homological theory, one often makes the definition of the “ho-
motopy category of chain complexes.”

Definition 1.21 The homotopy category of chain complexes is the category hKom(R)
where objects are chain complexes of R-modules and morphisms are chain maps modulo
chain homotopy.

1.7 Topological remarks

TO BE ADDED: add more detail The first homology theory to be developed was
simplicial homology - the study of homology of simplicial complexes. To be simple, we
will not develop the general theory and instead motivate our definitions with a few basic
examples.

Example 1.22 Suppose our simplicial complex has one line segment with both ends
identified at one point p. Call the line segment a. The n-th homology group of this space
roughly counts how many “different ways” there are of finding n dimensional sub-simplices
that have no boundary that aren’t the boundary of any n + 1 dimensional simplex. For
the circle, notice that for each integer, we can find such a way (namely the simplex that
wraps counter clockwise that integer number of times). The way we compute this is we
look at the free abelian group generated by 0 simplices, and 1 simplices (there are no
simplices of dimension 2 or higher so we can ignore that). We call these groups C0 and
C1 respectively. There is a boundary map ∂1 : C1 → C0. This boundary map takes a
1-simplex and associates to it its end vertex minus its starting vertex (considered as an
element in the free abelian group on vertices of our simplex). In the case of the circle,
since there is only one 1-simplex and one 0-simplex, this map is trivial. We then get our
homology group by looking at ker(∂1). In the case that there is a nontrivial boundary
map ∂2 : C2 → C1 (which can only happen when our simplex is at least 2-dimensional),
we have to take the quotient ker(∂1)/ ker(∂2). This motivates us to define homology in a
general setting.

Originally homology was intended to be a homotopy invariant meaning that space with
the same homotopy type would have isomorphic homology modules. In fact, any homotopy
induces what is now known as a chain homotopy on the simplicial chain complexes.

Exercise 14.2 (Singular homology) Let X be a topological space and let Sn be the
set of all continuous maps ∆n → X where ∆n is the convex hull of n distinct points and
the origin with orientation given by an ordering of the n vertices. Define Cn to be the
free abelian group generated by elements of Sn. Define ∆n

î
to be the face of ∆n obtained

by omitting the i-th vertex from the simplex. We can then construct a boundary map
∂n : Cn → Cn−1 to take a map σn : ∆n → X to

∑n
i=0(−1)iσn|∆n

î
. Verify that ∂2 = 0

(hence making C∗ into a chain complex known as the “singular chain complex of X”. Its
homology groups are the “singular homology groups”.

Exercise 14.3 Compute the singular homology groups of a point.
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§2 Derived functors

2.1 Projective resolutions

Fix a ring R. Let us recall (Definition 2.5) that an R-module P is called projective if the
functor N → HomR(P,N) (which is always left-exact) is exact.

Projective objects are useful in defining chain exact sequences known as “projective
resolutions.” In the theory of derived functors, the projective resolution of a module
M is in some sense a replacement for M : thus, we want it to satisfy some uniqueness
and existence properties. The uniqueness is not quite true, but it is true modulo chain
equivalence.

Definition 2.1 Let M be an arbitrary module, a projective resolution of M is an exact
sequence

· · · → Pi → Pi−1 → Pi−2 · · · → P1 → P0 →M (14.2)

where the Pi are projective modules.

Proposition 2.2 Any module admits a projective resolution.

The proof will even show that we can take a free resolution.

Proof. We construct the resolution inductively. First, we take a projective module P0 with
P0 � N surjective by the previous part. Given a portion of the resolution

Pn → Pn−1 → · · · → P0 � N → 0

for n ≥ 0, which is exact at each step, we consider K = ker(Pn → Pn−1). The sequence

0→ K → Pn → Pn−1 → · · · → P0 � N → 0

is exact. So if Pn+1 is chosen such that it is projective and there is an epimorphism
Pn+1 � K, (which we can construct by Proposition 6.6), then

Pn+1 → Pn → . . .

is exact at every new step by construction. We can repeat this inductively and get a full
projective resolution. N

Here is a useful observation:

Proposition 2.3 If R is noetherian, and M is finitely generated, then we can choose a
projective resolution where each Pi is finitely generated.

We can even take a resolution consisting of finitely generated free modules.

Proof. To say that M is finitely generated is to say that it is a quotient of a free module
on finitely many generators, so we can take P0 free and finitely generated. The kernel of
P0 → M is finitely generated by noetherianness, and we can proceed as before, at each
step choosing a finitely generated object. N
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Example 2.4 The abelian group Z/2 has the free resolution 0→ · · · 0→ Z→ Z→ Z/2.
Similarly, since any finitely generated abelian group can be decomposed into the direct
sum of torsion subgroups and free subgroups, all finitely generated abelian groups admit
a free resolution of length two.

Actually, over a principal ideal domain R (e.g. R = Z), every module admits a free
resolution of length two. The reason is that if F � M is a surjection with F free, then
the kernel F ′ ⊂ F is free by a general fact (TO BE ADDED: citation needed) that a
submodule of a free module is free (if one works over a PID). So we get a free resolution
of the type

0→ F ′ → F →M → 0.

In general, projective resolutions are not at all unique. Nonetheless, they are unique
up to chain homotopy. Thus a projective resolution is a rather good “replacement” for
the initial module.

Proposition 2.5 Let M,N be modules and let P∗ →M,P ′∗ → N be projective resolutions.
Let f : M → N be a morphism. Then there is a morphism

P∗ → P ′∗

such that the following diagram commutes:

. . . // P1
//

��

P0
//

��

M

f

��
. . . // P ′1

// P ′0
// N

This morphism is unique up to chain homotopy.

Proof. Let P∗ →M and P ′∗ → N be projective resolutions. We will define a morphism of
complexes P∗ → P ′∗ such that the diagram commutes. Let the boundary maps in P∗, P

′
∗

be denoted d (by abuse of notation). We have an exact diagram

. . . // Pn
d // Pn−1

d // . . . d // P0
//M

f

��

// 0

. . . // P ′n
d // P ′n−1

// . . . d // P ′0
// N // 0

Since P ′0 � N is an epimorphism, the map P0 →M → N lifts to a map P0 → P ′0 making
the diagram

P0

��

//M

f

��
P ′0

// N
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commute. Suppose we have defined maps Pi → P ′i for i ≤ n such that the following
diagram commutes:

Pn
d //

��

Pn−1
d //

��

. . . d // P0

��

//M

f

��

// 0

P ′n
d // P ′n−1

// . . . d // P ′0
// N // 0

Then we will define Pn+1 → P ′n+1, after which induction will prove the existence of a map.
To do this, note that the map

Pn+1 → Pn → P ′n → P ′n−1

is zero, because this is the same as Pn+1 → Pn → Pn−1 → P ′n−1 (by induction, the
diagrams before n commute), and this is zero because two P -differentials were composed
one after another. In particular, in the diagram

Pn+1
// Pn

��
P ′n+1

// P ′n

,

the image in P ′n of Pn+1 lies in the kernel of P ′n → P ′n−1, i.e. in the image I of P ′n+1. The
exact diagram

Pn+1

��
P ′n+1

// I // 0

shows that we can lift Pn+1 → I to Pn+1 → P ′n+1 (by projectivity). This implies that we
can continue the diagram further and get a morphism P∗ → P ′∗ of complexes.

Suppose f, g : P∗ → P ′∗ are two morphisms of the projective resolutions making

P0
//

��

M

��
P ′0

// N

commute. We will show that f, g are chain homotopic.
For this, we start by defining D0 : P0 → P ′1 such that dD0 = f − g : P0 → P ′0. This we

can do because f − g sends P0 into ker(P ′0 → N), i.e. into the image of P ′1 → P ′0, and P0

is projective. Suppose we have defined chain-homotopies Di : Pi → Pi+1 for i ≤ n such
that dDi +Di−1d = f − g for i ≤ n. We will define Dn+1. There is a diagram

Pn+1

��

// Pn

Dn}}zzzzzzzz

��

// Pn−1

Dn−1}}zzzzzzzz

��
P ′n+2

// P ′n+1
// P ′n

// P ′n−1
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where the squares commute regardless of whether you take the vertical maps to be f or g
(provided that the choice is consistent).

We would like to define Dn+1 : Pn → P ′n+1. The key condition we need satisfied is
that

dDn+1 = f − g −Dnd.

However, we know that, by the inductive hypothesis on the D’s

d(f − g −Dnd) = fd− gd− dDnd = fd− gd− (f − g)d+Dndd = 0. N

In particular, f − g−Dnd lies in the image of P ′n+1 → P ′n. The projectivity of Pn ensures
that we can define Dn+1 satisfying the necessary condition.

Corollary 2.6 Let P∗ → M,P ′∗ → M be projective resolutions of M . Then there are
maps P∗ → P ′∗, P

′
∗ → P∗ under M such that the compositions are chain homotopic to the

identity.

Proof. Immediate. N

2.2 Injective resolutions

One can dualize all this to injective resolutions. TO BE ADDED: do this

2.3 Definition

Often in homological algebra, we see that “short exact sequences induce long exact se-
quences.” Using the theory of derived functors, we can make this formal.

Let us work in the category of modules over a ring R. Fix two such categories. Recall
that a right-exact functor F (from the category of modules over a ring to the category of
modules over another ring) is an additive functor such that for every short exact sequence
0→ A→ B → C → 0, we get a exact sequence F (A)→ F (B)→ F (C)→ 0.

We want a natural way to continue this exact sequence to the left; one way of doing
this is to define the left derived functors.

Definition 2.7 Let F be a right-exact functor and P∗ →M are projective resolution. We
can form a chain complex F (P∗) whose object in degree i is F (Pi) with boundary maps
F (∂). The homology of this chain complex denoted LiF are the left derived functors.

For this definition to be useful, it is important to verify that deriving a functor yields
functors independent on choice of resolution. This is clear by ??.

Theorem 2.8 The following properties characterize derived functors:

1. L0F (−) = F (−)
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2. Suppose 0 → A → B → C → 0 is an exact sequence and F a right-exact functor;
the left derived functors fit into the following exact sequence:

· · ·LiF (A)→ LiF (B)→ LiF (C)→ Li−1F (A) · · · → L1(C)→ L0F (A)→ L0F (B)→ L0F (C)→ 0
(14.3)

Proof. The second property is the hardest to prove, but it is by far the most useful; it is
essentially an application of the snake lemma. N

One can define right derived functors analogously; if one has a left exact functor (an
additive functor that takes an exact sequence 0 → A → B → C → 0 to 0 → F (A) →
F (B)→ F (C)), we can pick an injective resolution instead (the injective criterion is simply
the projective criterion with arrows reversed). If M → I∗ is a injective resolution then the
cohomology of the chain complex F (I∗) gives the right derived functors. However, variance
must also be taken into consideration so the choice of whether or not to use a projective
or injective resolution is of importance (in all of the above, functors were assumed to be
covariant). In the following, we see an example of when right derived functors can be
computed using projective resolutions.

2.4 Ext functors

Definition 2.9 The right derived functors of Hom(−, N) are called the Ext-modules
denoted ExtiR(−, N).

We now look at the specific construction:
Let M,M ′ be R-modules. Choose a projective resolution

· · · → P2 → P1 → P0 →M → 0

and consider what happens when you hom this resolution into N . Namely, we can consider
HomR(M,N), which is the kernel of Hom(P0,M) → Hom(P1,M) by exactness of the
sequence

0→ HomR(M,N)→ HomR(P0, N)→ HomR(P1, N).

You might try to continue this with the sequence

0→ HomR(M,N)→ HomR(P0, N)→ HomR(P1, N)→ HomR(P2, N)→ . . . .

In general, it won’t be exact, because HomR is only left-exact. But it is a chain complex.
You can thus consider the homologies.

Definition 2.10 The homology of the complex {HomR(Pi, N)} is denoted ExtiR(M,N).
By definition, this is ker(Hom(Pi, N)→ Hom(Pi+1, N))/ Im(Hom(Pi−1, N)→ Hom(Pi, N)).
This is an R-module, and is called the ith ext group.

Let us list some properties (some of these properties are just case-specific examples of
general properties of derived functors)
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Proposition 2.11 Ext0
R(M,N) = HomR(M,N).

Proof. This is obvious from the left-exactness of Hom(−, N). (We discussed this.) N

Proposition 2.12 Exti(M,N) is a functor of N .

Proof. Obvious from the definition. N

Here is a harder statement.

Proposition 2.13 Exti(M,N) is well-defined, independent of the projective resolution
P∗ →M , and is in fact a contravariant additive functor of M .1

Proof. Omitted. We won’t really need this, though; it requires more theory about chain
complexes. N

Proposition 2.14 If M is annihilated by some ideal I ⊂ R, then so is Exti(M,N) for
each i.

Proof. This is a consequence of the functoriality in M . If x ∈ I,then x : M → M is the
zero map, so it induces the zero map on Exti(M,N).

Proposition 2.15 Exti(M,N) = 0 if M projective and i > 0.

Proof. In that case, one can use the projective resolution

0→M →M → 0.

Computing Ext via this gives the result. N

Proposition 2.16 If there is an exact sequence

0→ N ′ → N → N ′′ → 0,

there is a long exact sequence of Ext groups

0→ Hom(M,N ′)→ Hom(M,N)→ Hom(M,N ′′)→ Ext1(M,N ′)→ Ext1(M,N)→ . . .

Proof. This proof will assume a little homological algebra. Choose a projective resolution
P∗ → M . (The notation P∗ means the chain complex · · · → P2 → P1 → P0.) In general,
homming out of M is not exact, but homming out of a projective module is exact. For
each i, we get an exact sequence

0→ HomR(Pi, N
′)→ HomR(Pi, N)→ HomR(Pi, N

′′)→ 0,

which leads to an exact sequence of chain complexes

0→ HomR(P∗, N
′)→ HomR(P∗, N)→ HomR(P∗, N

′′)→ 0.

Taking the long exact sequence in homology gives the result. N

1I.e. a map M →M ′ induces Exti(M ′, N)→ Exti(M,N).
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Much less obvious is:

Proposition 2.17 There is a long exact sequence in the M variable. That is, a short
exact sequence

0→M ′ →M →M ′′ → 0

leads a long exact sequence

0→ HomR(M ′′, N)→ HomR(M,N)→ HomR(M ′, N)→ Ext1(M ′′, N)→ Ext1(M,N)→ . . . .

Proof. Omitted. N

We now can characterize projectivity:

Corollary 2.18 TFAE:

1. M is projective.

2. Exti(M,N) = 0 for all R-modules N and i > 0.

3. Ext1(M,N) = 0 for all N .

Proof. We have seen that 1 implies 2 because projective modules have simple projective
resolutions. 2 obviously implies 3. Let’s show that 3 implies 1.Choose a projective module
P and a surjection P � M with kernel K. There is a short exact sequence 0 → K →
P →M → 0. The sequence

0→ Hom(M,K)→ Hom(P,K)→ Hom(K,K)→ Ext1(M,K) = 0

shows that there is a map P → K which restricts to the identity K → K. The sequence
0→ K → P → M → 0 thus splits, so M is a direct summand in a projective module, so
is projective. N

Finally, we note that there is another way of constructing Ext. We constructed them
by choosing a projective resolution of M . But you can also do this by resolving N by
injective modules.

Definition 2.19 An R-module Q is injective if HomR(−, Q) is an exact (or, equivalently,
right-exact) functor. That is, if M0 ⊂ M is an inclusion of R-modules, then any map
M0 → Q can be extended to M → Q.

If we are given M,N , and an injective resolution N → Q∗, we can look at the chain
complex {Hom(M,Qi)}, i.e. the chain complex

0→ Hom(M,Q0)→ Hom(M,Q1)→ . . .

and we can consider the cohomologies.

Definition 2.20 We call these cohomologies

ExtiR(M,N)′ = ker(Hom(M,Qi)→ Hom(M,Qi+1))/ Im(Hom(M,Qi−1)→ Hom(M,Qi)).
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This is dual to the previous definitions, and it is easy to check that the properties that
we couldn’t verify for the previous Exts are true for the Ext′’s.

Nonetheless:

Theorem 2.21 There are canonical isomorphisms:

Exti(M,N)′ ' Exti(M,N).

In particular, to compute Ext groups, you are free either to take a projective resolution
of M , or an injective resolution of N .

Proof (Idea of proof). In general, it might be a good idea to construct a third more com-
plex construction that resembles both. Given M,N construct a projective resolution
P∗ →M and an injective resolution N → Q∗. Having made these choices, we get a double
complex

HomR(Pi, Q
j)

of a whole lot of R-modules. The claim is that in such a situation, where you have a double
complex Cij , you can form an ordinary chain complex C ′ by adding along the diagonals.
Namely, the nth term is C ′n =

⊕
i+j=nCij . This total complex will receive a map from

the chain complex used to compute the Ext groups and a chain complex used to compute
the Ext′ groups. There are maps on cohomology,

Exti(M,N)→ H i(C ′∗), Exti(M,N)′ → H i(C ′∗).

The claim is that isomorphisms on cohomology will be induced in each case. That will
prove the result, but we shall not prove the claim. N

Last time we were talking about Ext groups over commutative rings. For R a com-
mutative ring and M,N R-modules, we defined an R-module Exti(M,N) for each i, and
proved various properties. We forgot to mention one.

Proposition 2.22 If R noetherian, and M,N are finitely generated, Exti(M,N) is also
finitely generated.

Proof. We can take a projective resolution P∗ of M by finitely generated free modules,
R being noetherian. Consequently the complex Hom(P∗, N) consists of finitely generated
modules. Thus the cohomology is finitely generated, and this cohomology consists of the
Ext groups. N

2.5 Application: Modules over DVRs

Definition 2.23 Let M be a module over a domain A. We say that M is torsion-free,
if for any nonzero a ∈ A, a : M → M is injective. We say that M is torsion if for any
m ∈M , there is nonzero a ∈ A such that am = 0.

Lemma 2.24 For any module finitely generated module M over a Noetherian domain A,
there is a short exact sequence

0→Mtors →M →Mtors−free → 0

where Mtors is killed by an element of A and Mtors−free is torsion-free.
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Proof. This is because we may take Mtors to be all the elements which are killed by a non-
zero element of A. Then this is clearly a sub-module. Since A is Noetherian, it is finitely
generated, which means that it can be killed by one element of A (take the product of the
elements that kill the generators). Then it is easy to check that the quotient M/Mtors is
torsion-free. N

Lemma 2.25 For R a PID, a module M over R is flat if and only if it is torsion-free.

Proof. This is the content of Problem 2 on the Midterm. N

Using this, we will classify modules over DVRs.

Proposition 2.26 let M be a finitely generated module over a DVR R. Then

M = Mtors ⊕R⊕n,

i.e, where Mtors can be annihilated by πn for some n.

Proof. Set Mtors ⊂ M be as in Lemma 2.24 so that M/Mtors is torsion-free. Therefore,
by Corollary ?? and Lemma 2.25 we see that it is flat. But it is over a local ring, so that
means that it is free. So we have M/Mtors = R⊕n for some n. Furthermore, since R⊕n is
free, it is additionally projective, so the above sequence splits, so

M = Mtors ⊕R⊕n

as desired. N

There is nothing more to say about the free part, so let us discuss the torsion part in
more detail.

Lemma 2.27 Any finitely generated torsion module over a DVR is⊕
R/πnR.

Before we prove this, let us give two examples:

1. Take R = k[[t]], which is a DVR with maximal ideal (t). Thus, by the lemma, for a
finitely generated torsion module M , t : M → M is a nilpotent operator. However,
k[[t]]/tn is a Jordan block so we are exactly saying that linear transformations can
be written in Jordan block form.

2. Let R = Zp. Here the lemma implies that finitely generated torsion modules over
Zp can be written as a direct sum of p-groups.

Now let us proceed with the proof of the lemma.
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Proof (Proof of Lemma 2.27). Let n be the minimal integer such that πn kills M . This
means that M is a module over Rn = R/πnR, and also there is an element m ∈ M , and
an injective map Rn ↪→ M , because we may choose m to be an element which is not
annihilated by πn−1, and then take the map to be 1 7→ m.

Proceeding by induction, it suffices to show that the above map Rn ↪→M splits. But
for this it suffices that Rn is an injective module over itself. This property of rings is called
the Frobenius property, and it is very rare. We will write this as a lemma.

Lemma 2.28 Rn is injective as a module over itself.

Proof (Proof of Lemma 2.28). Note that a module M over a ring R is injective if and only
if for any ideal I ⊂ R, Ext1(R/I,M) = 0. This was shown on Problem Set 8, Problem 2a.

Thus we wish to show that for any ideal I, Ext1
Rn(Rn/I,Rn) = 0. Note that since R

is a DVR, we know that it is a PID, and also any element has the form r = πkr0 for some
k ≥ 0 and some r0 invertible. Then all ideals in R are of the form (πk) for some k, so all
ideals in Rn are also of this form. Therefore, Rn/I = Rm for some m ≤ n, so it suffices to
show that for m ≤ n, Ext1

Rn(Rm, Rn) = 0.
But note that we have short exact sequence

0→ Rn−m →πm· Rn → Rm → 0

which gives a corresponding long exact sequence of Exts

0→ HomRn(Rm, Rn)→ HomRn(Rn, Rn)→♥ HomRn(Rn−m, Rn)

→ Ext1
Rn(Rm, Rn)→ Ext1

Rn(Rn, Rn)→ · · ·

But note that any map of Rn modules, Rn−m → Rn, must map 1 ∈ Rn−m to an element
which is killed by πn−m, which means it must be a multiple of πm, so say is is πma. Then
the map is

r 7→ πmar,

which is the image of the map

[r 7→ ar] ∈ HomRn(Rn, Rn).

Thus, ♥ is surjective. Also note that Rn is projective over itself, so Ext1
Rn(Rn, Rn) = 0.

This, along with the surjectivity of ♥ shows that

Ext1
Rn(Rm, Rn) = 0

as desired. N

As mentioned earlier, this lemma concludes our proof of Lemma 2.27 as well. N
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Chapter 15

Flatness revisited

In the past, we have already encountered the notion of flatness. We shall now study it
in more detail. We shall start by introducing the notion of faithful flatness and introduce
the idea of “descent.” Later, we shall consider other criteria for (normal) flatness that we
have not yet explored.

We recall (Definition 4.5) that a module M over a commutative ring R is flat if the
functor N 7→ N ⊗R M is an exact functor. An R-algebra is flat if it is flat as a module.
For instance, we have seen that any localization of R is a flat algebra, because localization
is an exact functor.

All this has not been added yet!

§1 Faithful flatness

1.1 Faithfully flat modules

Let R be a commutative ring.

Definition 1.1 The R-module M is faithfully flat if any complex N ′ → N → N ′′ of
R-modules is exact if and only if the tensored sequence N ′⊗RM → N ⊗RM → N ′′⊗RM
is exact.

Clearly, a faithfully flat module is flat.

Example 1.2 The direct sum of faithfully flat modules is faithfully flat.

Example 1.3 A (nonzero) free module is faithfully flat, because R itself is flat (tensoring
with R is the identity functor).

We shall now prove several useful criteria about faithfully flat modules.

Proposition 1.4 An R-module M is faithfully flat if and only if it is flat and if M⊗RN =
0 implies N = 0 for any N .

Proof. Suppose M faithfully flat Then M is flat, clearly. In addition, if N is any R-module,
consider the sequence

0→ N → 0;
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it is exact if and only if

0→M ⊗R N → 0

is exact. Thus N = 0 if and only if M ⊗R N = 0.

Conversely, suppose M is flat and satisfies the additional condition. We need to show
that if N ′ ⊗RM → N ⊗RM → N ′′ ⊗RM is exact, so is N ′ → N → N ′′. Since M is flat,
taking homology commutes with tensoring with M . In particular, if H is the homology
of N ′ → N → N ′′, then H ⊗RM is the homology of N ′ ⊗RM → N ⊗RM → N ′′ ⊗RM .
It follows that H ⊗RM = 0, so H = 0, and the initial complex is exact. N

Example 1.5 Another illustration of the above technique is the following observation: if
M is faithfully flat and N → N ′ is any morphism, then N → N ′ is an isomorphism if and
only if M ⊗ N ′ → M ⊗ N is an isomorphism. This follows because the condition that
a map be an isomorphism can be phrased as the exactness of a certain (uninteresting)
complex.

Exercise 15.1 The direct sum of a flat module and a faithfully flat module is faithfully
flat.

From the above result, we can get an important example of a faithfully flat algebra
over a ring.

Example 1.6 Let R be a commutative ring, and {fi} a finite set of elements that generate
the unit ideal in R (or equivalently, the basic open sets D(fi) = SpecRfi form a covering
of SpecR). Then the algebra

∏
Rfi is faithfully flat over R (i.e., is so as a module).

Indeed, as a product of localizations, it is certainly flat.

So by Proposition 1.4, we are left with showing that if M is any R-module and Mfi = 0
for all i, then M = 0. Fix m ∈M , and consider the ideal Ann(m) of elements annihilating
m. Since m maps to zero in each localization Mfi , there is a power of fi in Ann(m) for
each i. This easily implies that Ann(m) = R, so m = 0. (We used the fact that if the {fi}
generate the unit ideal, so do

{
fNi
}

for any N ∈ Z≥0.)

A functor F between two categories is said to be faithful if the induced map on the
hom-sets Hom(x, y)→ Hom(Fx, Fy) is always injective. The following result explains the
use of the term “faithful.”

Proposition 1.7 A module M is faithfully flat if and only if it is flat and the functor
N → N ⊗RM is faithful.

Proof. Let M be flat. We need to check that M is faithfully flat if and only if the natural
map

HomR(N,N ′)→ HomR(N ⊗RM,N ′ ⊗RM)

is injective. Suppose first M is faithfully flat and f : N → N ′ goes to zero f ⊗ 1M :
N ⊗RM → N ′ ⊗RM . We know by flatness that

Im(f)⊗RM = Im(f ⊗ 1M )
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so that if f ⊗ 1M = 0, then Im(f) ⊗M = 0. Thus by faithful flatness, Im(f) = 0 by
Proposition 1.4.

Conversely, let us suppose M flat and the functor N → N ⊗RM faithful. Let N 6= 0;
then 1N 6= 0 as maps N → N . It follows that 1N ⊗ 1M and 0 ⊗ 1M = 0 are different as
endomorphisms of M ⊗RN . Thus M ⊗RN 6= 0. By Proposition 1.4, we are done again.N

Example 1.8 Note, however, that Z ⊕ Z/2 is a Z-module such that tensoring by it is a
faithful but not exact functor.

Finally, we prove one last criterion:

Proposition 1.9 M is faithfully flat if and only if M is flat and mM 6= M for all maximal
ideals m ⊂ R.

Proof. If M is faithfully flat, then M is flat, and M ⊗R R/m = M/mM 6= 0 for all m as
R/m 6= 0, by Proposition 1.4. So we get one direction.

Alternatively, suppose M is flat and M ⊗R R/m 6= 0 for all maximal m. Since every
proper ideal is contained in a maximal ideal, it follows that M ⊗R R/I 6= 0 for all proper
ideals I. We shall use this and Proposition 1.4 to prove that M is faithfully flat

Let N now be any nonzero module. Then N contains a cyclic submodule, i.e. one
isomorphic to R/I for some proper I. The injection

R/I ↪→ N

becomes an injection

R/I ⊗RM ↪→ N ⊗RM,

and since R/I ⊗RM 6= 0, we find that N ⊗RM 6= 0. By Proposition 1.4, it follows that
M is faithfully flat N

Corollary 1.10 A nonzero finitely generated flat module over a local ring is faithfully
flat.

Proof. This follows from Proposition 1.9 and Nakayama’s lemma. N

A finitely presented flat module over a local ring is in fact free, but we do not prove
this (except when the ring is noetherian, see ??).

Proof. Indeed, let R be a local ring with maximal ideal m, and M a finitely generated flat
R-module. Then by Nakayama’s lemma, M/mM 6= 0, so that M must be faithfully flat.N

Proposition 1.11 Faithfully flat modules are closed under direct sums and tensor prod-
ucts.

Proof. Exercise. N
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1.2 Faithfully flat algebras

Let φ : R→ S be a morphism of rings, making S into an R-algebra.

Definition 1.12 S is a faithfully flat R-algebra if it is faithfully flat as an R-module.

Example 1.13 The map R→ R[x] from a ring into its polynomial ring is always faithfully
flat. This is clear.

Next, we indicate the usual “sorite” for faithfully flat morphisms:

Proposition 1.14 Faithfully flat morphisms are closed under composition and base change.

That is, if R→ S, S → T are faithfully flat, so is R→ T . Similarly, if R→ S is faithfully
flat and R′ any R-algebra, then R′ → S ⊗R R′ is faithfully flat.

The reader may wish to try this proof as an exercise.

Proof. The first result follows because the composite of the two faithful and exact functors
(tensoring ⊗RS and tensoring ⊗ST gives the composite ⊗RT ) yields a faithful and exact
functor.

In the second case, let M be an R′-module. Then M ⊗R′ (R′ ⊗R S) is canonically
isomorphic to M ⊗R S. From this it is clear if the functor M 7→ M ⊗R S is faithful and
exact, so is M 7→M ⊗R′ (R′ ⊗R S). N

Flat maps are usually injective, but they need not be. For instance, if R is a product
R1 × R2, then the projection map R → R1 is flat. This never happens for faithfully flat
maps. In particular, a quotient can never be faithfully flat.

Proposition 1.15 If S is a faithfully flat R-algebra, then the structure map R → S is
injective.

Proof. Indeed, let us tensor the map R → S with S, over R. We get a morphism of
S-modules

S → S ⊗R S,

sending s 7→ 1⊗s. This morphism has an obvious section S⊗RS → S sending a⊗b 7→ ab.
Since it has a section, it is injective. But faithful flatness says that the original map R→ S
must be injective itself. N

Example 1.16 The converse of Proposition 1.15 definitely fails. Consider the localization
Z(2); it is a flat Z-algebra, but not faithfully flat (for instance, tensoring with Z/3 yields
zero).

Exercise 15.2 Suppose φ : R→ S is a flat, injective morphism of rings such that S/φ(R)
is a flat R-module. Then show that φ is faithfully flat.

Flat morphisms need not be injective, but they are locally injective. We shall see this
using:
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Proposition 1.17 A flat local homomorphism of local rings is faithfully flat. In particu-
lar, it is injective.

Proof. Let φ : R → S be a local homomorphism of local rings with maximal ideals m, n.
Then by definition φ(m) ⊂ n. It follows that S 6= φ(m)S, so by Proposition 1.9 we win.N

The point of the above proof was, of course, the fact that the ring-homomorphism was
local. If we just had that φ(m)S ( S for every maximal ideal m ⊂ R, that would be
sufficient for the argument.

Corollary 1.18 Let φ : R→ S be a flat morphism. Let q ∈ SpecS, p = φ−1(q) the image
in SpecR. Then Rp → Sq is faithfully flat, hence injective.

Proof. We only need to show that the map is flat by Proposition 1.17. Let M ′ ↪→ M be
an injection of Rp → Sq-modules. Note that M ′,M are then R-modules as well. Then

M ′ ⊗Rp Sq = (M ′ ⊗R Rp)⊗Rp Sq = M ′ ⊗R Sq.

Similarly for M . This shows that tensoring over Rp with Sq is the same as tensoring over
R with Sq. But Sq is flat over S, and S is flat over R, so by Proposition 1.14, Sq is flat
over R. Thus the result is clear. N

1.3 Descent of properties under faithfully flat base change

Let S be an R-algebra. Often, things that are true about objects over R (for instance, R-
modules) will remain true after base-change to S. For instance, if M is a finitely generated
R-module, then M ⊗R S is a finitely generated S-module. In this section, we will show
that we can conclude the reverse implication when S is faithfully flat over R.

Exercise 15.3 Let R → S be a faithfully flat morphism of rings. If S is noetherian, so
is R. The converse is false!

Exercise 15.4 Many properties of morphisms of rings are such that if they hold after
one makes a faithfully flat base change, then they hold for the original morphism. Here
is a simple example. Suppose S is a faithfully flat R-algebra. Let R′ be any R-algebra.
Suppose S′ = S ⊗R R′ is finitely generated over R′. Then S is finitely generated over R.

To see that, note that R′ is the colimit of its finitely generated R-subalgebras Rα. Thus
S′ is the colimit of the Rα ⊗R S, which inject into S′; finite generation implies that one
of the Rα ⊗R S → S′ is an isomorphism. Now use the fact that isomorphisms “descend”
under faithfully flat morphisms.

In algebraic geometry, one can show that many properties of morphisms of schemes
allow for descent under faithfully flat base-change. See [GD], volume IV-2.

1.4 Topological consequences

There are many topological consequences of faithful flatness on the Spec’s. These are
explored in detail in volume 4-2 of [GD]. We shall only scratch the surface. The reader
should bear in mind the usual intuition that flatness means that the fibers “look similar”
to one other.
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Proposition 1.19 Let R → S be a faithfully flat morphism of rings. Then the map
SpecS → SpecR is surjective.

Proof. Since R → S is injective, we may regard R as a subring of S. We shall first show
that:

Lemma 1.20 If I ⊂ R is any ideal, then R ∩ IS = I.

Proof. To see this, note that the morphism

R/I → S/IS

is faithfully flat, since faithful flatness is preserved by base-change, and this is the base-
change of R→ S via R→ R/I. In particular, it is injective. Thus IS ∩R = I. N

Now to see surjectivity, we use a general criterion:

Lemma 1.21 Let φ : R→ S be a morphism of rings and suppose p ∈ SpecR. Then p is
in the image of SpecS → SpecR if and only if φ−1(φ(p)S) = p.

This lemma will prove the proposition.

Proof. Suppose first that p is in the image of SpecS → SpecR. In this case, there is
q ∈ SpecS such that p is the preimage of q. In particular, q ⊃ φ(p)S, so that, if we take
pre-images,

p ⊃ φ−1(φ(p)S),

while the other inclusion is obviously true.

Conversely, suppose that p ⊂ φ−1(φ(p)S). In this case, we know that

φ(R− p) ∩ φ(p)S = ∅.

Now T = φ(R− p) is a multiplicatively closed subset. There is a morphism

Rp → T−1S (15.1)

N

which sends elements of p into non-units, by (15.1) so it is a local homomorphism. The
maximal ideal of T−1S pulls back to that of Rp. By the usual commutative diagrams, it
follows that p is the preimage of something in SpecS. N

Remark The converse also holds. If φ : R → S is a flat morphism of rings such that
SpecS → SpecR is surjective, then φ is faithfully flat. Indeed, Lemma 1.21 shows then
that for any prime ideal p ⊂ R, φ(p) fails to generate S. This is sufficient to imply that S
is faithfully flat by Proposition 1.9.
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Remark A “slicker” argument that faithful flatness implies surjectiveness on spectra can
be given as follows. Let R→ S be faithfully flat. Let p ∈ SpecR; we want to show that p
is in the image of SpecS. Now base change preserves faithful flatness. So we can replace R
by R/p, S by S/pS, and assume that R is a domain and p = 0. Indeed, the commutative
diagram

SpecS/pS

��

// SpecR/p

��
SpecS // SpecR

shows that p is in the image of SpecS → SpecR if and only if {0} is in the image of
SpecS/pS → SpecR/p.

We can make another reduction: by localizing at p (that is, {0}), we may assume that
R is local and thus a field. So we have to show that if R is a field and S a faithfully flat
R-algebra, then SpecS → SpecR is surjective. But since S is not the zero ring (by faithful
flatness!), it is clear that S has a prime ideal and SpecS → SpecR is thus surjective.

In fact, one can show that the morphism SpecS → SpecR is actually an identification,
that is, a quotient map. This is true more generally for faithfully flat and quasi-compact
morphisms of schemes; see [GD], volume 4-2.

Theorem 1.22 Let φ : R → S be a faithfully flat morphism of rings. Then SpecS →
SpecR is a quotient map of topological spaces.

In other words, a subset of SpecR is closed if and only if its pre-image in SpecS is
closed.

Proof. We need to show that if F ⊂ SpecR is such that its pre-image in SpecS is closed,
then F itself is closed. ADD THIS PROOF N

§2 Faithfully flat descent

Fix a ring R, and let S be an R-algebra. Then there is a natural functor from R-modules
to S-modules sending N 7→ S ⊗R N . In this section, we shall be interested in going
in the opposite direction, or in characterizing the image of this functor. Namely, given
an S-module, we want to “descend” to an R-module when possible; given a morphism
of S-modules, we want to know when it comes from a morphism of R-modules by base
change.

TO BE ADDED: this entire section!

2.1 The Amitsur complex

TO BE ADDED: citation needed

Suppose B is an A-algebra. Then we can construct a complex of A-modules

0→ A→ B → B ⊗A B → B ⊗A B ⊗A B → . . .
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as follows. For each n, we denote by B⊗n the tensor product of B with itself n times (over
A). There are morphisms of A-algebras

di : B⊗n → B⊗n+1, 0 ≤ i ≤ n+ 1

where the map sends

b1 ⊗ · · · ⊗ bn 7→ b1 ⊗ · · · ⊗ bi−1 ⊗ 1⊗ bi ⊗ · · · ⊗ bn,

so that the 1 is placed in the ith spot. Then the coboundary ∂ : B⊗n → B⊗n+1 is defined
as
∑

(−1)idi. It is easy to check that this forms a complex of A-modules.

Definition 2.1 The above complex of B-modules is called the Amitsur complex of B
over A, and we denote it AB/A. It is clearly functorial in B; a map of A-algebras B → C
induces a morphism of complexes AB/A → AC/A.

Note that the Amitsur complex behaves very nicely with respect to base-change. If
A′ is an A-algebra and B′ = B ⊗A A′ is the base extension, then AB′/A′ = AB/A ⊗A A′,
which follows easily from the fact that base-change commutes with tensor products.

In general, the Amitsur complex is not even exact. For instance, if it is exact in degree
one, then the map A→ B is necessarily injective. If, however, the morphism is faithfully
flat, then we do get exactness:

Theorem 2.2 If B is a faithfully flat A-algebra, then the Amitsur complex of B/A is
exact. In fact, if M is any A-module, then AB/A ⊗AM is exact.

Proof. We prove this first under the assumption that A → B has a section. In this case,
we will even have:

Lemma 2.3 Suppose A → B is a morphism of rings with a section B → A. Then the
Amitsur complex AB/A is homotopically trivial. (In particular, AB/A ⊗AM is acyclic for
all M .)

Proof. Let s : B → A be the section; by assumption, this is a morphism of A-algebras.
We shall define a chain contraction of AB/A. To do this, we must define a collection of
morphisms of A-modules hn+1 : B⊗n+1 → B⊗n, and this we do by sending

b1 ⊗ · · · ⊗ bn+1 7→ s(bn+1) (b1 ⊗ · · · ⊗ bn) .

It is still necessary to check that the {hn+1} form a chain contraction; in other words,
that ∂hn + hn+1∂ = 1B⊗n . By linearity, we need only check this on elements of the form
b1 ⊗ · · · ⊗ bn. Then we find

∂hn(b1 ⊗ bn) = s(b1)
∑

(−1)ib2 ⊗ · · · ⊗ 1⊗ · · · ⊗ bn

where the 1 is in the ith place, while

hn+1∂(b1 ⊗ · · · ⊗ bn) = b1 ⊗ · · · ⊗ bn +
∑
i>0

s(b1)(−1)i−1b2 ⊗ · · · ⊗ 1⊗ · · · ⊗ bn

where again the 1 is in the ith place. The assertion is from this clear. Note that if AB/A
is contractible, we can tensor the chain homotopy with M to see that AB/A⊗AM is chain
contractible for any M . N
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With this lemma proved, we see that the Amitsur complex AB/A (or even AB/A ⊗A
M) is acyclic whenever B/A admits a section. Now if we make the base-change by the
morphism A→ B, we get the morphism B → B ⊗A B. That is,

B ⊗A
(
AB/A ⊗AM

)
= AB⊗AB/B ⊗B (M ⊗A B).

The latter is acyclic because B → B ⊗A B admits a section (namely, b1 ⊗ b2 7→ b1b2). So
the complex AB/A ⊗A M becomes acyclic after base-changing to B; this, however, is a
faithfully flat base-extension, so the original complex was itself exact. N

Remark A powerful use of the Amitsur complex in algebraic geometry is to show that
the cohomology of a quasi-coherent sheaf on an affine scheme is trivial. In this case, the
Cech complex (of a suitable covering) turns out to be precisely the Amitsur complex (with
the faithfully flat morphism A →

∏
Afi for the {fi} a family generating the unit ideal).

This argument generalizes to showing that the étale cohomology of a quasi-coherent sheaf
on an affine is trivial; cf. [Tam94].

2.2 Descent for modules

Let A → B be a faithfully flat morphism of rings. Given an A-module M , we have a
natural way of getting a B-module MB = M ⊗AB. We want to describe the image of this
functor; alternatively, given a B-module, we want to describe the image of this functor.

Given an A-module M and the associated B-module MB = M⊗AB, there are two ways
of getting B ⊗A B-modules from MB, namely the two tensor products MB ⊗B (B ⊗A B)
according as we pick the first map b 7→ b⊗ 1 from B → B ⊗A B or the second b 7→ 1⊗ b.
We shall denote these by MB ⊗A B and B ⊗A MB with the action clear. But these are
naturally isomorphic because both are obtained from M by base-extension A⇒ B ⊗A B,
and the two maps are the same. Alternatively, these two tensor products are M⊗AB⊗AB
and B ⊗AM ⊗A B and these are clearly isomorphic by the braiding isomorphism1 of the
first two factors as B⊗AB-modules (with the B⊗AB part acting on the B’s in the above
tensor product!).

Definition 2.4 The category of descent data for the faithfully flat extension A→ B
is defined as follows. An object in this category consists of the following data:

1. A B-module N .

2. An isomorphism of B ⊗A B-modules φ : N ⊗A B ' B ⊗A N . This isomorphism is
required to make the following diagram2 of B ⊗A B ⊗A B-modules commutative:

B ⊗A B ⊗A N
φ23 //

φ13

))RRRRRRRRRRRRR B ⊗A N ⊗A B

φ12uulllllllllllll

N ⊗A B ⊗A B

(15.2)

1It is not the braiding isomorphism MB ⊗A B ' B ⊗AMB , which is not an isomorphism of B ⊗A B-
modules. This is the isomorphism that sends m⊗ b⊗ b′ to b⊗m⊗ b′.

2This is the cocycle condition.
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Here φij means that the permutation of the ith and jth factors of the tensor product
is done using the isomorphism φ.

A morphism between objects (N,φ), (N ′, ψ) is a morphism of B-modules f : N → N ′ that
makes the diagram

N ⊗A B

f⊗1
��

φ // B ⊗A N

1⊗f
��

N ′ ⊗A B
ψ // B ⊗A N ′

(15.3)

As we have seen, there is a functor F from A-modules to descent data. Strictly
speaking, we should check the commutativity of (15.2), but this is clear: for N = M⊗AB,
(15.2) looks like

B ⊗A B ⊗AM ⊗A B
φ23 //

φ13

**UUUUUUUUUUUUUUUUU B ⊗AM ⊗A B ⊗A B

φ12ttiiiiiiiiiiiiiiiii

M ⊗A B ⊗A B ⊗A B

Here all the maps are just permutations of the factors (that is, the braiding isomorphisms
in the structure of symmetric tensor category on the category of A-modules), so it clearly
commutes.

The main theorem is:

Theorem 2.5 (Descent for modules) The above functor from A-modules to descent
data for A→ B is an equivalence of categories.

We follow [Vis08] in the proof.

Proof. We start by describing the inverse functor from descent data to A-modules. Recall
that if M is an A-module, then M can be characterized as the submodule of MB consisting
of m ∈ MB such that 1 ⊗m and m ⊗ 1 corresponded to the same thing in MB ⊗A B '
B ⊗AMB. (The case M = A was particularly transparent: elements of A were elements
x ∈ B such that x⊗ 1 = 1⊗ x in B ⊗A B.) In other words, we had the exact sequence

0→M →MB →MB ⊗A B.

We want to imitate this for descent data. Namely, we want to construct a functor G
from descent data to A-modules. Given descent data (N,φ) where φ : N ⊗AB ' B⊗AN
is an isomorphism of B ⊗A B-modules, we define GN to be

GN = ker(N
n7→1⊗n−ψ(n⊗1)→ B ⊗A N).

It is clear that this is an A-module, and that it is functorial in the descent data. We have
also shown that GF (M) is naturally isomorphic to M for any A-module M .

We need to show the analog for FG(N,φ); in other words, we need to show that any
descent data arises via the F -construction. Even before that, we need to describe a natural
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transformation from FG(N,φ) to the identity. Fix a descent data (N,φ). Then G(N,φ)
gives an A-submodule M ⊂ N . We get a morphism

f : MB = M ⊗A B → N

by the universal property. This sends m ⊗ b 7→ bm. The claim is that this is a map of
descent data. In other words, we have to show that (15.3) commutes. The diagram looks
like

MB ⊗A B
f⊗1

��

// B ⊗AMB

1⊗f
��

N ⊗A B
φ // B ⊗A N

.

In other words, if m⊗ b ∈MB and b′ ∈ B, we have to show that φ(bm⊗ b′) = (1⊗ f)(b⊗
m⊗ b′) = b⊗ b′m.

However,

φ(bm⊗ b′) = (b⊗ b′)φ(m⊗ 1) = (b⊗ b′)(1⊗m) = b⊗ b′m

in view of the definition of M = GN as the set of elements such that φ(m⊗ 1) = 1⊗m,
and the fact that φ is an isomorphism of B ⊗A B-modules. The equality we wanted to
prove is thus clear.

So we have the two natural transformations between FG,GF and the respective iden-
tity functors. We have already shown that one of them is an isomorphism. Now we need to
show that if (N,φ) is descent data as above, and M = G(N,φ), the map F (M)→ (N,φ)
is an isomorphism. In other words, we have to show that the map

M ⊗A B → N

is an isomorphism.
Here we shall draw a commutative diagram. Namely, we shall essentially use the

Amitsur complex for the faithfully flat map B → B⊗AB. We shall obtain a commutative
an exact diagram:

0 //M ⊗A B

��

// N ⊗A B
φ
��

// N ⊗A B ⊗A B

φ−1
13
��

0 // N // B ⊗A N // B ⊗A B ⊗A N

.

Here the map

N ⊗A B → N ⊗A B ⊗A B

sends n⊗ b 7→ n⊗ 1⊗ b− φ(1⊗ n)⊗ b. Consequently the first row is exact, B being flat
over A. The bottom map

B ⊗A N → B ⊗A N ⊗A N

sends b⊗ n 7→ b⊗ 1⊗ n− 1⊗ b⊗ n. It follows by the Amitsur complex that the bottom
row is exact too. We need to check that the diagram commutes. Since the two vertical
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maps on the right are isomorphisms, it will follow that M ⊗A B → N is an isomorphism,
and we shall be done.

Fix n ⊗ b ∈ N ⊗A B. We need to figure out where it goes in B ⊗A B ⊗A N under
the two maps. Going right gives n ⊗ 1 ⊗ b − φ12(1 ⊗ n ⊗ b). Going down then gives
φ−1

13 (n⊗ 1⊗ b)−φ−1
13 φ12(1⊗n⊗ b) = φ−1

13 (n⊗ 1⊗ b)−φ−1
23 (1⊗n⊗ b), where we have used

the cocycle condition. So this is one of the maps N ⊗A B → B ⊗A B ⊗A N .

Now we consider the other way n⊗ b can map to B ⊗A B ⊗A N .

Going down gives φ(n ⊗ b), and then going right gives the difference of two maps
N ⊗A B → B ⊗A B ⊗A N , which are the same as above. N

2.3 Example: Galois descent

TO BE ADDED: this section

§3 The Tor functor

3.1 Introduction

Fix M . The functor N 7→ N ⊗RM is a right-exact functor on the category of R-modules.
We can thus consider its left-derived functors as in Chapter 14. Recall:

Definition 3.1 The derived functors of the tensor product functor N 7→ N ⊗R M are
denoted by ToriR(N,M), i ≥ 0. We shall sometimes denote omit the subscript R.

So in particular, Tor0
R(M,N) = M ⊗ N . A priori, Tor is only a functor of the first

variable, but in fact, it is not hard to see that Tor is a covariant functor of two variables
M,N . In fact, ToriR(M,N) ' ToriR(N,M) for any two R-modules M,N . For proofs, we
refer to Chapter 14. ADD: THEY ARE NOT IN THAT CHAPTER YET.

Let us recall the basic properties of Tor that follow from general facts about derived
functors. Given an exact sequence

0→ N ′ → N → N ′′ → 0

we have a long exact sequence

Tori(N ′,M)→ Tori(N,M)→ Tori(N ′′,M)→ Tori−1(N ′,M)→ . . .

Since Tor is symmetric, we can similarly get a long exact sequence if we are given a short
exact sequence of M ’s.

Recall, moreover, that Tor can be computed explicitly (in theory). If we have modules
M,N , and a projective resolution P∗ → N , then ToriR(M,N) is the ith homology of the
complex M ⊗ P∗. We can use this to compute Tor in the case of abelian groups.

Example 3.2 We compute Tor∗Z(A,B) whenever A,B are abelian groups and B is finitely
generated. This immediately reduces to the case of B either Z or Z/dZ for some d by
the structure theorem. When B = Z, there is nothing to compute (derived functors are
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not very interesting on projective objects!). Let us compute Tor∗Z(A,Z/dZ) for an abelian
group A.

Actually, let us be more general and consider the case where the ring is replaced by
Z/m for some m such that d | m. Then we will compute Tor∗Z/m(A,Z/d) for any Z/m-
module A. The case m = 0 will handle the ring Z. Consider the projective resolution

· · · m/d// Z/mZ d // Z/mZ
m/d // Z/mZ d // Z/mZ // Z/dZ // 0.

We apply A ⊗Z/mZ ·. Since tensoring (over Z/m!) with Z/mZ does nothing, we obtain
the complex

· · · m/d // A d // A
m/d // A

d // A // 0.

The groups Tor
Z/mZ
n (A,Z/dZ) are simply the homology groups (ker/im) of the complex,

which are simply

Tor
Z/mZ
0 (A,Z/dZ) ∼= A/dA

TorZ/mZ
n (A,Z/dZ) ∼= dA/(m/d)A n odd, n ≥ 1

TorZ/mZ
n (A,Z/dZ) ∼= m/dA/dA n even, n ≥ 2,

where kA = {a ∈ A | ka = 0} denotes the set of elements of A killed by k.

The symmetry of the tensor product also provides with a simple proof that Tor com-
mutes with filtered colimits.

Proposition 3.3 Let M be an R-module, {Ni} a filtered system of R-modules. Then the
natural morphism

lim−→
i

ToriR(M,Ni)→ ToriR(M, lim−→
i

Ni)

is an isomorphism.

Proof. We can see this explicitly. Let us compute the Tor functors by choosing a projective
resolution P∗ →M of M (note that which factor we use is irrelevant, by symmetry!). Then
the left side is the colimit lim−→H(P∗⊗Ni), while the right side is H(P∗⊗lim−→Ni). But tensor
products commute with filtered (or arbitrary) colimits, since the tensor product admits a
right adjoint. Moreover, we know that homology commutes with filtered colimits. Thus
the natural map is an isomorphism. N

3.2 Tor and flatness

Tor provides a simple way of detecting flatness. Indeed, one of the basic applications of
this is that for a flat module M , the tor-functors vanish for i ≥ 1 (whatever be N). Indeed,
recall that Tor(M,N) is computed by taking a projective resolution of N ,

· · · → P2 → P1 → P0 →M → 0

tensoring with M , and taking the homology. But tensoring with M is exact if we have
flatness, so the higher Tor modules vanish.

The converse is also true. In fact, something even stronger holds:
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Proposition 3.4 M is flat iff Tor1(M,R/I) = 0 for all finitely generated ideals I ⊂ R.

Proof. We have just seen one direction. Conversely, suppose Tori(M,R/I) = 0 for all
finitely generated ideals I and i > 0. Then the result holds, first of all, for all ideals I,
because of Proposition 3.3 and the fact that R/I is always the colimit of R/J as J ranges
over finitely generated ideals J ⊂ I.

We now show that Tori(M,N) = 0 whenever N is finitely generated. To do this,
we induct on the number of generators of N . When N has one generator, it is cyclic
and we are done. Suppose we have proved the result whenever for modules that have
n− 1 generators or less, and suppose N has n generators. Then we can consider an exact
sequence of the form

0→ N ′ ↪→ N � N ′′ → 0

where N ′ has n− 1 generators and N ′′ is cyclic. Then the long exact sequence shows that
Tori(M,N) = 0 for all i ≥ 1.

Thus we see that Tori(M,N) = 0 whenever N is finitely generated. Since any module
is a filtered colimit of finitely generated ones, we are done by Proposition 3.3. N

Note that there is an exact sequence 0→ I → R→ R/I → 0 and so

Tor1(M,R) = 0→ Tor1(M,R/I)→ I ⊗M →M

is exact, and by this:

Corollary 3.5 If the map
I ⊗M →M

is injective for all ideals I, then M is flat.

§4 Flatness over noetherian rings

We shall be able to obtain simpler criterion for flatness when the ring in question is
noetherian local. For instance, we have already seen:

Theorem 4.1 If M is a finitely generated module over a noetherian local ring R (with
residue field k), then M is free if and only if Tor1(k,M) = 0.

In particular, flatness is the same thing as the vanishing of one Tor module, and it
equates to freeness. Now, we want to generalize this result to the case where M is not
necessarily finitely generated over R, but finitely generated over an R-algebra that is
also noetherian local. In particular, we shall get useful criteria for when an extension of
noetherian local rings (which in general is not finite, or even finitely generated) is flat.

We shall prove two main criteria. The local criterion is a direct generalization of the
above result (the vanishing of one Tor group). The infinitesimal criterion reduces checking
flatness of M to checking flatness of M⊗RR/mt over R/mt; in particular, it reduces to the
case where the base ring is artinian. Armed with these, we will be able to prove a rather
difficult theorem that states that we can always find lots of flat extensions of noetherian
local rings.
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4.1 Flatness over a noetherian local ring

We shall place ourselves in the following situation. R,S are noetherian local rings with
maximal ideals m ⊂ R, n ⊂ S, and S is an R-algebra (and the morphism R → S is local,
so mS ⊂ n). We will want to know when a S-module is flat over R. In particular, we want
a criterion for when S is flat over R.

Theorem 4.2 The finitely generated S-module M is flat over R iff

Tor1
R(k,M) = 0.

In this case, M is even free.

It is actually striking how little the condition that M is a finitely generated S-module
enters, or how irrelevant it seems in the statement. The argument will, however, use
the fact that M is separated with respect to the m-adic topology, which relies on Krull’s
intersection theorem (note that since mS ⊂ n, the m-adic topology on M is separated).

Proof. Necessity is immediate. What we have to prove is sufficiency.
First, we claim that if N is an R-module of finite length, then

Tor1
R(N,M) = 0. (15.4)

This is because N has by dévissage (Proposition 2.9) a finite filtration Ni whose quotients
are of the form R/p for p prime and (by finite length hypothesis) p = m. So we have a
filtration on M whose successive quotients are isomorphic to k. We can then climb up the
filtration to argue that Tor1(Ni,M) = 0 for each i.

Indeed, the claim (15.4) is true N0 = 0 ⊂ N trivially. We climb up the filtration piece
by piece inductively; if Tor1

R(Ni,M) = 0, then the exact sequence

0→ Ni → Ni+1 → k → 0

yields an exact sequence

Tor1
R(Ni,M)→ Tor1

R(Ni+1,M)→ 0

from the long exact sequence of Tor and the hypothesis on M . The claim is proved.
Now we want to prove that M is flat. The idea is to show that I⊗RM →M is injective

for any ideal I ⊂ R. We will use some diagram chasing and the Krull intersection theorem
on the kernel K of this map, to interpolate between it and various quotients by powers of
m. First we write some exact sequences.

We have an exact sequence

0→ mt ∩ I → I → I/I ∩mt → 0

which we tensor with M :

mt ∩ I ⊗M → I ⊗M → I/I ∩mt ⊗M → 0.
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The sequence
0→ I/I ∩mt → R/mt → R/(I + mt)→ 0

is also exact, and tensoring with M yields an exact sequence:

0→ I/I ∩mt ⊗M →M/mtM →M/(mt + I)M → 0

because Tor1
R(M,R/(I + mt)) = 0 by (15.4), as R/(I + mt) is of finite length.

Let us draw the following commutative diagram:

0

��
mt ∩ I ⊗M // I ⊗M // I/I ∩mt ⊗M

��
M/mtM

(15.5)

N

Here the column and the row are exact. As a result, if an element in I ⊗M goes to
zero in M (a fortiori in M/mtM) it must come from mt ∩ I ⊗M for all t. Thus, by the
Artin-Rees lemma, it belongs to mt(I ⊗M) for all t, and the Krull intersection theorem
(applied to S, since mS ⊂ n) implies it is zero.

4.2 The infinitesimal criterion for flatness

Theorem 4.3 Let R be a noetherian local ring, S a noetherian local R-algebra. Let M be
a finitely generated module over S. Then M is flat over R iff M/mtM is flat over R/mt

for all t > 0.

Proof. One direction is easy, because flatness is preserved under base-change R→ R/mt.
For the other direction, suppose M/mtM is flat over R/mt for all t. Then, we need to
show that if I ⊂ R is any ideal, then the map I ⊗RM → M is injective. We shall argue
that the kernel is zero using the Krull intersection theorem.

Fix t ∈ N. As before, the short exact sequence of R/mt-modules 0 → I/(mt ∩ I) ∩
R/mt → R/(mt ∩ I)→ 0 gives an exact sequence (because M/mtM is R/mt-flat)

0→ I/I ∩mt ⊗M →M/mtM →M/(mt + I)M → 0

which we can fit into a diagram, as in (15.5)

0

��
mt ∩ I ⊗M // I ⊗M // I/I ∩mt ⊗M

��
M/mtM

.
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The horizontal sequence was always exact, as before. The vertical sequence can be
argued to be exact by tensoring the exact sequence

0→ I/I ∩mt → R/mt → R/(I + mt)→ 0

of R/mt-modules with M/mtM , and using flatness of M/mtM over R/mt (and ??). Thus
we get flatness of M as before. N

Incidentally, if we combine the local and infinitesimal criteria for flatness, we get a
little more.

4.3 Generalizations of the local and infinitesimal criteria

In the previous subsections, we obtained results that gave criteria for when, given a local
homomorphism of noetherian local rings (R,m) → (S, n), a finitely generated S-module
was R-flat. These criteria generally were related to the Tor groups of the module with
respect to R/m. We are now interested in generalizing the above results to the setting
where m is replaced by an ideal that maps into the Jacobson radical of S. In other words,

φ : R→ S

will be a homomorphism of noetherian rings, and J ⊂ R will be an ideal such that φ(J)
is contained in every maximal ideal of S.

Ideally, we are aiming for results of the following type:

Theorem 4.4 (Generalized local criterion for flatness) Let φ : R → S be a mor-
phism of noetherian rings, J ⊂ R an ideal with φ(J) contained in the Jacobson radical of
S. Let M be a finitely generated S-module. Then M is R-flat if and only if M/JM is
R/J-flat and TorR1 (R/J,M) = 0.

Note that this is a generalization of Theorem 4.2. In that case, R/J was a field and
the R/J-flatness of M/JM was automatic. One key step in the proof of Theorem 4.2
was to go from the hypothesis that Tor1(M,k) = 0 to Tor1(M,N) = 0 whenever N was
an R-module of finite length. We now want to do the same in this generalized case; the
analogy would be that, under the hypotheses of Theorem 4.4, we would like to conclude
that TorR1 (M,N) = 0 whenever N is a finitely generated R-module annihilated by I. This
is not quite as obvious because we cannot generally find a filtration on N whose successive
quotients are R/J (unlike in the case where J was maximal). Therefore we shall need two
lemmas.

Remark One situation where the strong form of the local criterion, Theorem 4.4, is used
is in Grothendieck’s proof (cf. EGA IV-11, [GD]) that the locus of points where a coherent
sheaf is flat is open (in commutative algebra language, if A is noetherian and M finitely
generated over a finitely generated A-algebra B, then the set of primes q ∈ SpecB such
that Mq is A-flat is open in SpecB).

Lemma 4.5 (Serre) Suppose R is a ring, S an R-algebra, and M an S-module. Then
the following are equivalent:
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1. M ⊗R S is S-flat and TorR1 (M,S) = 0.

2. TorR1 (M,N) = 0 whenever N is any S-module.

We follow [SGA03].

Proof. Let P be an S-module (considered as fixed), and Q any (variable) R-module. Recall
that there is a homology spectral sequence

TorSp (TorRq (Q,S), P ) =⇒ TorRp+q(Q,P ).

Recall that this is the Grothendieck spectral sequence of the composite functors

Q 7→ Q⊗R S, Q′ 7→ Q′ ⊗S P

because

(Q⊗R S)⊗S P ' Q⊗R P.

TO BE ADDED: This, and generalities on spectral sequences, need to be added! From
this spectral sequence, it will be relatively easy to deduce the result.

1. Suppose M ⊗R S is S-flat and TorR1 (M,S) = 0. We want to show that 2 holds,
so let N be any S-module. Consider the E2 page of the above spectral sequence
TorSp (TorRq (M,S), N) =⇒ TorRp+q(M,N). In the terms such that p + q = 1, we

have the two terms TorS0 (TorR1 (M,S), N),TorS1 (TorR0 (M,S), N). But by hypotheses
these are both zero. It follows that TorR1 (M,N) = 0.

2. Suppose TorR1 (M,N) = 0 for each S-module N . Since this is a homology spectral
sequence, this implies that the E10

2 term vanishes (since nothing will be able to hit
this term). In particular TorS1 (M ⊗R S,N) = 0 for each S-module N . It follows
that M ⊗R S is S-flat. Hence the higher terms TorSp (M ⊗R S,N) = 0 as well, so the
botton row of the E2 page (except (0, 0)) is thus entirely zero. It follows that the
E2

01 term vanishes if E01
∞ is trivial. This gives that TorR1 (M,S)⊗S N = 0 for every

S-module N , which clearly implies TorR1 (M,S) = 0. N

As a result, we shall be able to deduce the result alluded to in the motivation following
the statement of Theorem 4.4.

Lemma 4.6 Let R be a noetherian ring, J ⊂ R an ideal, M an R-module. Then TFAE:

1. TorR1 (M,R/J) = 0 and M/JM is R/J-flat.

2. TorR1 (M,N) = 0 for any finitely generated R-module N annihilated by a power of J .

Proof. This is immediate from Lemma 4.5, once one notes that any N as in the statement
admits a finite filtration whose successive quotients are annihilated by J . N
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Proof (Proof of Theorem 4.4). Only one direction is nontrivial, so suppose M is a finitely
generated S-module, with M/JM flat over R/J and TorR1 (M,R/J) = 0. We know by the
lemma that TorR1 (M,N) = 0 whenever N is finitely generated and annihilated by a power
of J .

So as to avoid repeating the same argument over and over, we encapsulate it in the
following lemma.

Lemma 4.7 Let the hypotheses be as in Theorem 4.4 Suppose for every ideal I ⊂ R, and
every t ∈ N, the map

I/I ∩ J t ⊗M →M/J tM

is an injection. Then M is R-flat.

Proof. Indeed, then as before, the kernel of I ⊗R M → M lives inside the image of
(I ∩ J t)⊗M → I ⊗RM for every t; by the Artin-Rees lemma, and the Krull intersection
theorem (since

⋂
J t(I ⊗RM) = {0}), it follows that this kernel is zero. N

It is now easy to finish the proof. Indeed, we can verify the hypotheses of the lemma
by noting that

I/I ∩ J t ⊗M → I ⊗M

is obtained by tensoring with M the sequence

0→ I/I ∩ J t → R/(I ∩ J t)→ R/(I + J t)→ 0.

Since TorR1 (M,R/(I +J t)) = 0, we find that the map as in the lemma is an injection, and
so we are done. N

The reader can similarly formulate a version of the infinitesimal criterion in this more
general case using Lemma 4.7 and the argument in Theorem 4.3. (In fact, the spectral
sequence argument of this section is not necessary.) We shall not state it here, as it will
appear as a component of Theorem 4.8. We leave the details of the proof to the reader.

4.4 The final statement of the flatness criterion

We shall now bundle the various criteria for flatness into one big result, following [SGA03]:

Theorem 4.8 Let A,B be noetherian rings, φ : A → B a morphism making B into an
A-algebra. Let I be an ideal of A such that φ(I) is contained in the Jacobson radical of
B. Let M be a finitely generated B-module. Then the following are equivalent:

1. M is A-flat.

2. (Local criterion) M/IM is A/I-flat and TorA1 (M,A/I) = 0.

3. (Infinitesimal criterion) M/InM is A/In-flat for each n.

4. (Associated graded criterion) M/IM is A/I-flat and M/IM⊗A/IIn/In+1 → InM/In+1M
is an isomorphism for each n.
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The last criterion can be phrased as saying that the I-adic associated graded of M is
determined by M/IM .

Proof. We have already proved that the first three are equivalent. It is easy to see that
flatness of M implies that

M/IM ⊗A/I In/In+1 → InM/In+1M (15.6)

is an isomorphism for each n. Indeed, this easily comes out to be the quotient of M ⊗A In
by the image of M ⊗A In+1, which is InM/In+1M since the map M ⊗A In → InM is an
isomorphism. Now we need to show that this last condition implies flatness. To do this,
we may (in view of the infinitesimal criterion) assume that I is nilpotent, by base-changing
to A/In. We are then reduced to showing that TorA1 (M,A/I) = 0 (by the local criterion).
Then we are, finally, reduced to showing:

Lemma 4.9 Let A be a ring, I ⊂ A be a nilpotent ideal, and M any A-module. If (15.6)
is an isomorphism for each n, then TorA1 (M,A/I) = 0.

Proof. This is equivalent to the assertion, by a diagram chase, that

I ⊗AM →M

is an injection. We shall show more generally that In ⊗AM →M is an injection for each
n. When n� 0, this is immediate, I being nilpotent. So we can use descending induction
on n.

Suppose In+1 ⊗AM → In+1M is an isomorphism. Consider the diagram

In+1 ⊗AM //

��

In ⊗AM //

��

In/In+1 ⊗AM → 0

��
0 // In+1M // InM // InM/In+1M // 0. N

By hypothesis, the outer two vertical arrows are isomorphisms. Thus the middle vertical
arrow is an isomorphism as well. This completes the induction hypothesis. N

Here is an example of the above techniques:

Proposition 4.10 Let (A,m), (B, n), (C, n′) be noetherian local rings. Suppose given a
commutative diagram of local homomorphisms

B // C

A

??~~~~~~~

__@@@@@@@

Suppose B,C are flat A-algebras, and B/mB → C/mC is a flat morphism. Then B → C
is flat.
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Geometrically, this means that flatness can be checked fiberwise if both objects are flat
over the base. This will be a useful technical fact.

Proof. We will use the associated graded criterion for flatness with the ideal I = mB ⊂ B.
(Note that we are not using the criterion with the maximal ideal here!) Namely, we shall
show that

In/In+1 ⊗B/I C/IC → InC/In+1C (15.7)

is an isomorphism. By Theorem 4.8, this will do it. Now we have:

In/In+1 ⊗B/I C/IC ' mnB/mn+1B ⊗B/mB C/mC
' (mn/mn+1)⊗A B/mB ⊗B C/mC
' (mn/mn+1)⊗A B ⊗B C/mC
' (mn/mn+1)⊗A C/mC
' mnC/mn+1C ' InC/In+1C.

In this chain of equalities, we have used the fact that B,C were flat over A, so their
associated gradeds with respect to m ⊂ A behave nicely. It follows that (15.7) is an
isomorphism, completing the proof. N

4.5 Flatness over regular local rings

Here we shall prove a result that implies geometrically, for instance, that a finite morphism
between smooth varieties is always flat.

Theorem 4.11 (“Miracle” flatness theorem) Let (A,m) be a regular local (noethe-
rian) ring. Let (B, n) be a Cohen-Macaulay, local A-algebra such that

dimB = dimA+ dimB/mB.

Then B is flat over A.

Recall that inequality ≤ always holds in the above for any morphism of noetherian local
rings (??), and equality always holds with flatness supposed. We get a partial converse.

Proof. We shall work by induction on dimA. Let x ∈ m be a non-zero divisor, so the first
element in a regular sequence of parameters. We are going to show that (A/(x), B/(x))
satisfies the same hypotheses. Indeed, note that

dimB/(x) ≤ dimA/(x) + dimB/mB

by the usual inequality. Since dimA/(x) = dimA− 1, we find that quotienting by x drops
the dimension of B by at least one: that is, dimB/(x) ≤ dimB− 1. By the principal ideal
theorem, we have equality,

dimB/(x) = dimB − 1.

The claim is that x is a non-zero divisor in B, and consequently we can argue by
induction. Indeed, but B is Cohen-Macaulay. Thus, any zero-divisor in B lies in a minimal
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prime (since all associated primes of B are minimal); thus quotienting by a zero-divisor
would not bring down the degree. So x is a nonzerodivisor in B.

In other words, we have found x ∈ A which is both A-regular and B-regular (i.e.
nonzerodivisors on both), and such that the hypotheses of the theorem apply to the pair
(A/(x), B/(x)). It follows that B/(x) is flat over A/(x) by the inductive hypothesis. The
next lemma will complete the proof. N

Lemma 4.12 Suppose (A,m) is a noetherian local ring, (B, n) a noetherian local A-
algebra, and M a finite B-module. Suppose x ∈ A is a regular element of A which is
also regular on M . Suppose moreover M/xM is A/(x)-flat. Then M is flat over A.

Proof. This follows from the associated graded criterion for flatness (see the omnibus
result Theorem 4.8). Indeed, if we use the notation of that result, we take I = (x). We
are given that M/xM is A/(x)-flat. So we need to show that

M/xM ⊗A/(x) (xn)/(xn+1)→ xnM/xn+1M

is an isomorphism for each n. This, however, is implied because (xn)/(xn+1) is isomorphic
to A/(x) by regularity, and multiplication

M
xn→ xnM, xM

xn→ xn+1M

are isomorphisms by M -regularity. N

4.6 Example: construction of flat extensions

As an illustration of several of the techniques in this chapter and previous ones, we shall
show, following [GD] (volume III, chapter 0) that, given a local ring and an extension of
its residue field, one may find a flat extension of this local ring with the bigger field as
its residue field. One application of this is in showing (in the context of Zariski’s Main
Theorem) that the fibers of a birational projective morphism of noetherian schemes (where
the target is normal) are geometrically connected. We shall later give another application
in the theory of étale morphisms.

Theorem 4.13 Let (R,m) be a noetherian local ring with residue field k. Suppose K is
an extension of k. Then there is a noetherian local R-algebra (S, n) with residue field K
such that S is flat over R and n = mS.

Proof. Let us start by motivating the theorem when K is generated over k by one element.
This case can be handled directly, but the general case will require a somewhat tricky
passage to the limit. There are two cases.

1. First, suppose K = k(t) for t ∈ K transcendental over k. In this case, we will
take S to be a suitable localization of R[t]. Namely, we consider the prime3 ideal
mR[t] ⊂ R[t], and let S = (R[t])mR[t]. Then S is clearly noetherian and local, and

3It is prime because the quotient is the domain k[t].
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moreover mS is the maximal ideal of S. The residue field of S is S/mS, which is
easily seen to be the quotient field of R[t]/mR[t] = k[t], and is thus isomorphic to
K. Moreover, as a localization of a polynomial ring, S is flat over R. Thus we have
handled the case of a purely transcendental extension generated by one element.

2. Let us now suppose K = k(a) for a ∈ K algebraic over k. Then a satisfies a monic
irreducible polynomial p(T ) with coefficients in k. We lift p to a monic polynomial
p(T ) ∈ R[T ]. The claim is that then, S = R[T ]/(p(T )) will suffice.

Indeed, S is clearly flat over R (in fact, it is free of rank deg p). As it is finite over
R, S is noetherian. Moreover, S/mS = k[T ]/(p(T )) ' K. It follows that mS ⊂ S
is a maximal ideal and that the residue field is K. Since any maximal ideal of S
contains mS by Nakayama,4 we see that S is local as well. Thus we have showed
that S satisfies all the conditions we want.

So we have proved the theorem when K is generated by one element over k. In general,
we can iterate this procedure finitely many times, so that the assertion is clear when K is
a finitely generated extension of k. Extending to infinitely generated extensions is trickier.

Let us first argue that we can write K/k as a “transfinite limit” of monogenic ex-
tensions. Consider the set of well-ordered collections C′ of subfields between k and K
(containing k) such that if L ∈ C′ has an immediate predecessor L′, then L/L′ is gener-
ated by one element. First, such collections C′ clearly exist; we can take the one consisting
only of k. The set of such collections is clearly a partially ordered set such that every chain
has an upper bound. By Zorn’s lemma, there is a maximal such collection of subfields,
which we now call C.

The claim is that C has a maximal field, which is K. Indeed, if it had no maximal
element, we could adjoin the union

⋃
F∈C F to C and make C bigger, contradicting maxi-

mality. If this maximal field of C were not K, then we could add another element to this
maximal subfield and get a bigger collection than C, contradiction.

So thus we have a set of fields Kα (with α, the index, ranging over a well-ordered set)
between k and K, such that if α has a successor α′, then K ′α is generated by one element
over Kα. Moreover K is the largest of the Kα, and k is the smallest.

We are now going to define a collection of rings Rα by transfinite induction on α.
We start the induction with R0 = R (where 0 is the smallest allowed α). The inductive
hypothesis that we will want to maintain is that Rα is a noetherian local ring with maximal
ideal mα, flat over R and satisfying mRα = mα; we require, moreover, that the residue
field of Rα be Kα. Thus if we can do this at each step, we will be able to work up to K
and get the ring S that we want. We are, moreover, going to construct the Rα such that
whenever β < α, Rα is a Rβ-algebra.

Let us assume that Rβ has been defined for all β < α and satisfies the conditions.
Then we want to define Rα in an appropriate way. If we can do this, then we will have
proved the result. There are two cases:

1. α has an immediate predecessor αpre. In this case, we can define Rα from Rαpre as
above (because Kα/Kαpre is monogenic).

4TO BE ADDED: citation needed

391



The CRing Project, §15.4.

2. α has no immediate predecessor. Then we define Rα = lim−→β<α
Rβ. The following

lemma will show that Rα satisfies the appropriate hypotheses.

This completes the proof, modulo Lemma 4.14. N

We shall need the following lemma to see that we preserve noetherianness when we
pass to the limit.

Lemma 4.14 Suppose given an inductive system {(Aα,mα)} of noetherian rings and flat
local homomorphisms, starting with A0. Suppose moreover that mαAβ = mβ whenever
α < β.

Then A = lim−→Aα is a noetherian local ring, flat over each Aα. Moreover, if m ⊂ A is
the maximal ideal, then mαA = m. The residue field of A is lim−→Aα/mα.

Proof. First, it is clear that A is a local ring (?? TO BE ADDED: reference!) with
maximal ideal equal to mαA for any α in the indexing set, and that A has the appropriate
residue field. Since filtered colimits preserve flatness, flatness of A is also clear. We need
to show that A is noetherian; this is the crux of the lemma.

To prove that A is noetherian, we are going to show that its m-adic completion Â
is noetherian. Fortunately, we have a convenient criterion for this. If m̂ = mÂ, then Â
is complete with respect to the m̂-adic topology. So if we show that Â/m̂ is noetherian

and m̂/m̂2 is a finitely generated Â-module, we will have shown that Â is noetherian by
Corollary 1.10.

But Â/m̂ is a field, so obviously noetherian. Also, m̂/m̂2 = m/m2, and by flatness of
A, this is

A⊗Aα mα/m
2
α

for any α. Since Aα is noetherian, we see that this is finitely generated. The criterion
Corollary 1.10 now shows that the completion Â is noetherian.

Finally, we need to deduce that A is itself noetherian. To do this, we shall show that Â
is faithfully flat over A. Since noetherianness “descends” under faithfully flat extensions
(TO BE ADDED: citation needed), this will be enough. It suffices to show that Â is
flat over each Aα. For this, we use the infinitesimal criterion; we have that

Â⊗Aα Aα/mt
α = Â/m̂t = A/mt = A/Amt

α,

which is flat over Aα/m
t
α since A is flat over Aα.

It follows that Â is flat over each Aα. If we want to see that A → Â is flat, we let
I ⊂ A be a finitely generated ideal; we shall prove that I ⊗A Â → Â is injective (which
will establish flatness). We know that there is an ideal Iα ⊂ Aα for some Aα such that

I = IαA = Iα ⊗Aα A.

Then
I ⊗A Â = Iα ⊗Aα Â N

which injects into Â as Aα → Â is flat.
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4.7 Generic flatness

Suppose given a module M over a noetherian domain R. Then M ⊗R K(R) is a finitely
generated free module over the field K(R). Since K(R) is the inductive limit lim−→Rf as f
ranges over (R−{0})/R∗ and K(R)⊗RM ' lim−→f∈(R−{0})/R∗Mf , it follows by the general

theory of ?? that there exists f ∈ R− {0} such that Mf is free over Rf .
Here SpecRf = D(f) ⊂ SpecR should be thought of as a “big” subset of SpecR (in

fact, as one can check, it is dense and open). So the moral of this argument is that M is
“generically free.” If we had the language of schemes, we could make this more precise.
But the idea is that localizing at M corresponds to restricting the sheaf associated to
M to D(f) ⊂ SpecR; on this dense open subset, we get a free sheaf. (The reader not
comfortable with such “finitely presented” arguments will find another one below, that
also works more generally.)

Now we want to generalize this to the case where M is finitely generated not over
R, but over a finitely generated R-algebra. In particular, M could itself be a finitely
generated R-algebra!

Theorem 4.15 (Generic freeness) Let S be a finitely generated algebra over the noethe-
rian domain R, and let M be a finitely generated S-module. Then there is f ∈ R − {0}
such that Mf is a free (in particular, flat) R-module.

Proof. We shall first reduce the result to one about rings instead of modules. By Hilbert’s
basis theorem, we know that S is noetherian. By dévissage (Proposition 2.9), there is a
finite filtration of M by S-submodules,

0 = M0 ⊂M1 ⊂ · · · ⊂Mk = M

such that the quotients Mi+1/Mi are isomorphic to quotients S/pi for the pi ∈ SpecS.
Since localization is an exact functor, it will suffice to show that there exists an f such

that (S/pi)f is a free R-module for each f . Indeed, it is clear that if a module admits
a finite filtration all of whose successive quotients are free, then the module itself is free.
We may thus even reduce to the case where M = S/p.

So we are reduced to showing that if we have a finitely generated domain T over R,
then there exists f ∈ R− {0} such that Tf is a free R-module. If R→ T is not injective,
then the result is obvious (localize at something nonzero in the kernel), so we need only
handle the case where R→ T is a monomorphism.

By the Noether normalization theorem, there are d elements of T ⊗R K(R), which
we denote by t1, . . . , td, which are algebraically independent over K(R) and such that
T ⊗R K(R) is integral over K(R)[t1, . . . , td]. (Here d is the transcendence degree of
K(T )/K(R).) If we localize at some highly divisible element, we can assume that t1, . . . , td
all lie in T itself. Let us assume that the result for domains is true whenever the transcen-
dence degree is < d, so that we can induct.

Then we know that R[t1, . . . , td] ⊂ T is a polynomial ring. Moreover, each of the finitely
many generators of T/R satisfies a monic polynomial equation overK(R)[t1, . . . , td] (by the
integrality part of Noether normalization). If we localize R at a highly divisible element,
we may assume that the coefficients of these polynomials belong to R[t1, . . . , td]. We have
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thus reduced to the following case. T is a finitely generated domain over R, integral over
the polynomial ring R[t1, . . . , td]. In particular, it is a finitely generated module over the
polynomial ring R[t1, . . . , td]. Thus we have some r and an exact sequence

0→ R[t1, . . . , td]
r → T → Q→ 0,

where Q is a torsion R[t1, . . . , td]
r-module. Since the polynomial ring is free, we are

reduced to showing that by localizing at a suitable element of R, we can make Q free.
But now we can do an inductive argument. Q has a finite filtration by T -modules whose

quotients are isomorphic to T/p for nonzero primes p with p 6= 0 as T is torsion; these
are still domains finitely generated over R, but such that the associated transcendence
degree is less than d. We have already assumed the statement proven for domains where
the transcendence degree is < d. Thus we can find a suitable localization that makes all
these free, and thus Q free; it follows that with this localization, T becomes free too. N
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Chapter 16

Homological theory of local rings

We will then apply the general theory to commutative algebra proper. The use of ho-
mological machinery provides a new and elegant characterization of regular local rings
(among noetherian local rings, they are the ones with finite global dimension) and leads
to proofs of several difficult results about them. For instance, we will be able to prove the
rather important result (which one repeatedly uses in algebraic geometry) that a regular
local ring is a UFD. As another example, the aforementioned criterion leads to a direct
proof of the otherwise non-obvious that a localization of a regular local ring at a prime
ideal is still a regular local ring.

Note: right now, the material on regular local rings is still missing! It
should be added.

§1 Depth

In this section, we first introduce the notion of depth for local rings via the Ext functor,
and then show that depth can be measured as the length of a maximal regular sequence.
After this, we study the theory of regular sequences in general (on not-necessarily-local
rings), and show that the depth of a module can be bounded in terms of both its dimension
and its associated primes.

1.1 Depth over local rings

Throughout, let (R,m) be a noetherian local ring. Let k = R/m be the residue field.

Let M 6= 0 be a finitely generated R-module. We are going to define an arithmetic
invariant of M , called the depth, that will measure in some sense the torsion of M .

Definition 1.1 The depth of M is equal to the smallest integer i such that Exti(k,M) 6=
0. If there is no such integer, we set depthM =∞.

We shall give another characterization of this shortly that makes no reference to Ext
functors, and is purely elementary. We will eventually see that there is always such an i
(at least if M 6= 0), so depthM <∞.

Example 1.2 (Depth zero) Let us characterize when a module M has depth zero.
Depth zero is equivalent to saying that Ext0(k,M) = HomR(k,M) 6= 0, i.e. that there is
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a nontrivial morphism
k →M.

As k = R/m, the existence of such a map is equivalent to the existence of a nonzero x such
that Ann(x) = m, i.e. m ∈ Ass(M). So depth zero is equivalent to having m ∈ Ass(M).

Suppose now that depth(M) 6= 0. In particular, m /∈ Ass(M). Since Ass(M) is finite,
prime avoidance implies that m 6⊂

⋃
p∈Ass(M) p. Thus m contains an element which is a

nonzerodivisor on M (see Proposition 2.10). So we find:

Proposition 1.3 M has depth zero iff every element in m is a zerodivisor on M .

Now suppose depthM 6= 0. There is a ∈ m which is a nonzerodivisor on M , i.e. such
that there is an exact sequence

0→M
a→M →M/aM → 0.

For each i, there is an exact sequence in Ext groups:

Exti−1(k,M/aM)→ Exti(k,M)
a→ Exti(k,M)→ Exti(k,M/aM)→ Exti+1(k,M).

(16.1)
However, the map a : Exti(k,M) → Exti(k,M) is zero as multiplication by a kills k. (If
a kills a module N , then it kills Ext∗(N,M) for all M .) We see from this that

Exti(k,M) ↪→ Exti(k,M/aM)

is injective, and
Exti−1(k,M/aM)� Exti(k,M)

is surjective.

Corollary 1.4 If a ∈ m is a nonzerodivisor on M , then

depth(M/aM) = depthM − 1.

Proof. When depthM = ∞, this is easy (left to the reader) from the exact sequence.
Suppose depth(M) = n. We would like to see that depthM/aM = n−1. That is, we want
to see that Extn−1(k,M/aM) 6= 0, but Exti(k,M/aM) = 0 for i < n − 1. This is direct
from the sequence (16.1) above. In fact, surjectivity of Extn−1(k,M/aM)→ Extn(k,M)
shows that Extn−1(k,M/aM) 6= 0. Now let i < n− 1. Then in (16.1), Exti(k,M/aM) is
sandwiched between two zeros, so it is zero. N

The moral of the above discussion is that one quotients out by a nonzerodivisor, the
depth drops by one. In fact, we have described a recursive algorithm for computing
depth(M).

1. If m ∈ Ass(M), output zero.

2. If m /∈ Ass(M), choose an element a ∈ m which is a nonzerodivisor on M . Output
depth(M/aM) + 1.
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If one wished to apply this in practice, one would probably start by looking for a
nonzerodivisor a1 ∈ m on M , and then looking for one on M/a1M , etc. From this we
make:

Definition 1.5 Let (R,m) be a local noetherian ring, M a finite R-module. A sequence
a1, . . . , an ∈ m is said to be M-regular iff:

1. a1 is a nonzerodivisor on M

2. a2 is a nonzerodivisor on M/a1M

3. . . .

4. ai is a nonzerodivisor on M/(a1, . . . , ai−1)M for all i.

A regular sequence a1, . . . , an is maximal if it can be extended no further, i.e. there is
no an+1 such that a1, . . . , an+1 is M -regular.

We now get the promised “elementary” characterization of depth.

Corollary 1.6 depth(M) is the length of every maximal M -regular sequence. In partic-
ular, all M -regular sequences have the same length.

Proof. If a1, . . . , an is M -regular, then

depthM/(a1, . . . , ai)M = depthM − i

for each i, by an easy induction on i and the Corollary 1.4. From this the result is clear,
because depth zero occurs precisely when m is an associated prime (Proposition 1.3). But
it is also clear that a regular sequence a1, . . . , an is maximal precisely when every element
of m acts as a zerodivisor on M/(a1, . . . , an)M , that is, m ∈ Ass(M/(a1, . . . , an)M). N

Remark We could define the depth via the length of a maximal M -regular sequence.

Finally, we can bound the depth in terms of the dimension.

Corollary 1.7 Let M 6= 0. Then the depth of M is finite. In fact,

depthM ≤ dimM. (16.2)

Proof. When depthM = 0, the assertion is obvious. Otherwise, there is a ∈ m which is a
nonzerodivisor on M . We know that

depthM/aM = depthM − 1

and (by Proposition 2.1)
dimM/aM = dimM − 1.

By induction on dimM , we have that depthM/aM ≤ dimM/aM . From this the induction
step is clear, because depth and dim both drop by one after quotienting. N
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Generally, the depth is not the dimension.

Example 1.8 Given any M , adding k makes the depth zero: M⊕k has m as an associated
prime. But the dimension does not jump to zero just by adding a copy of k. If M is a direct
sum of pieces of differing dimensions, then the bound (16.2) does not exhibit equality. In
fact, if M,M ′ are finitely generated modules, then we have

depthM ⊕M ′ = min
(
depthM,depthM ′

)
,

which follows at once from the definition of depth in terms of vanishing Ext groups.

Exercise 16.1 Suppose R is a noetherian local ring whose depth (as a module over itself)
is zero. If R is reduced, then R is a field.

Finally, we include a result that states that the depth does not depend on the ring so
much as the module.

Proposition 1.9 (Depth and change of rings) Let (R,m)→ (S, n) be a morphism of
noetherian local rings. Suppose M is a finitely generated S-module, which is also finitely
generated as an R-module. Then depthRM = depthSM .

Proof. It is clear that we have the inequality depthRM ≤ depthSM , by the interpretation
of depth via regular sequences. Let x1, . . . , xn ∈ R be a maximal M -sequence. We need
to show that it is a maximal M -sequence in S as well. By quotienting, we may replace M
with M/(x1, . . . , xn)M ; we then have to show that if M has depth zero as an R-module,
it has depth zero as an S-module.

But then HomR(R/m,M) 6= 0. This is a R-submodule of M , consisting of elements
killed by m, and in fact it is a S-submodule. We are going to show that n annihilates some
element of it, which will imply that depthSM = 0.

To see this, note that HomR(R/m,M) is artinian as an R-module (as it is killed by
m). As a result, it is an artinian S-module, which means it contains n as an associated
prime, proving the claim and the result. N

1.2 Regular sequences

In the previous subsection, we defined the notion of depth of a finitely generated module
over a noetherian local ring using the Ext functors. We then showed that the depth was
the length of a maximal regular sequence.

Now, although it will not be necessary for the main results in this chapter, we want
to generalize this to the case of a non-local ring. Most of the same arguments go through,
though there are some subtle differences. For instance, regular sequences remain regular
under permutation in the local case, but not in general. Since there will be some repetition,
we shall try to be brief.

We start by generalizing the idea of a regular sequence which is not required to be
contained in the maximal ideal of a local ring. Let R be a noetherian ring, and M a
finitely generated R-module.
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Definition 1.10 A sequence x1, . . . , xn ∈ R is M-regular (or is an M-sequence) if
for each k ≤ n, xk is a nonzerodivisor on the R-module M/(x1, . . . , xk−1)M and also
(x1, . . . , xn)M 6= M .

So x1 is a nonzerodivisor on M , by the first part. That is, the homothety M
x1→ M

is injective. The last condition is also going to turn out to be necessary for us. In the
previous subsection, it was automatic as mM 6= M (unless M = 0) by Nakayama’s lemma
as M was assumed finitely generated.

The property of being a regular sequence is inherently an inductive one. Note that
x1, . . . , xn is a regular sequence on M if and only if x1 is a zerodivisor on M and x2, . . . , xn
is an M/x1M -sequence.

Definition 1.11 If M is an R-module and I ⊂ R an ideal, then we write depthIM for
the length of the length-maximizing M -sequence contained in I. When R is local and
I ⊂ R the maximal ideal, then we just write depthM as before.

While we will in fact have a similar characterization of depth in terms of Ext, in this
section we define it via regular sequences.

Example 1.12 The basic example one is supposed to keep in mind is the polynomial ring
R = R0[x1, . . . , xn] and M = R. Then the sequence x1, . . . , xn is regular in R.

Example 1.13 Let (R,m) be a regular local ring, and let x1, . . . , xn be a regular system
of parameters in R (i.e. a system of generators for m of minimal size). Then we have seen
that the {xi} form a regular sequence on R, in any order. This is because each quotient
R/(x1, . . . , xi) is itself regular, hence a domain.

As before, we have a simple characterization of depth zero:

Proposition 1.14 Let R be noetherian, M finitely generated. If M is an R-module with
IM 6= M , then M has depth zero if and only if I is contained in an element of Ass(M).

Proof. This is analogous to Proposition 1.3. Note than an ideal consists of zerodivisors
on M if and only if it is contained in an associated prime (Proposition 2.10). N

The above proof used Proposition 2.10, a key fact which will be used repeatedly in the
sequel. This is one reason the theory of depth works best for finitely generated modules
over noetherian rings.

The first observation to make is that regular sequences are not preserved by permuta-
tion. This is one nice characteristic that we would like but is not satisfied.

Example 1.15 Let k be a field. Consider R = k[x, y]/((x − 1)y, yz). Then x, z is a
regular sequence on R. Indeed, x is a nonzerodivisor and R/(x) = k[z]. However, z, x is
not a regular sequence because z is a zerodivisor in R.

Nonetheless, regular sequences are preserved by permutation for local rings under
suitable noetherian hypotheses:
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Proposition 1.16 Let R be a noetherian local ring and M a finite R-module. Then
if x1, . . . , xn is a M -sequence contained in the maximal ideal, so is any permutation
xσ(1), . . . , xσ(n).

Proof. It is clearly enough to check this for a transposition. Namely, if we have an M -
sequence

x1, . . . , xi, xi+1, . . . xn

we would like to check that so is

x1, . . . , xi+1, xi, . . . , xn.

It is here that we use the inductive nature. Namely, all we need to do is check that

xi+1, xi, . . . , xn

is regular on M/(x1, . . . , xi−1)M , since the first part of the sequence will automatically
be regular. Now xi+2, . . . , xn will automatically be regular on M/(x1, . . . , xi+1)M . So all
we need to show is that xi+1, xi is regular on M/(x1, . . . , xi−1)M .

The moral of the story is that we have reduced to the following lemma.

Lemma 1.17 Let R be a noetherian local ring. Let N be a finite R-module and a, b ∈ R
an N -sequence contained in the maximal ideal. Then so is b, a.

Proof. We can prove this as follows. First, a will be a nonzerodivisor on N/bN . Indeed,
if not then we can write

an = bn′

for some n, n′ ∈ N with n /∈ bN . But b is a nonzerodivisor on N/aN , which means that
bn′ ∈ aN implies n′ ∈ aN . Say n′ = an′′. So an = ban′′. As a is a nonzerodivisor on N ,
we see that n = bn′′. Thus n ∈ bN , contradiction. This part has not used the fact that R
is local.

Now we claim that b is a nonzerodivisor on N . Suppose n ∈ N and bn = 0. Since b is
a nonzerodivisor on N/aN , we have that n ∈ aN , say n = an′. Thus

b(an′) = a(bn′) = 0.

The fact that N
a→ N is injective implies that bn′ = 0. So we can do the same and get

n′ = an′′, n′′ = an(3), n(3) = an(4), and so on. It follows that n is a multiple of a, a2, a3, . . . ,
and hence in mjN for each j where m ⊂ R is the maximal ideal. The Krull intersection
theorem now implies that n = 0.

Together, these arguments imply that b, a is an N -sequence, proving the lemma. N

The proof of the result is now complete. N

One might wonder what goes wrong, and why permutations do not preserve regular
sequences in general; after all, oftentimes we can reduce results to their analogs for local
rings. Yet the fact that regularity is preserved by permutations for local rings does not
extend to arbitrary rings. The problem is that regular sequences do not localize. Well,
they almost do, but the final condition that (x1, . . . , xn)M 6= M doesn’t get preserved.
We can state:
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Proposition 1.18 Suppose x1, . . . , xn is an M -sequence. Let N be a flat R-module. Then
if (x1, . . . , xn)M ⊗R N 6= M ⊗N , then x1, . . . , xn is an M ⊗R N -sequence.

Proof. This is actually very easy now. The fact that xi : M/(x1, . . . , xi−1)M →M/(x1, . . . , xi−1)M
is injective is preserved when M is replaced by M ⊗R N because the functor − ⊗R N is
exact. N

In particular, it follows that if we have a good reason for supposing that (x1, . . . , xn)M⊗
N 6= M ⊗ N , then we’ll already be done. For instance, if N is the localization of R
at a prime ideal containing the xi. Then we see that automatically x1, . . . , xn is an
Mp = M ⊗R Rp-sequence.

Finally, we have an analog of the previous correspondence between depth and the
vanishing of Ext. Since the argument is analogous to Corollary 1.6, we omit it.

Theorem 1.19 Let R be a ring. Suppose M is an R-module and IM 6= M . All maximal
M -sequences in I have the same length. This length is the smallest value of r such that
Extr(R/I,M) 6= 0.

Exercise 16.2 Suppose I is an ideal in R. Let M be an R-module such that IM 6= M .
Show that depthIM ≥ 2 if and only if the natural map

M ' Hom(R,M)→ Hom(I,M)

is an isomorphism.

1.3 Powers of regular sequences

Regular sequences don’t necessarily behave well with respect to permutation or localization
without additional hypotheses. However, in all cases they behave well with respect to
taking powers. The upshot of this is that the invariant called depth that we will soon
introduce is invariant under passing to the radical.

We shall deduce this from the following easy fact.

Lemma 1.20 Suppose we have an exact sequence of R-modules

0→M ′ →M →M ′′ → 0.

Suppose the sequence x1, . . . , xn ∈ R is M ′-regular and M ′′-regular. Then it is M -regular.

The converse is not true, of course.

Proof. Morally, this is the snake lemma. For instance, the fact that multiplication by x1

is injective on M ′,M ′′ implies by the snake diagram that M
x1→ M is injective. However,

we don’t a priori know that a simple inductive argument on n will work to prove this.
The reason is that it needs to be seen that quotienting each term by (x1, . . . , xn−1) will
preserve exactness. However, a general fact will tell us that this is indeed the case. See
below.
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Anyway, this general fact now lets us induct on n. If we assume that x1, . . . , xn−1

is M -regular, we need only prove that xn : M/(x1, . . . , xn−1)M → M/(x1, . . . , xn−1) is
injective. (It is not surjective or the sequence would not be M ′′-regular.) But we have the
exact sequence by the next lemma,

0→M ′/(x1 . . . xn−1)M ′ →M/(x1 . . . xn−1)M →M ′′/(x1 . . . xn−1)M ′′ → 0

and the injectivity of xn on the two ends implies it at the middle by the snake lemma. N

So we need to prove:

Lemma 1.21 Suppose 0 → M ′ → M → M ′′ → 0 is a short exact sequence. Let
x1, . . . , xm be an M ′′-sequence. Then the sequence

0→M ′/(x1 . . . xm)M ′ →M/(x1 . . . xm)M →M ′′/(x1 . . . xm)M ′′ → 0

is exact as well.

One argument here uses the fact that the Tor functors vanish when one has a regular
sequence like this. We can give a direct argument.

Proof. By induction, this needs only be proved when m = 1, since we have the recursive
description of regular sequences: in general, x2 . . . xm will be regular on M ′′/x1M

′′. In
any case, we have exactness except possibly at the left as the tensor product is right-exact.
So let m′ ∈M ′; suppose m′ maps to a multiple of x1 in M . We need to show that m′ is a
multiple of x1 in M ′.

Suppose m′ maps to x1m. Then x1m maps to zero in M ′′, so by regularity m maps to
zero in M ′′. Thus m comes from something, m′, in M ′. In particular m′ − x1m

′ maps to
zero in M , so it is zero in M ′. Thus indeed m′ is a multiple of x1 in M ′. N

With this lemma proved, we can state:

Proposition 1.22 Let M be an R-module and x1, . . . , xn an M -sequence. Then xa11 , . . . , x
an
n

is an M -sequence for any a1, . . . , an ∈ Z>0.

Proof. We will use:

Lemma 1.23 Suppose x1, . . . , xi, . . . , xn and x1, . . . , x
′
i, . . . , xn are M -sequences for some

M . Then so is x1, . . . , xix
′
i, . . . , xn.

Proof. As usual, we can mod out by (x1 . . . xi−1) and thus assume that i = 1. We have to
show that if x1, . . . , xn and x′1, . . . , xn are M -sequences, then so is x1x

′
1, . . . , xn.

We have an exact sequence

0→ x1M/x1x
′
1M →M/x1x

′
1M →M/x1M → 0.

Now x2, . . . , xn is regular on the last term by assumption, and also on the first term, which
is isomorphic to M/x′1M as x1 acts as a nonzerodivisor on M . So x2, . . . , xn is regular on
both ends, and thus in the middle. This means that

x1x
′
1, . . . , xn

is M -regular. That proves the lemma. N
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So we now can prove the proposition. It is trivial if
∑
ai = n (i.e. if all are 1) it is

clear. In general, we can use complete induction on
∑
ai. Suppose we know the result for

smaller values of
∑
ai. We can assume that some aj > 1. Then the sequence

xa11 , . . . x
aj
j , . . . x

an
n

is obtained from the sequences

xa11 , . . . , x
aj−1
j , . . . , xann

and

xa11 , . . . , x
1
j , . . . , x

an
n

by multiplying the middle terms. But the complete induction hypothesis implies that both
those two sequences are M -regular, so we can apply the lemma. N

In general, the product of two regular sequences is not a regular sequence. For instance,
consider a regular sequence x, y in some finitely generated module M over a noetherian
local ring. Then y, x is regular, but the product sequence xy, xy is never regular.

1.4 Depth

We make the following definition slightly differently than in the local case:

Definition 1.24 Suppose I is an ideal such that IM 6= M . Then we define the I-depth
of M to be the maximum length of a maximal M -sequence contained in I. When R is a
local ring and I the maximal ideal, then that number is simply called the depth of M .

The depth of a proper ideal I ⊂ R is its depth on R.

The definition is slightly awkward, but it turns out that all maximal M -sequences in I
have the same length, as we saw in Theorem 1.19. So we can use any of them to compute
the depth.

The first thing we can prove using the above machinery is that depth is really a
“geometric” invariant, in that it depends only on the radical of I.

Proposition 1.25 Let R be a ring, I ⊂ R an ideal, and M an R-module with IM 6= M .
Then depthIM = depthRad(I)M .

Proof. The inequality depthIM ≤ depthRadIM is trivial, so we need only show that if
x1, . . . , xn is an M -sequence in Rad(I), then there is an M -sequence of length n in I. For
this we just take a high power

xN1 , . . . , x
N
n

where N is large enough such that everything is in I. We can do this as powers of
M -sequences are M -sequences (Proposition 1.22). N
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This was a fairly easy consequence of the above result on powers of regular sequences.
On the other hand, we want to give another proof, because it will let us do more. Namely,
we will show that depth is really a function of prime ideals.

For convenience, we set the following condition: if IM = M , we define

depthI(M) =∞.

Proposition 1.26 Let R be a noetherian ring, I ⊂ R an ideal, and M a finitely generated
R-module. Then

depthIM = min
p∈V (I)

depthpM.

So the depth of I on M can be calculated from the depths at each prime containing I.
In this sense, it is clear that depthI(M) depends only on V (I) (and the depths on those
primes), so clearly it depends only on I up to radical.

Proof. In this proof, we shall use the fact that the length of every maximal M -sequence
is the same (Theorem 1.19).

It is obvious that we have an inequality

depthI ≤ min
p∈V (I)

depthpM

as each of those primes contains I. We are to prove that there is a prime p containing I
with

depthIM = depthpM.

But we shall actually prove the stronger statement that there is p ⊃ I with depthpMp =
depthIM . Note that localization at a prime can only increase depth because an M -
sequence in p leads to an M -sequence in Mp thanks to Nakayama’s lemma and the flatness
of localization.

So let x1, . . . , xn ∈ I be a M -sequence of maximum length. Then I acts by zerodivisors
on M/(x1, . . . , xn)M or we could extend the sequence further. In particular, I is contained
in an associated prime of M/(x1, . . . , xn)M by elementary commutative algebra (basically,
prime avoidance).

Call this associated prime p ∈ V (I). Then p is an associated prime ofMp/(x1, . . . , xn)Mp,
and in particular acts only by zerodivisors on this module. Thus theMp-sequence x1, . . . , xn
can be extended no further in p. In particular, since the depth can be computed as the
length of any maximal Mp-sequence,

depthpMp = depthIM. N

Perhaps we should note a corollary of the argument above:

Corollary 1.27 Hypotheses as above, we have depthIM ≤ depthpMp for any prime p ⊃
I. However, there is at least one p ⊃ I where equality holds.

We are thus reduced to analyzing depth in the local case.

Exercise 16.3 If (R,m) is a local noetherian ring and M a finitely generated R-module,
then show that depthM = depthR̂ M̂ , where M̂ is the m-adic completion. (Hint: use

M̂ = M ⊗R R̂, and the fact that R̂ is flat over R.)
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1.5 Depth and dimension

Consider an R-module M , which is always assumed to be finitely generated. Let I ⊂ R
be an ideal with IM 6= M . We deduce from the previous subsections:

Proposition 1.28 Let M be a finitely generated module over the noetherian ring R. Then

depthIM ≤ dimM

for any ideal I ⊂ R with IM 6= M .

Proof. We have proved this when R is a local ring (Corollary 1.7). Now we just use
Corollary 1.27 to reduce to the local case. N

This does not tell us much about how depthIM depends on I, though; it just says
something about how it depends on M . In particular, it is not very helpful when trying
to estimate depthI = depthIR. Nonetheless, there is a somewhat stronger result, which
we will need in the future. We start by stating the version in the local case.

Proposition 1.29 Let (R,m) be a noetherian local ring. Let M be a finite R-module.
Then the depth of m on M is at most the dimension of R/p for p an associated prime of
M :

depthM ≤ min
p∈Ass(M)

dimR/p.

This is sharper than the bound depthM ≤ dimM , because each dimR/p is at most
dimM (by definition).

Proof. To prove this, first assume that the depth is zero. In that case, the result is
immediate. We shall now argue inductively. Assume that that this is true for modules
of smaller depth. We will quotient out appropriately to shrink the support and change
the associated primes. Namely, choose a M -regular (nonzerodivisor on M) x ∈ R. Then
depthM/xM = depthM − 1.

Let p0 be an associated prime of M . We claim that p0 is properly contained in an
associated prime of M/xM . We will prove this below. Thus p0 is properly contained in
some q0 ∈ Ass(M/xM).

Now we know that depthM/xM = depthM −1. Also, by the inductive hypothesis, we
know that dimR/q0 ≥ depthM/xM = depthM − 1. But the dimension of R/q0 is strictly
smaller than that of R/p0, so at least dimR/p0 + 1 ≥ depthM . This proves the lemma,
modulo the result:

Lemma 1.30 Let (R,m) be a noetherian local ring. Let M be a finitely generated R-
module, x ∈ m an M -regular element. Then each element of Ass(M) is properly contained
in an element of Ass(M/xM).

So if we quotient by a regular element, we can make the associated primes jump up.
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Proof. Let p0 ∈ Ass(M); we want to show p0 is properly contained in something in
Ass(M/xM).

Indeed, x /∈ p0, so p0 cannot itself be an associated prime. However, p0 annihilates a
nonzero element of M/xM . To see this, consider a maximal principal submodule of M
annihilated by p0. Let this submodule be Rz for some z ∈ M . Then if z is a multiple
of x, say z = xz′, then Rz′ would be a larger submodule of M annihilated by p0—here
we are using the fact that x is a nonzerodivisor on M . So the image of this z in M/xM
is nonzero and is clearly annihilated by p0. It follows p0 is contained in an element of
Ass(M/xM), necessarily properly. N

Exercise 16.4 Another argument for Lemma 1.30 is given in §16 of [GD], vol. IV, by
reducing to the coprimary case. Here is a sketch.

The strategy is to use the existence of an exact sequence

0→M ′ →M →M ′′ → 0

with Ass(M ′′) = Ass(M)− {p0} and Ass(M ′) = {p0}. Quotienting by x preserves exact-
ness, and we get

0→M ′/xM ′ →M/xM →M ′′/xM ′′ → 0.

Now p0 is properly contained in every associated prime of M ′/xM ′ (as it acts nilpotently
on M ′). It follows that any element of Ass(M ′/xM ′) ⊂ Ass(M/xM) will do the job.

In essence, the point is that the result is trivial when Ass(M) = {p0}.

Exercise 16.5 Here is a simpler argument for Lemma 1.30, following [Ser65]. Let p0 ∈
Ass(M), as before. Again as before, we want to show that HomR(R/p0,M/xM) 6= 0. But
we have an exact sequence

0→ HomR(R/p0,M)
x→ HomR(R/p0,M)→ HomR(R/p0,M/xM),

and since the first map is not surjective (by Nakayama), the last object is nonzero.

Finally, we can globalize the results:

Proposition 1.31 Let R be a noetherian ring, I ⊂ R an ideal, and M a finitely generated
module. Then depthIM is at most the length of every chain of primes in SpecR that starts
at an associated prime of M and ends at a prime containing I.

Proof. Currently omitted. N

§2 Cohen-Macaulayness

2.1 Cohen-Macaualay modules over a local ring

For a local noetherian ring, we have discussed two invariants of a module: dimension and
depth. They generally do not coincide, and Cohen-Macaulay modules will be those where
they do.

Let (R,m) be a noetherian local ring.
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Definition 2.1 A finitely generated R-module M is Cohen-Macaulay if depthM =
dimM . The ring R is called Cohen-Macaulay if it is Cohen-Macaulay as a module over
itself.

We already know that the inequality ≤ always holds. If there is a system of parameters
for M (i.e., a sequence x1, . . . , xr ∈ m such that M/(x1, . . . , xr)M is artinian) which is
a regular sequence on M , then M is Cohen-Macaulay: we see in fact that dimM =
depthM = r. This is the distinguishing trait of Cohen-Macaulay rings.

Let us now give a few examples:

Example 2.2 (Regular local rings are Cohen-Macaulay) IfR is regular, then depthR =
dimR, so R is Cohen-Macaulay.

Indeed, we have seen that if x1, . . . , xn is a regular system of parameters for R (i.e. a
minimal set of generators for m), then n = dimR and the {xi} form a regular sequence. See
the remark after Corollary 1.10; the point is that R/(x1, . . . , xi−1) is regular for each i (by
the aforementioned corollary), and hence a domain, so xi acts on it by a nonzerodivisor.

The next example easily shows that a Cohen-Macaulay ring need not be regular, or
even a domain:

Example 2.3 (Local artinian rings are Cohen-Macaulay) Any local artinian ring,
because the dimension is zero for an artinian ring.

Example 2.4 (Cohen-Macaulayness and completion) A finitely generated module
M is Cohen-Macaulay if and only if its completion M̂ is; this follows from ?? 16.3.

Here is a slightly harder example.

Example 2.5 A normal local domain (R,m) of dimension 2 is Cohen-Macaulay. This is
a special case of Serre’s criterion for normality.

Here is an argument. If x ∈ m is nonzero, we want to show that depthR/(x) = 1. To do
this, we need to show that m /∈ Ass(R/(x)) for each such x, because then depthR/(x) ≥ 1
(which is all we need). However, suppose the contrary; then there is y not divisible by x
such that my ⊂ (x). So y/x /∈ R, but m(y/x) ⊂ R.

This, however, implies m is principal. Indeed, we either have m(y/x) = R, in which
case m is generated by x/y, or m(y/x) ⊂ m. The latter would imply that y/x is integral
over R (as multiplication by it stabilizes a finitely generated R-module), and by normality
y/x ∈ R. We have seen much of this argument before.

Example 2.6 Consider C[x, y]/(xy), the coordinate ring of the union of two axes inter-
secting at the origin. This is not regular, as its localization at the origin is not a domain.
We will later show that this is a Cohen-Macaulay ring, though.

Example 2.7 R = C[x, y, z]/(xy, xz) is not Cohen-Macaulay (at the origin). The associ-
ated variety looks geometrically like the union of the plane x = 0 and the line y = z = 0 in
affine 3-space. Here there are two components of different dimensions intersecting. Let’s
choose a regular sequence (that is, regular after localization at the origin). The dimension
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at the origin is clearly two because of the plane. First, we need a nonzerodivisor in this
ring, which vanishes at the origin, say x+ y+ z. (Check this.) When we quotient by this,
we get

S = C[x, y, z]/(xy, xz, x+ y + z) = C[y, z]/((y + z)y, (y + z)z).

The claim is that S localized at the ideal corresponding to (0, 0) has depth zero. We
have y + z 6= 0, which is killed by both y, z, and hence by the maximal ideal at zero. In
particular the maximal ideal at zero is an associated prime, which implies the claim about
the depth.

As it happens, a Cohen-Macaulay variety is always equidimensional. The rough reason
is that each irreducible piece puts an upper bound on the depth given by the dimension
of the piece. If any piece is too small, the total depth will be too small.

Here is the deeper statement:

Proposition 2.8 Let (R,m) be a noetherian local ring, M a finitely generated, Cohen-
Macaulay R-module. Then:

1. For each p ∈ Ass(M), we have dimM = dimR/p.

2. Every associated prime of M is minimal (i.e. minimal in suppM).

3. suppM is equidimensional.

In general, there may be nontrivial inclusion relations among the associated primes of a
general module. However, this cannot happen for a Cohen-Macaulay module.

Proof. The first statement implies all the others. (Recall that equidimensional means that
all the irreducible components of suppM , i.e. the SpecR/p, have the same dimension.)
But this in turn follows from the bound of Proposition 1.29. N

Next, we would like to obtain a criterion for when a quotient of a Cohen-Macaulay
module is still Cohen-Macaulay. The answer will be similar to Theorem 1.11 for regular
local rings.

Proposition 2.9 Let M be a Cohen-Macaulay module over the local noetherian ring
(R,m). If x1, . . . , xn ∈ m is a M -regular sequence, then M/(x1, . . . , xn)M is Cohen-
Macaulay of dimension (and depth) dimM − n.

Proof. Indeed, we reduce to the case n = 1 by induction. But then, because x1 is a
nonzerodivisor on M , we have dimM/x1M = dimM−1 and depthM/x1M = depthM−1.
Thus

dimM/x1M = depthM/x1M. N

So, if we are given a Cohen-Macaulay module M and want one of a smaller dimension,
we just have to find x ∈ m not contained in any of the minimal primes of suppM (these
are the only associated primes). Then, M/xM will do the job.

408



The CRing Project, §16.2.

2.2 The non-local case

More generally, we would like to make the definition:

Definition 2.10 A general noetherian ring R is Cohen-Macaulay if Rp is Cohen-
Macaulay for all p ∈ SpecR.

We should check that these definitions coincide for a local noetherian ring. This,
however, is not entirely obvious; we have to show that localization preserves Cohen-
Macaulayness. In this subsection, we shall do that, and we shall furthermore show that
Cohen-Macaulay rings are catenary, or more generally that Cohen-Macaulay modules are
catenary. (So far we have seen that they are equidimensional, in the local case.)

We shall deduce this from the following result, which states that for a Cohen-Macaulay
module, we can choose partial systems of parameters in any given prime ideal in the
support.

Proposition 2.11 Let M be a Cohen-Macaulay module over the local noetherian ring
(R,m), and let p ∈ suppM . Let x1, . . . , xr ∈ p be a maximal M -sequence contained in p.
Then:

1. p is an associated and minimal prime of M/(x1, . . . , xr)M .

2. dimR/p = dimM − r

Proof. We know (Proposition 2.9) that M/(x1, . . . , xr)M is a Cohen-Macaulay module
too. Clearly p is in its support, since all the xi ∈ p. The claim is that p is an associated
prime—or minimal prime, it is the same thing—of M/(x1, . . . , xr)M . If not, there is x ∈ p
that is a nonzerodivisor on this quotient, which means that {x1, . . . , xr} was not maximal
as claimed.

Now we need to verify the assertion on the dimension. Clearly dimM/(x1, . . . , xr)M =
dimM − r, and moreover dimR/p = dimM/(x1, . . . , xr) by Proposition 2.8. Combining
these gives the second assertion. N

Corollary 2.12 Hypotheses as above, dimMp = r = dimM − dimR/p. Moreover, Mp is
a Cohen-Macaulay module over Rp.

This result shows that Definition 2.10 is a reasonable definition.

Proof. Indeed, if we consider the conclusions of ??, we find that x1, . . . , xr becomes a
system of parameters for Mp: we have that Mp/(x1, . . . , xr)Mp is an artinian Rp-module,
while the sequence is also regular. The first claim follows, as does the second: any module
with a system of parameters that is a regular sequence is Cohen-Macaulay. N

As a result, we can get the promised result that a Cohen-Macaulay ring is catenary.

Proposition 2.13 If M is Cohen-Macaulay over the local noetherian ring R, then suppM
is a catenary space.

In other words, if p ⊂ q are elements of suppM , then every maximal chain of prime
ideals from p to q has the same length.
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Proof. We will show that dimR/p = dimR/q+dimRq/pRq, a claim that suffices to establish
catenariness. We will do this by using the dimension formulas computed earlier.

Namely, we know that M is catenary over R, so by Corollary 2.12

dimRqMq = dimM − dimR/q, dimRpMp = dimM − dimR/p.

Moreover, Mq is Cohen-Macaulay over Rq. As a result, we have (in view of the previous
equation)

dimRpMp = dimRqMq − dimRq/pRq = dimM − dimR/q− dimRq/pRq.

Combining, we find

dimM − dimR/p = dimM − dimR/q− dimRq/pRq,

which is what we wanted. N

It thus follows that any Cohen-Macaulay ring, and thus any quotient of a Cohen-
Macaualay ring, is catenary. In particular, it follows any non-catenary local noetherian
ring cannot be expressed as a quotient of a Cohen-Macaulay (e.g. regular) local ring.

It also follows immediately that if R is any regular (not necessarily local) ring, then
R is catenary, and the same goes for any quotient of R. In particular, since a polynomial
ring over a field is regular, we find:

Proposition 2.14 Any affine ring is catenary.

2.3 Reformulation of Serre’s criterion

Much earlier, we proved criteria for a noetherian ring to be reduced and (more interest-
ingly) normal. We can state them more cleanly using the theory of depth developed.

Definition 2.15 Let R be a noetherian ring, and let k ∈ Z≥0.

1. We say that R satisfies condition Rk if, for every prime ideal p ∈ SpecR with
dimRp ≤ k, the local ring Rp is regular.

2. R satisfies condition Sk if depthRp ≥ inf(k, dimRp) for all p ∈ SpecR.

A Cohen-Macaulay ring satisfies all the conditions Sk, and conversely. The condition
Rk means geometrically that the associated variety is regular (i.e., smooth, at least if one
works over an algebraically closed field) outside a subvariety of codimension ≥ k.

Recall that, according to ??, a noetherian ring is reduced iff:

1. For any minimal prime p ⊂ R, Rp is a field.

2. Every associated prime of R is minimal.
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Condition 1 can be restated as follows. The ideal p ⊂ R is minimal if and only if it
is zero-dimensional, and Rp is regular if and only if it is a field. So the first condition is
that for every height zero prime, Rp is regular. In other words, it is the condition R0.

For the second condition, p ∈ Ass(R) iff p ∈ Ass(Rp), which is equivalent to depthRp =
0. So the second condition states that for primes p ∈ SpecR of height at least 1, p /∈
Ass(Rp), or depth(Rp) ≥ 1. This is the condition S1.

We find:

Proposition 2.16 A noetherian ring is reduced if and only if it satisfies R0 and S1.

In particular, for a Cohen-Macaulay ring, checking if it is reduced is easy; one just has
to check R0 (if the localizations at minimal primes are reduced).

Serre’s criterion for normality is in the same spirit, but harder. Recall that a noetherian
ring is normal if it is a finite direct product of integrally closed domains.

The earlier form of Serre’s criterion (see Theorem 5.14) was:

Proposition 2.17 Let R be a local ring. Then R is normal iff

1. R is reduced.

2. For every height one prime p ∈ SpecR, Rp is a DVR (i.e. regular).

3. For every nonzerodivisor x ∈ R, every associated prime of R/(x) is minimal.

In view of the criterion for reducedness, these conditions are equivalent to:

1. For every prime p of height ≤ 1, Rp is regular.

2. For every prime p of height ≥ 1, depthRp ≥ 1 (necessary for reducedness)

3. depthRp ≥ 2 for p containing but not minimal over any principal ideal (x) for x a
nonzerodivisor. This is the last condition of the proposition; to say depthRp ≥ 2 is
to say that depthRp/(x)Rp ≥ 1, or p /∈ Ass(Rp/(x)Rp).

Combining all this, we find:

Theorem 2.18 (Serre’s criterion) A noetherian ring is normal if and only if it satisfies
the conditions R1 and S2.

Again, for a Cohen-Macaulay ring, the last condition is automatic, as the depth is the
codimension.

§3 Projective dimension and free resolutions

We shall introduce the notion of projective dimension of a module; this will be the smallest
projective resolution it admits (if there is none such, the dimension is ∞). We can think
of it as measuring how far a module is from being projective. Over a noetherian local ring,
we will show that the projective dimension can be calculated very simply using the Tor
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functor (which is an elaboration of the story that a projective module over a local ring is
free).

Ultimately we want to show that a noetherian local ring is regular if and only if every
finitely generated module admits a finite free resolution. Although we shall not get to
that result until the next section, we will at least relate projective dimension to a more
familiar invariant of a module: depth.

3.1 Introduction

Let R be a commutative ring, M an R-module.

Definition 3.1 The projective dimension of M is the largest integer n such that there
exists a module N with

Extn(M,N) 6= 0.

We allow∞, if arbitrarily large such n exist. We write pd(M) for the projective dimension.
For convenience, we set pd(0) = −∞.

So, if m > n = pd(M), then we have Extm(M,N) = 0 for all modules N , and n is the
smallest integer with this property. As an example, note that pd(M) = 0 if and only if
M is projective and nonzero. Indeed, we have seen that the Ext groups Exti(M,N), i > 0
vanish always for M projective, and conversely.

To compute pd(M) in general, one can proceed as follows. Take any M . Choose a
surjection P �M with P projective; call the kernel K and draw a short exact sequence

0→ K → P →M → 0.

For any R-module N , we have a long exact sequence

Exti−1(P,N)→ Exti−1(K,N)→ Exti(M,N)→ Exti(P,N).

If i > 0, the right end vanishes; if i > 1, the left end vanishes. So if i > 1, this map
Exti−1(K,N)→ Exti(M,N) is an isomorphism.

Suppose that pd(K) = d ≥ 0. We find that Exti−1(K,N) = 0 for i − 1 > d. This
implies that Exti(M,N) = 0 for such i > d + 1. In particular, pd(M) ≤ d + 1. This
argument is completely reversible if d > 0. Then we see from these isomorphisms that

pd(M) = pd(K) + 1 , unless pd(M) = 0 (16.3)

If M is projective, the sequence 0→ K → P →M → 0 splits, and pd(K) = 0 too.

The upshot is that we can compute projective dimension by choosing a projective
resolution.

Proposition 3.2 Let M be an R-module. Then pd(M) ≤ n iff there exists a finite
projective resolution of M having n+ 1 terms,

0→ Pn → · · · → P1 → P0 →M → 0.
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Proof. Induction on n. When n = 0, M is projective, and we can use the resolution
0→M →M → 0.

Suppose pd(M) ≤ n, where n > 0. We can get a short exact sequence

0→ K → P0 →M → 0

with P0 projective, so pd(K) ≤ n − 1 by (16.3). The inductive hypothesis implies that
there is a projective resolution of K of length ≤ n − 1. We can splice this in with the
short exact sequence to get a projective resolution of M of length n.

The argument is reversible. Choose any projective resolution

0→ Pn → · · · → P1 → P0 →M → 0

and split into short exact sequences, and then one argue inductively to show that pd(M) ≤
n. N

Let pd(M) = n. Choose any projective resolution · · · → P2 → P1 → P0 →M . Choose
Ki = ker(Pi → Pi−1) for each i. Then there is a short exact sequence 0 → K0 → P0 →
M → 0. Moreover, there are exact sequences

0→ Ki → Pi → Ki−1 → 0

for each i. From these, and from (16.3), we see that the projective dimensions of the Ki

drop by one as i increments. So Kn−1 is projective if pd(M) = n as pd(Kn−1) = 0. In
particular, we can get a projective resolution

0→ Kn−1 → Pn−1 → · · · → P0 →M → 0

which is of length n. In particular, if one has a (possibly infinite) projective resolution
M , one can stop after going out n terms, because the kernels will become projective. In
other words, the projective resolution can be made to break off at the nth term. This
applies to any projective resolution. Conversely, since any module has a (possibly infinite)
projective resolution, we find:

Proposition 3.3 We have pd(M) ≤ n if any projective resolution

· · · → P1 → P0 →M → 0

breaks off at the nth stage: that is, the kernel of Pn−1 → Pn−2 is projective.

If pd(M) ≤ n, then by definition we have Extn+1(M,N) = 0 for any module N .
By itself, this does not say anything about the Tor functors. However, the criterion for
projective dimension enables us to show:

Proposition 3.4 If pd(M) ≤ n, then Torm(M,N) = 0 for m > n.

One can define an analog of projective dimension with the Tor functors, called flat dimen-
sion, and it follows that the flat dimension is at most the projective dimension.

In fact, we have more generally:
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Proposition 3.5 Let F be a right-exact functor on the category of R-modules, and let
{LiF} be its left derived functors. If pd(M) ≤ n, then LiF (M) = 0 for i > n.

Clearly this implies the claim about Tor functors.

Proof. Recall how LiF (M) can be computed. Namely, one chooses a projective resolution
P• →M (any will do), and compute the homology of the complex F (P•). However, we can
choose P• →M such that Pi = 0 for i > n by Proposition 3.2. Thus F (P•) is concentrated
in degrees between 0 and n, and the result becomes clear when one takes the homology.N

In general, flat modules are not projective (e.g. Q is flat, but not projective, over Z),
and while one can use projective dimension to bound “flat dimension” (the analog for
Tor-vanishing), one cannot use the flat dimension to bound the projective dimension. For
a local ring, we will see that it is possible in the next subsection.

3.2 Tor and projective dimension

Over a noetherian local ring, there is a much simpler way to test whether a finitely gen-
erated module is projective. This is a special case of the very general flatness criterion
Theorem 4.8, but we can give a simple direct proof. So we prefer to keep things self-
contained.

Theorem 3.6 Let M be a finitely generated module over the noetherian local ring (R,m),
with residue field k = R/m. Then, if Tor1(M,k) = 0, M is free.

In particular, projective—or even flat—modules which are of finite type over R are auto-
matically free. This is a strengthening of the earlier theorem (??) that a finitely generated
projective module over a local ring is free.

Proof. Indeed, we can find a free module F and a surjection F →M such that F ⊗R k →
M⊗R k is an isomorphism. To do this, choose elements of M that form a basis of M⊗R k,
and then define a map F →M via these elements; it is a surjection by Nakayama’s lemma.

Let K be the kernel of F �M , so there is an exact sequence

0→ K → F →M → 0.

We want to show that K = 0, which will imply that M = 0. By Nakayama’s lemma, it
suffices to show that K ⊗R k = 0. But we have an exact sequence

Tor1(M,k)→ K ⊗R k → F ⊗R k →M ⊗R k → 0.

The last map is an isomorphism, and Tor1(M,k) = 0, which implies that K ⊗R k = 0.
The result is now proved. N

As a result, we can compute the projective dimension of a module in terms of Tor.

Corollary 3.7 Let M be a finitely generated module over the noetherian local ring R with
residue field k. Then pd(M) is the largest integer n such that Torn(M,k) 6= 0. It is also
the smallest integer n such that Torn+1(M,k) = 0.
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There is a certain symmetry: if Ext replaces Tor, then one has the definition of depth.
We will show later that there is indeed a useful connection between projective dimension
and depth.

Proof. We will show that if Torn+1(M,k) = 0, then pd(M) ≤ n. This implies the claim,
in view of Proposition 3.4. Choose a (possibly infinite) projective resolution

· · · → P1 → P0 →M → 0.

Since R is noetherian, we can assume that each Pi is finitely generated.
Write Ki = ker(Pi → Pi−1), as before; these are finitely generated R-modules. We

want to show that Kn−1 is projective, which will establish the claim, as then the projective
resolution will “break off.” But we have an exact sequence

0→ K0 → P0 →M → 0,

which shows that Torn(K0, k) = Torn+1(M,k) = 0. Using the exact sequencese 0→ Ki →
Pi → Ki−1 → 0, we inductively work downwards to get that Tor1(Kn−1, k) = 0. So Kn−1

is projective by Theorem 3.6. N

In particular, we find that if pd(k) ≤ n, then pd(M) ≤ n for all M . This is be-
cause if pd(k) ≤ n, then Torn+1(M,k) = 0 by using the relevant resolution of k (see
Proposition 3.4, but for k).

Corollary 3.8 Suppose there exists n such that Torn+1(k, k) = 0. Then every finitely
generated R-module has a finite free resolution of length at most n.

We have thus seen that k is in some sense the “worst” R-module, in that it is as far
from being projective, or that it has the largest projective dimension. We can describe
this worst-case behavior with the next concept:

Definition 3.9 Given a ring R, the global dimension is the sup of the projective di-
mensions of all finitely generated R-modules.

So, to recapitulate: the global dimension of a noetherian local ring R is the projective
dimension of its residue field k, or even the flat dimension of the residue field.

3.3 Minimal projective resolutions

Usually projective resolutions are non-unique; they are only unique up to chain homo-
topy. We will introduce a certain restriction that enforces uniqueness. These “minimal”
projective resolutions will make it extremely easy to compute the groups Tor•(·, k).

Let (R,m) be a local noetherian ring with residue field k, M a finitely generated
R-module. All tensor products will be over R.

Definition 3.10 A projective resolution P• →M of finitely generated modules is mini-
mal if for each i, the induced map Pi⊗k → Pi−1⊗k is zero, and the map P0⊗k →M/mM
is an isomorphism.
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In other words, the complex P•⊗k is isomorphic to M⊗k. This is equivalent to saying
that for each i, the map Pi → ker(Pi−1 → Pi−2) is an isomorphism modulo m.

Proposition 3.11 Every M (over a local noetherian ring) has a minimal projective res-
olution.

Proof. Start with a module M . Then M/mM is a finite-dimensional vector space over k,
of dimension say d0. We can choose a basis for that vector space, which we can lift to M .
That determines a map of free modules

Rd0 →M,

which is a surjection by Nakayama’s lemma. It is by construction an isomorphism modulo
m. Then define K = ker(Rd0 → M); this is finitely generated by noetherianness, and we
can do the same thing for K, and repeat to get a map Rd1 � K which is an isomorphism
modulo m. Then

Rd1 → Rd0 →M → 0

is exact, and minimal; we can continue this by the same procedure. N

Proposition 3.12 Minimal projective resolutions are unique up to isomorphism.

Proof. Suppose we have one minimal projective resolution:

· · · → P2 → P1 → P0 →M → 0

and another:
· · · → Q2 → Q1 → Q0 →M → 0.

There is always a map of projective resolutions P∗ → Q∗ by general homological algebra.
There is, equivalently, a commutative diagram

. . .

��

// P2

��

// P1

��

// P0

��

//M

id

��

// 0

. . . // Q2
// Q1

// Q0
//M // 0

If both resolutions are minimal, the claim is that this map is an isomorphism. That is,
φi : Pi → Qi is an isomorphism, for each i.

To see this, note that Pi, Qi are finite free R-modules.1 So φi is an isomorphism iff φi
is an isomorphism modulo the maximal ideal, i.e. if

Pi/mPi → Qi/mQi

is an isomorphism. Indeed, if φi is an isomorphism, then its tensor product with R/m
obviously is an isomorphism. Conversely suppose that the reductions mod m make an
isomorphism. Then the ranks of Pi, Qi are the same, and φi is an n-by-n matrix whose

1We are using the fact that a finite projective module over a local ring is free.
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determinant is not in the maximal ideal, so is invertible. This means that φi is invertible
by the usual formula for the inverse matrix.

So we are to check that Pi/mPi → Qi/mQi is an isomorphism for each i. This is
equivalent to the assertion that

(Qi/mQi)
∨ → (Pi/mPi)

∨

is an isomorphism. But this is the map

HomR(Qi, R/m)→ HomR(Pi, R/m).

If we look at the chain complexes Hom(P∗, R/m),Hom(Q∗, R/m), the cohomologies com-
pute the Ext groups of (M,R/m). But all the maps in this chain complex are zero
because the resolution is minimal, and we have that the image of Pi is contained in
mPi−1 (ditto for Qi). So the cohomologies are just the individual terms, and the maps
HomR(Qi, R/m) → HomR(Pi, R/m) correspond to the identities on Exti(M,R/m). So
these are isomorphisms.2 N

Corollary 3.13 If · · · → P2 → P1 → P0 → M is a minimal projective resolution of M ,
then the ranks rank(Pi) are well-defined (i.e. don’t depend on the choice of the minimal
resolution).

Proof. Immediate from the proposition. In fact, the ranks are the dimensions (as R/m-
vector spaces) of Exti(M,R/m). N

3.4 The Auslander-Buchsbaum formula

Theorem 3.14 (Auslander-Buschsbaum formula) Let R be a local noetherian ring,
M a finitely generated R-module of finite projective dimension. If pd(R) < ∞, then
pd(M) = depth(R)− depth(M).

Proof. Induction on pd(M). When pd(M) = 0, then M is projective, so isomorphic to
Rn for some n. Thus depth(M) = depth(R).

Assume pd(M) > 0. Choose a surjection P �M and write an exact sequence

0→ K → P →M → 0,

where pd(K) = pd(M)− 1. We also know by induction that

pd(K) = depthR− depth(K).

What we want to prove is that

depthR− depthM = pd(M) = pd(K) + 1.

2We are sweeping under the rug the statement that Ext can be computed via any projective resolution.
More precisely, if you take any two projective resolutions, and take the induced maps between the projective
resolutions, hom them into R/m, then the maps on cohomology are isomorphisms.
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This is equivalent to wanting know that depth(K) = depth(M) + 1. In general, this may
not be true, though, but we will prove it under minimality hypotheses.

Without loss of generality, we can choose that P is minimal, i.e. becomes an isomor-
phism modulo the maximal ideal m. This means that the rank of P is dimM/mM . So
K = 0 iff P →M is an isomorphism; we’ve assumed that M is not free, so K 6= 0.

Recall that the depth of M is the smallest value i such thatExti(R/m,M) 6= 0. So we
should look at the long exact sequence from the above short exact sequence:

Exti(R/m, P )→ Exti(R/m,M)→ Exti+1(R/m,K)→ Exti+1(R/m, P ).

Now P is just a direct sum of copies of R, so Exti(R/m, P ) and Exti+1(R/m, P ) are zero
if i + 1 < depthR. In particular, if i + 1 < depthR, then the map Exti(R/m,M) →
Exti+1(R/m,K) is an isomorphism. So we find that depthM + 1 = depthK in this case.

We have seen that if depthK < depthR, then by taking i over all integers < depthK,
we find that

Exti(R/m,M) =

{
0 if i+ 1 < depthK

Exti+1(R/m,K) if i+ 1 = depthK
.

In particular, we are done unless depthK ≥ depthR. By the inductive hypothesis, this
is equivalent to saying that K is projective.

So let us consider the case where K is projective, i.e. pd(M) = 1. We want to show
that depthM = d− 1 if d = depthR. We need a slightly different argument in this case.
Let d = depth(R) = depth(P ) = depth(K) since P,K are free. We have a short exact
sequence

0→ K → P →M → 0

and a long exact sequence of Ext groups:

0→ Extd−1(R/m,M)→ Extd(R/m,K)→ Extd(R/m, P ).

We know that Extd(R/m,K) is nonzero as K is free and R has depth d. However,
Exti(R/m,K) = Exti(R/m, P ) = 0 for i < d. This implies that Exti−1(R/m,M) = 0
for i < d.

We will show:

The map Extd(R/m,K)→ Extd(R/m, P ) is zero.

This will imply that the depth of M is precisely d− 1. This is because the matrix K → P
is given by multiplication by a matrix with coefficients in m as K/mK → P/mP is zero.
In particular, the map on the Ext groups is zero, because it is annihilated by m. N

Example 3.15 Consider the case of a regular local ringR of dimension n. Then depth(R) =
n, so we have

pd(M) + depth(M) = n,

for every finitely generated R-module M . In particular, depth(M) = n if and only if M
is free.
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Example 3.16 (The Cohen-Macaulay locus is open) Let R be a regular noetherian
ring (i.e. one all of whose localizations are regular). Let M be a finitely generated R-
module. We consider the locus Z ⊂ SpecR consisting of prime ideals p ∈ SpecR such
that Mp is a Cohen-Macaulay R-module. We want to show that this is an open subset.

Namely, over a local ring (A,m), define the codepth of a finitely generated A-module
N as codepthN = dimN − depthN ≥ 0; we have that codepthN = 0 if and only if
N is Cohen-Macaulay. We are going to show that the function p 7→ codepthRp

Mp is
upper semicontinuous on SpecR. To do this, we use the Auslander-Buchsbaum formula
depthRp

Mp = dimRp−pdRp
Mp (see Example 3.15). We will show below that p 7→ pdRp

Mp

is upper semi-continuous on SpecR. Thus, we have

codepthRp
Mp = −

(
dimRp − dimRpMp

)
+ pdRp

Mp,

where the second term is upper semi-continuous. The claim is that the first term is
upper semi-continuous. If we consider suppM ⊂ SpecR, then the bracketed difference
measures the local codimension of suppM ⊂ SpecR. Namely, dimRp−dim suppMp is the
local codimension because Rp is regular, and consequently SpecRp is biequidimensional
(TO BE ADDED: argument). The local codimension of any set is always lower semi-
continuous (TO BE ADDED: reference in the section on topological dim). As a result,
the codepth is upper semi-continuous.

We just need to prove the assertion that p 7→ pdRp
Mp is upper semi-continuous. That

is, we need to show that if Mp admits a projective resolution of length n by finitely
generated modules, then there is a projective resolution of length n of Mq for q in some
Zariski neighborhood. But a projective resolution of Mp “descends” to a projective (even
free) resolution of Mg for some g /∈ p, which gives the result by localization.

If R is the quotient of a regular ring, the same result holds (because the Cohen-
Macaulay locus behaves properly with respect to quotients). In particular, this result
holds for R an affine ring.

Example 3.17 Let R = C[x1, . . . , xn]/p for p prime. Choose an injection R′ → R where
R′ = C[y1, . . . , ym] and R is a finitely generated R′-module. This exists by the Noether
normalization lemma.

We wanted to show:

Theorem 3.18 R is Cohen-Macaulay3 iff R is a projective R′-module.

We shall use the fact that projectiveness can be tested locally at every maximal ideal.

Proof. Choose a maximal ideal m ⊂ R′. We will show that Rm is a free R′m-module via
the injection of rings R′m ↪→ Rm (where Rm is defined as R localized at the multiplicative
subset of elements of R′ −m) at each m iff Cohen-Macaulayness holds.

Now R′m is a regular local ring, so its depth is m. By the Auslander-Buchsbaum
formula, Rm is projective as an R′m-module iff

depthR′m Rm = m.

3That is, its localizations at any prime—or, though we haven’t proved yet, at any maximal ideal—are.
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Now R is a projective module iff the above condition holds for all maximal ideals m ⊂ R′.
The claim is that this is equivalent to saying that depthRn = m = dimRn for every
maximal ideal n ⊂ R (depth over R!).

These two statements are almost the same, but one is about the depth of R as an
R-module, and another as an R′-module.

Issue: There may be several maximal ideals of R lying over the maximal ideal
m ⊂ R′.

The problem is that Rm is not generally local, and not generally equal to Rn if n lies
over m. Fortunately, depth makes sense even over semi-local rings (rings with finitely
many maximal ideals).

Let us just assume that this does not occur, though. Let us assume that Rm is a local
ring for every maximal ideal m ⊂ R. Then we are reduced to showing that if S = Rm,
then the depth of S as an R′m-module is the same as the depth as an Rm-module. That is,
the depth doesn’t depend too much on the ring, since R′m, Rm are “pretty close.” If you
believe this, then you believe the theorem, by the first paragraph.

Let’s prove this claim in a more general form:

Proposition 3.19 Let φ : S′ → S be a local4 map of local noetherian rings such that S
is a finitely generated S′-module. Then, for any finitely generated S-module M ,

depthSM = depthS′M.

With this, the theorem will be proved.

Remark This result generalizes to the semi-local case, which is how one side-steps the
issue above.

Proof. By induction on depthS′M . There are two cases.

Let m′,m be the maximal ideals of S′, S. If depthS′(M) > 0, then there is an element
a in m′ such that

M
φ(a)→ M

is injective. Now φ(a) ∈ m. So φ(a) is a nonzerodivisor, and we have an exact sequence

0→M
φ(a)→ M →M/φ(a)M → 0.

Thus we find

depthSM > 0.

Moreover, we find that depthSM = depthS(M/φ(a)M)+1 and depthS′M = depthS′(M/φ(a)M))+
1. The inductive hypothesis now tells us that

depthSM = depthS′M. N

4I.e. φ sends non-units into non-units.
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The hard case is where depthS′M = 0. We need to show that this is equivalent to
depthSM = 0. So we know at first that m′ ∈ Ass(M). That is, there is an element x ∈M
such that AnnS′(x) = m′. Now AnnS(x) ( S and contains m′S.

Sx ⊂M is a submodule, surjected onto by S by the map a→ ax. This map actually,
as we have seen, factors through S/m′S. Here S is a finite S′-module, so S/m′S is a finite
S′/m′-module. In particular, it is a finite-dimensional vector space over a field. It is thus
a local artinian ring. But Sx is a module over this local artinian ring. It must have an
associated prime, which is a maximal ideal in S/m′S. The only maximal ideal can be
m/m′S. It follows that m ∈ Ass(Sx) ⊂ Ass(M).

In particular, depthSM = 0 too, and we are done. N

§4 Serre’s criterion and its consequences

We would like to prove Serre’s criterion for regularity.

Theorem 4.1 Let (R,m) be a local noetherian ring. Then R is regular iff R/m has finite
projective dimension. In this case, pd(R/m) = dimR.

TO BE ADDED: proof

4.1 First consequences

Proposition 4.2 Let (R,m) → (S, n) be a flat, local homomorphism of noetherian local
rings. If S is regular, so is R.

Proof. Let n = dimS. Let M be a finitely generated R-module, and consider a resolution

Pn → Pn−1 → · · · → P0 →M → 0,

where all the {Pi} are finite free R-modules. If we can show that the kernel of Pn → Pn−1

is projective, then it will follow that M has finite projective dimension. Since M was
arbitrary, it will follow that R is regular too, by Serre’s criterion.

Let K be the kernel, so there is an exact sequence

0→ K → Pn → Pn−1 → · · · → P0 →M → 0,

which we can tensor with S, by flatness:

0→ K ⊗R S → Pn ⊗R S → Pn−1 ⊗R S → · · · → P0 ⊗R S →M ⊗R S → 0.

Because any finitely generated S-module has projective dimension ≤ n, it follows that
K ⊗R S is projective, and in particular flat.

But now S is faithfully flat over R (see ??), and it follows that K is R-flat. Thus K
is projective over R, proving the claim. N

Theorem 4.3 The localization of a regular local ring at a prime ideal is regular.
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Geometrically, this means that to test whether a nice scheme (e.g. a variety) is regular
(i.e., all the local rings are regular), one only has to test the closed points.

Proof. Let (R,m) be a regular local ring. Let p ∈ SpecR be a prime ideal; we wish to
show that Rp is regular. To do this, let M be a finitely generated Rp-module. Then we
can find a finitely generated R-submodule N ⊂M such that the natural map Np →M is
an isomorphism. If we take a finite free resolution of N by R-modules and localize at p,
we get a finite free resolution of M by Rp-modules.

It now follows that M has finite projective dimension as an Rp-module. By Serre’s
criterion, this implies that Rp is regular. N

4.2 Regular local rings are factorial

We now aim to prove that a regular local ring is factorial.
First, we need:

Definition 4.4 Let R be a noetherian ring and M a f.gen. R-module. Then M is stably
free if M ⊕Rk is free for some k.

Stably free obviously implies “projective.” Free implies stably free, clearly—take k = 0.
Over a local ring, a finitely generated projective module is free, so all three notions are
equivalent. Over a general ring, these notions are generally different.

We will need the following lemma:

Lemma 4.5 Let M be an R-module with a finite free resolution. If M is projective, it is
stably free.

Proof. There is an exact sequence

0→ Fk → Fk−1 → · · · → F1 → F0 →M → 0

with the Fi free and finitely generated, by assumption.
We induct on the length k of the resolution. We know that if N is the kernel of

F0 →M , then N is projective (as the sequence 0→ N → F0 →M → 0 splits) so there is
a resolution

0→ Fk → · · · → F1 → N → 0.

By the inductive hypothesis, N is stably free. So there is a free module Rd such that
N ⊕Rd is free.

We know that M ⊕N = F0 is free. Thus M ⊕N ⊕Rd = F0 ⊕Rd is free and N ⊕Rd
is free. Thus M is stably free. N

Remark Stably freeness does not generally imply freeness, though it does over a local
noetherian ring.

Nonetheless,

Proposition 4.6 Stably free does imply free for invertible modules.
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Proof. Let I be stably free and invertible. We must show that I ' R. Without loss of
generality, we can assume that SpecR is connected, i.e. R has no nontrivial idempotents.
We will assume this in order to talk about the rank of a projective module.

We know that I ⊕ Rn ' Rm for some m. We know that m = n + 1 by localization.
So I ⊕ Rn ' Rn+1 for some n. We will now need to construct the exterior powers, for
which we digress:

Definition 4.7 Let R be a commutative ring and M an R-module. Then ∧M , the
exterior algebra on M , is the free (noncommutative) graded R-algebra generated by M
(with product ∧) with just enough relations such that ∧ is anticommutative (and, more
strongly, x ∧ x = 0 for x degree one).

Clearly ∧M is a quotient of the tensor algebra T (M), which is by definition R ⊕
M ⊕M ⊗M ⊕ · · · ⊕M⊗n ⊕ . . . . The tensor algebra is a graded R-algebra in an obvious
way: (x1 ⊗ · · · ⊗ xa).(y1 ⊗ · · · ⊗ yb) = x1 ⊗ · · · ⊗ xa ⊗ y1 ⊗ · · · ⊗ yb. This is an associative
R-algebra. Then

∧M = T (M)/(x⊗ x, x, y ∈M).

The grading on ∧M comes from the grading of T (M).
We are interested in basically one example:

Example 4.8 Say M = Rm. Then ∧mM = R. If e1, . . . , em ∈ M are generators, then
e1 ∧ · · · ∧ em is a generator. More generally, ∧kM is free on ei1 ∧ · · · ∧ eik for i1 < · · · < ik.

We now make:

Definition 4.9 If M is a projective R-module of rank n, then

det(M) = ∧nM.

If M is free, then det(M) is free of rank one. So, as we see by localization, det(M) is
always an invertible module for M locally free (i.e. projective) and ∧n+1M = 0.

Lemma 4.10 det(M ⊕N) = detM ⊗ detN .

Proof. This isomorphism is given by wedging ∧topM ⊗ ∧topN → ∧top(M ⊕ N). This is
easily checked for oneself. N

Anyway, let us finally go back to the proof. If I⊕Rn = Rn+1, then taking determinants
shows that

det I ⊗R = R, N

so det I = R. But this is I as I is of rank one. So I is free.

Theorem 4.11 A regular local ring is factorial.

Let R be a regular local ring of dimension n. We want to show that R is factorial.
Choose a prime ideal p of height one. We’d like to show that p is principal.
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Proof. Induction on n. If n = 0, then we are done—we have a field.
If n = 1, then a height one prime is maximal, hence principal, because regularity is

equivalent to the ring’s being a DVR.
Assume n > 1. The prime ideal p has height one, so it is contained in a maximal ideal

m. Note that m2 ⊂ m as well. I claim that there is an element x of m − p − m2. This
follows as an argument like prime avoidance. To see that x exists, choose x1 ∈ m− p and
x2 ∈ m−m2. We are done unless x1 ∈ m2 and x2 ∈ p (or we could take x to be x1 or x2).
In this case, we just take x = x1 + x2.

So choose x ∈ m − p − m2. Let us examine the ring Rx = R[1/x], which contains an
ideal p[x−1]. This is a proper ideal as x /∈ p. Now R[1/x] is regular (i.e. its localizations
at primes are regular local). The dimension, however, is of dimension less than n since by
inverting x we have removed m. By induction we can assume that Rx is locally factorial.

Now pRx is prime and of height one, so it is invertible as Rx is locally factorial. In
particular it is projective.

But p has a finite resolution by R-modules (by regularity), so pRx has a finite free
resolution. In particular, pRx is stably free and invertible, hence free. Thus pRx is
principal.

We want to show that p is principal, not just after localization. We know that there
is a y ∈ p such that y generates pRx. Choose y such that (y) ⊂ p is as large as possible.
We can do this since R is noetherian. This implies that x - y because otherwise we could
use y/x instead of y.

We shall now show that
p = (y).

So suppose z ∈ p. We know that y generates p after x is inverted. In particular,
z ∈ pRx. That is, zxa ∈ (y) for a large. That is, we can write

zxa = yw, for some w ∈ R.

We chose x such that x /∈ m2. In particular, R/(x) is regular, hence an integral domain;
i.e. x is a prime element. We find that x must divide one of y, w if a > 0. But we know
that x - y, so x | w. Thus w = w′x for some x. We find that, cancelling x,

zxa−1 = yw′

and we can repeat this argument over and over until we find that

z ∈ (y). N

424



Chapter 17

Étale, unramified, and smooth morphisms

In this chapter, we shall introduce three classes of morphisms of rings defined by lifting
properties and study their properties. Although in the case of morphisms of finite pre-
sentation, the three types of morphisms (unramified, smooth, and étale) can be defined
directly (without lifting properties), in practice, in algebraic geometry, the functorial cri-
terion given by lifts matter: if one wants to show an algebra is representable, then one
can just study the corepresentable functor, which may be more accessible.

§1 Unramified morphisms

1.1 Definition

Formal étaleness, smoothness, and unramifiedness all deal with the existence or uniqueness
of liftings under nilpotent extensions. We start with formal unramifiedness.

Definition 1.1 Let R→ S be a ring map. We say S is formally unramified over R if
for every commutative solid diagram

S //

!!B
B

B
B

B A/I

R //

OO

A

OO
(17.1)

where I ⊂ A is an ideal of square zero, there exists at most one dotted arrow making the
diagram commute.

We say that S is unramified over R if S is formally unramified over R and is a
finitely generated R-algebra.

In other words, an R-algebra S is formally unramified if and only if whenever A is an
R-algebra and I ⊂ A an ideal of square zero, the map of sets

HomR(S,A)→ HomR(S,A/I)

is injective. Restated again, for suchA, I, there is at most one lift of a givenR-homomorphism
S → A/I to S → A. This is a statement purely about the associated “functor of points.”
Namely, let S be an R-algebra, and consider the functor F : R–alg → Sets given by
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F (X) = HomR(S,X). This is the “functor of points.” Then S is formally unramified over
R if F (A)→ F (A/I) is injective for each A, I as above.

The intuition is that maps from S into T are like “tangent vectors,” and conse-
quently the condition geometrically means something like that tangent vectors can be
lifted uniquely: that is, the associated map is an immersion. More formally, if R→ S is a
morphism of algebras of finite type over C, which corresponds to a map SpecS → SpecR
of smooth varieties (this is a condition on R,S!), then R→ S is unramified if and only if
the associated map of complex manifolds is an immersion. (We are not proving this, just
stating it for intuition.)

Note also that we can replace “I of square zero” with the weaker condition “I nilpo-
tent.” That is, the map R → S (if it is formally unramified) still has the same lift-
ing property. This follows because one can factor A → A/I into the finite sequence
· · · → A/In+1 → A/In → · · · → A/I, and each step is a square-zero extension.

We now show that the module of Kähler differentials provides a simple criterion for
an extension to be formally unramified.

Proposition 1.2 An R-algebra S is formally unramified if and only if ΩS/R = 0.

Suppose R,S are both algebras over some smaller ring k. Then there is an exact
sequence

ΩR/k ⊗R S → ΩS/k → ΩS/R → 0,

and consequently, we see that formal unramifiedness corresponds to surjectivity of the
map on “cotangent spaces” ΩR/k⊗R S → ΩS/k. This is part of the intuition that formally
unramified maps are geometrically like immersions (since surjectivity on the cotangent
spaces corresponds to injectivity on the tangent spaces).

Proof. Suppose first ΩS/R = 0. This is equivalent to the statement that any R-derivation
of S into an S-module is trivial, because ΩS/R is the recipient of the “universal” R-
derivation. If given an R-algebra T with an ideal I ⊂ T of square zero and a morphism

S → T/I, N

and two liftings f, g : S → T , then we find that f−g maps S into I. Since T/I is naturally
an S-algebra, it is easy to see (since I has square zero) that I is naturally an S-module
and f − g is an R-derivation S → I. Thus f − g ≡ 0 and f = g.

Conversely, suppose S has the property that liftings in (17.1) are unique. Consider the
S-module T = S⊕ΩS/R with the multiplicative structure (a, a′)(b, b′) = (ab, ab′+a′b) that
makes it into an algebra. (This is a general construction one can do with an S-module
M : S ⊕M is an algebra where M becomes an ideal of square zero.)

Consider the ideal ΩS/R ⊂ T , which has square zero; the quotient is S. We will find
two liftings of the identity S → S. For the first, define S → T sending s→ (s, 0). For the
second, define S → T sending s→ (s, ds); the derivation property of b shows that this is
a morphism of algebras.

By the lifting property, the two morphisms S → T are equal. In particular, the map
S → ΩS/R sending s→ ds is trivial. This implies that ΩS/R = 0.
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Here is the essential point of the above argument. Let I ⊂ T be an ideal of square zero
in the R-algebra T . Suppose given a homomorphism g : S → T/I. Then the set of lifts
S → T of g (which are R-algebra morphisms) is either empty or a torsor over DerR(S, I)
(by adding a derivation to a homomorphism). Note that I is naturally a T/I-module
(because I2 = 0), and hence an S-module by g.

This means that if the object DerR(S, I) is trivial, then injectivity of the above map
must hold. Conversely, if injectivity of the above map always holds (i.e. S is formally
unramified), then we must have DerR(S, I) = 0 for all such I ⊂ T ; since we can obtain any
S-module in this manner, it follows that there is no such thing as a nontrivial R-derivation
out of S.

We next show that formal unramifiedness is a local property.

Lemma 1.3 Let R→ S be a ring map. The following are equivalent:

1. R→ S is formally unramified,

2. R→ Sq is formally unramified for all primes q of S, and

3. Rp → Sq is formally unramified for all primes q of S with p = R ∩ q.

Proof. We have seen in Proposition 1.2 that (1) is equivalent to ΩS/R = 0. Similarly, since
Kähler differentials localize, we see that (2) and (3) are equivalent to (ΩS/R)q = 0 for all
q. As a result, the statement of this lemma is simply the fact that an S-module is zero if
and only if all its localizations at prime ideals are zero. N

We shall now give the typical list of properties (“le sorite”) of unramified morphisms.

Proposition 1.4 Any map R → Rf for f ∈ R is unramified. More generally, a map
from a ring to any localization is formally unramified, but not necessarily unramified.

Proof. Indeed, we know that ΩR/R = 0 and ΩRf/R = (ΩR/R)f = 0, and the map is clearly
of finite type. N

Proposition 1.5 A surjection of rings is unramified. More generally, a categorical epi-
morphism of rings is formally unramified.

Proof. Obvious from the lifting property: if R → S is a categorical epimorphism, then
given any R-algebra T , there can be at most one map of R-algebras S → T (regardless of
anything involving square-zero ideals). N

In the proof of Proposition 1.5, we could have alternatively argued as follows. If R→ S
is an epimorphism in the category of rings, then S ⊗R S → S is an isomorphism. This
is a general categorical fact, the dual of which for monomorphisms is perhaps simpler:
if X → Y is a monomorphism of objects in any category, then X → X ×Y X is an
isomorphism. See ??. By the alternate construction of ΩS/R (Proposition 2.17), it follows
that this must vanish.

Proposition 1.6 If R→ S and S → T are unramified (resp. formally unramified), so is
R→ T .
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Proof. Since morphisms of finite type are preserved under composition, we only need to
prove the result about formally unramified maps. So let R → S, S → T be formally
unramified. We need to check that ΩT/R = 0. However, we have an exact sequence (see
Proposition 2.9):

ΩS/R ⊗S T → ΩT/R → ΩT/S → 0,

and since ΩS/R = 0,ΩT/S = 0, we find that ΩT/R = 0. This shows that R→ T is formally
unramified. N

More elegantly, we could have proved this by using the lifting property (and this is what
we will do for formal étaleness and smoothness). Then this is simply a formal argument.

Proposition 1.7 If R → S is unramified (resp. formally unramified), so is R′ → S′ =
S ⊗R R′ for any R-algebra R′.

Proof. This follows from the fact that ΩS′/R′ = ΩS/R ⊗S S′ (see Proposition 2.14). Alter-
natively, it can be checked easily using the lifting criterion. For instance, suppose given
an R′-algebra T and an ideal I ⊂ T of square zero. We want to show that a morphism
of R′-algebras S′ → T/I lifts in at most one way to a map S′ → T . But if we had two
distinct liftings, then we could restrict to S to get two liftings of S → S′ → T/I. These are
easily seen to be distinct, a contradiction as R→ S was assumed formally unramified. N

In fact, the question of what unramified morphisms look like can be reduced to the
case where the ground ring is a field in view of the previous and the following result.
Given p ∈ SpecR, we let k(p) to be the residue field of Rp.

Proposition 1.8 Let φ : R → S be a morphism of finite type. Then φ is unramified if
and only if for every p ∈ SpecR, we have k(p)→ S ⊗R k(p) unramified.

The classification of unramified extensions of a field is very simple, so this will be useful.

Proof. One direction is clear by Proposition 1.7. For the other, suppose k(p)→ S⊗R k(p)
unramified for all p ⊂ R. We then know that ΩS/R ⊗R k(p) = ΩS⊗Rk(p)/k(p) = 0 for all p.
By localization, it follows that

pΩSq/Rp
= ΩSq/Rp

= ΩSq/R (17.2)

for any q ∈ SpecS lying over p.
Let q ∈ SpecS. We will now show that (ΩS/R)q = 0. Given this, we will find that

ΩS/R = 0, which will prove the assertion of the corollary. Indeed, let p ∈ SpecR be the
image of q, so that there is a local homomorphism Rp → Sq. By (17.2), we find that

qΩSq/R = ΩSq/R.

and since ΩSq/R is a finite Sq-module (Proposition 3.10), Nakayama’s lemma now implies
that ΩSq/R = 0, proving what we wanted. N

The following is simply a combination of the various results proved:

Corollary 1.9 Let A→ B be a formally unramified ring map.

1. For S ⊂ A a multiplicative subset, S−1A→ S−1B is formally unramified.

2. For S ⊂ B a multiplicative subset, A→ S−1B is formally unramified.
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1.2 Unramified extensions of a field

Motivated by Proposition 1.8, we classify unramified morphisms out of a field; we are going
to see that these are just finite products of separable extensions. Let us first consider the
case when the field is algebraically closed.

Proposition 1.10 Suppose k is algebraically closed. If A is an unramified k-algebra, then
A is a product of copies of k.

Proof. Let us show first that A is necessarily finite-dimensional. If not,

So let us now assume that A is finite-dimensional over k, hence artinian. Then A is a
direct product of artinian local k-algebras. Each of these is unramified over k. So we need
to study what local, artinian, unramified extensions of k look like; we shall show that any
such is isomorphic to k with:

Lemma 1.11 A finite-dimensional, local k-algebra which is unramified over k (for k al-
gebraically closed) is isomorphic to k.

Proof. First, if m ⊂ A is the maximal ideal, then m is nilpotent, and A/m ' k by the
Hilbert Nullstellensatz. Thus the ideal M = m ⊗ A + A ⊗ m ⊂ A ⊗k A is nilpotent and
(A ⊗k A)/M = k ⊗k k = k. In particular, M is maximal and A ⊗k A is also local. (We
could see this as follows: A is associated to a one-point variety, so the fibered product
SpecA ×k SpecA is also associated to a one-point variety. It really does matter that we
are working over an algebraically closed field here!)

By assumption, ΩA/k = 0. So if I = ker(A ⊗k A → A), then I = I2. But from ??,
we find that if we had I 6= 0, then SpecA ⊗k A would be disconnected. This is clearly
false (a local ring has no nontrivial idempotents), so I = 0 and A ⊗k A ' A. Since A is
finite-dimensional over k, necessarily A ' k. N

Now let us drop the assumption of algebraic closedness to get:

Theorem 1.12 An unramified k-algebra for k any field is isomorphic to a product
∏
ki

of finite separable extensions ki of k.

Proof. Let k be a field, and k its algebraic closure. Let A be an unramified k-algebra.
Then A⊗k k is an unramified k-algebra by Proposition 1.7, so is a finite product of copies
of k. It is thus natural that we need to study tensor products of fields to understand this
problem.

Lemma 1.13 Let E/k be a finite extension, and L/k any extension. If E/k is separable,
then L⊗k E is isomorphic (as a L-algebra) to a product of copies of separable extensions
of L.

Proof. By the primitive element theorem, we have E = k(α) for some α ∈ E satisfying a
separable irreducible polynomial P ∈ k[X]. Thus

E = k[X]/(P ),
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so
E ⊗k L = L[X]/(P ).

But P splits into several irreducible factors {Pi} in L[X], no two of which are the same
by separability. Thus by the Chinese remainder theorem,

E ⊗k L = L(X)/(
∏

Pi) =
∏

L[X]/(Pi),

and each L[X]/(Pi) is a finite separable extension of L. N

As a result of this, we can easily deduce that any k-algebra of the form A =
∏
ki for

the ki separable over k is unramified. Indeed, we have

ΩA/k ⊗k k = ΩA⊗kk/k,

so it suffices to prove that A ⊗k k is unramified over k. However, from Lemma 1.13,
A⊗k k is isomorphic as a k-algebra to a product of copies of k. Thus A⊗k k is obviously
unramified over k.

On the other hand, suppose A/k is unramified. We shall show it is of the form given
as in the theorem. Then A ⊗k k is unramified over k, so it follows by Proposition 1.10
that A is finite-dimensional over k. In particular, A is artinian, and thus decomposes as
a product of finite-dimensional unramified k-algebras.

We are thus reduced to showing that a local, finite-dimensional k-algebra that is un-
ramified is a separable extension of k. Let A be one such. Then A can have no nilpotents
because then A⊗k k would have nilpotents, and could not be isomorphic to a product of
copies of k. Thus the unique maximal ideal of A is zero, and A is a field. We need only
show that A is separable over k. This is accomplished by:

Lemma 1.14 Let E/k be a finite inseparable extension. Then E ⊗k k contains nonzero
nilpotents.

Proof. There exists an α ∈ E which is inseparable over k, i.e. whose minimal polynomial
has multiple roots. Let E′ = k(α). We will show that E′ ⊗k k has nonzero nilpotents;
since the map E′ ⊗k k → E ⊗k k is an injection, we will be done. Let P be the minimal
polynomial of α, so that E′ = k[X]/(P ). Let P =

∏
P eii be the factorization of P in k for

the Pi ∈ k[X] irreducible (i.e. linear). By assumption, one of the ei is greater than one.
It follows that

E′ ⊗k k = k[X]/(P ) =
∏

k[X]/(P eii ) N

has nilpotents corresponding to the ei’s that are greater than one. N

1.3 Conormal modules and universal thickenings

It turns out that one can define the first infinitesimal neighbourhood not just for a closed
immersion of schemes, but already for any formally unramified morphism. This is based
on the following algebraic fact.
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Lemma 1.15 Let R → S be a formally unramified ring map. There exists a surjection
of R-algebras S′ → S whose kernel is an ideal of square zero with the following universal
property: Given any commutative diagram

S a
// A/I

R
b //

OO

A

OO

where I ⊂ A is an ideal of square zero, there is a unique R-algebra map a′ : S′ → A such
that S′ → A→ A/I is equal to S′ → S → A.

Proof. Choose a set of generators zi ∈ S, i ∈ I for S as an R-algebra. Let P = R[{xi i ∈ I]
denote the polynomial ring on generators xi, i ∈ I. Consider the R-algebra map P → S
which maps xi to zi. Let J = Ker(P → S). Consider the map

d : J/J2 −→ ΩP/R ⊗P S

see ??. This is surjective since ΩS/R = 0 by assumption, see ??. Note that ΩP/R is free
on dxi, and hence the module ΩP/R ⊗P S is free over S. Thus we may choose a splitting
of the surjection above and write

J/J2 = K ⊕ ΩP/R ⊗P S

Let J2 ⊂ J ′ ⊂ J be the ideal of P such that J ′/J2 is the second summand in the
decomposition above. Set S′ = P/J ′. We obtain a short exact sequence

0→ J/J ′ → S′ → S → 0

and we see that J/J ′ ∼= K is a square zero ideal in S′. Hence

S
1
// S

R //

OO

S′

OO

is a diagram as above. In fact we claim that this is an initial object in the category of
diagrams. Namely, let (I ⊂ A, a, b) be an arbitrary diagram. We may choose an R-algebra
map β : P → A such that

S
1
// S a

// A/I

R //

b

33

OO

P

OO

β // A

OO

is commutative. Now it may not be the case that β(J ′) = 0, in other words it may not
be true that β factors through S′ = P/J ′. But what is clear is that β(J ′) ⊂ I and
since β(J) ⊂ I and I2 = 0 we have β(J2) = 0. Thus the “obstruction” to finding a
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morphism from (J/J ′ ⊂ S′, 1, R → S′) to (I ⊂ A, a, b) is the corresponding S-linear map
β : J ′/J2 → I. The choice in picking β lies in the choice of β(xi). A different choice of
β, say β′, is gotten by taking β′(xi) = β(xi) + δi with δi ∈ I. In this case, for g ∈ J ′, we
obtain

β′(g) = β(g) +
∑

i
δi
∂g

∂xi
.

Since the map d|J ′/J2 : J ′/J2 → ΩP/R ⊗P S given by g 7→ ∂g
∂xi

dxi is an isomorphism by
construction, we see that there is a unique choice of δi ∈ I such that β′(g) = 0 for all
g ∈ J ′. (Namely, δi is −β(g) where g ∈ J ′/J2 is the unique element with ∂g

∂xj
= 1 if

i = j and 0 else.) The uniqueness of the solution implies the uniqueness required in the
lemma. N

In the situation of Lemma 1.15 the R-algebra map S′ → S is unique up to unique isomor-
phism.

Definition 1.16 Let R→ S be a formally unramified ring map.

1. The universal first order thickening of S over R is the surjection of R-algebras S′ → S
of Lemma 1.15.

2. The conormal module of R→ S is the kernel I of the universal first order thickening
S′ → S, seen as a S-module.

We often denote the conormal module CS/R in this situation.

Lemma 1.17 Let I ⊂ R be an ideal of a ring. The universal first order thickening of
R/I over R is the surjection R/I2 → R/I. The conormal module of R/I over R is
C(R/I)/R = I/I2.

Proof. Omitted. N

Lemma 1.18 Let A → B be a formally unramified ring map. Let ϕ : B′ → B be the
universal first order thickening of B over A.

1. Let S ⊂ A be a multiplicative subset. Then S−1B′ → S−1B is the universal first
order thickening of S−1B over S−1A. In particular S−1CB/A = CS−1B/S−1A.

2. Let S ⊂ B be a multiplicative subset. Then S′ = ϕ−1(S) is a multiplicative subset
in B′ and (S′)−1B′ → S−1B is the universal first order thickening of S−1B over A.
In particular S−1CB/A = CS−1B/A.

Note that the lemma makes sense by Corollary 1.9.

Proof. With notation and assumptions as in (1). Let (S−1B)′ → S−1B be the universal
first order thickening of S−1B over S−1A. Note that S−1B′ → S−1B is a surjection
of S−1A-algebras whose kernel has square zero. Hence by definition we obtain a map
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(S−1B)′ → S−1B′ compatible with the maps towards S−1B. Consider any commutative
diagram

B // S−1B // D/I

A //

OO

S−1A //

OO

D

OO

where I ⊂ D is an ideal of square zero. Since B′ is the universal first order thickening of
B over A we obtain an A-algebra map B′ → D. But it is clear that the image of S in D is
mapped to invertible elements of D, and hence we obtain a compatible map S−1B′ → D.
Applying this to D = (S−1B)′ we see that we get a map S−1B′ → (S−1B)′. We omit the
verification that this map is inverse to the map described above.

With notation and assumptions as in (2). Let (S−1B)′ → S−1B be the universal first order
thickening of S−1B over A. Note that (S′)−1B′ → S−1B is a surjection of A-algebras
whose kernel has square zero. Hence by definition we obtain a map (S−1B)′ → (S′)−1B′

compatible with the maps towards S−1B. Consider any commutative diagram

B // S−1B // D/I

A //

OO

A //

OO

D

OO

where I ⊂ D is an ideal of square zero. Since B′ is the universal first order thickening of
B over A we obtain an A-algebra map B′ → D. But it is clear that the image of S′ in D is
mapped to invertible elements of D, and hence we obtain a compatible map (S′)−1B′ → D.
Applying this to D = (S−1B)′ we see that we get a map (S′)−1B′ → (S−1B)′. We omit
the verification that this map is inverse to the map described above. N

Lemma 1.19 Let R → A → B be ring maps. Assume A → B formally unramified.
Let B′ → B be the universal first order thickening of B over A. Then B′ is formally
unramified over A, and the canonical map ΩA/R⊗AB → ΩB′/R⊗B′ B is an isomorphism.

Proof. We are going to use the construction of B′ from the proof of Lemma 1.15 allthough
in principle it should be possible to deduce these results formally from the definition.
Namely, we choose a presentation B = P/J , where P = A[xi] is a polynomial ring over
A. Next, we choose elements fi ∈ J such that dfi = dxi ⊗ 1 in ΩP/A ⊗P B. Having made
these choices we have B′ = P/J ′ with J ′ = (fi) + J2, see proof of Lemma 1.15.

Consider the canonical exact sequence

J ′/(J ′)2 → ΩP/A ⊗P B′ → ΩB′/A → 0

see ??. By construction the classes of the fi ∈ J ′ map to elements of the module ΩP/A⊗PB′
which generate it modulo J ′/J2 by construction. Since J ′/J2 is a nilpotent ideal, we see
that these elements generate the module alltogether (by Nakayama’s ??). This proves
that ΩB′/A = 0 and hence that B′ is formally unramified over A, see ??.
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Since P is a polynomial ring over A we have ΩP/R = ΩA/R⊗A P ⊕
⊕
Pdxi. We are going

to use this decomposition. Consider the following exact sequence

J ′/(J ′)2 → ΩP/R ⊗P B′ → ΩB′/R → 0

see ??. We may tensor this with B and obtain the exact sequence

J ′/(J ′)2 ⊗B′ B → ΩP/R ⊗P B → ΩB′/R ⊗B′ B → 0

If we remember that J ′ = (fi) + J2 then we see that the first arrow annihilates the
submodule J2/(J ′)2. In terms of the direct sum decomposition ΩP/R ⊗P B = ΩA/R ⊗A
B ⊕

⊕
Bdxi given we see that the submodule (fi)/(J

′)2 ⊗B′ B maps isomorphically onto
the summand

⊕
Bdxi. Hence what is left of this exact sequence is an isomorphism

ΩA/R ⊗A B → ΩB′/R ⊗B′ B as desired. N

§2 Smooth morphisms

2.1 Definition

The idea of a smooth morphism in algebraic geometry is one that is surjective on the
tangent space, at least if one is working with smooth varieties over an algebraically closed
field. So this means that one should be able to lift tangent vectors, which are given by
maps from the ring into k[ε]/ε2.

This makes the following definition seem more plausible:

Definition 2.1 Let S be an R-algebra. Then S is formally smooth over R (or the map
R → S is formally smooth) if given any R-algebra A and ideal I ⊂ A of square zero, the
map

HomR(S,A)→ HomR(S,A/I)

is a surjection. We shall say that S is smooth (over R) if it is formally smooth and of
finite presentation.

So this means that in any diagram

S //

  B
B

B
B A/I

R //

OO

A,

OO

with I an ideal of square zero in A, there exists a dotted arrow making the diagram
commute. As with formal unramifiedness, this is a purely functorial statement: if F is the
corepresentable functor associated to S, then we want F (A)→ F (A/I) to be a surjection
for each I ⊂ A of square zero and each R-algebra A. Also, again we can replace “I of
square zero” with “I nilpotent.”
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Example 2.2 The basic example of a formally smooth R-algebra is the polynomial ring
R[x1, . . . , xn]. For to give a map R[x1, . . . , xn] → A/I is to give n elements of A/I; each
of these elements can clearly be lifted to A. This is analogous to the statement that a free
module is projective.

More generally, if P is a projective R-module (not necessarily of finite type), then
the symmetric algebra SymP is a formally smooth R-algebra. This follows by the same
reasoning.

We can state the usual list of properties of formally smooth morphisms:

Proposition 2.3 Smooth (resp. formally smooth) morphisms are preserved under base
extension and composition. If R is a ring, then any localization is formally smooth over
R.

Proof. As usual, only the statements about formal smoothness are interesting. The state-
ments about base extension and composition will be mostly left to the reader: they are an
exercise in diagram-chasing. (Note that we cannot argue as we did for formally unramified
morphisms, where we had a simple criterion in terms of the module of Kähler differentials
and various properties of them.) For example, let R → S, S → T be formally smooth.
Given a diagram (with I ⊂ A an ideal of square zero)

T //

��1
1

1
1

1
1

1
1 A/I

S

OO

!!C
C

C
C

R //

OO

A,

OO

we start by finding a dotted arrow S → A by using formal smoothness of R → S. Then
we find a dotted arrow T → A making the top quadrilateral commute. This proves that
the composite is formally smooth. N

2.2 Quotients of formally smooth rings

Now, ultimately, we want to show that this somewhat abstract definition of smoothness
will give us something nice and geometric. In particular, in this case we want to show
that B is flat, and the fibers are smooth varieties (in the old sense). To do this, we will
need to do a bit of work, but we can argue in a fairly elementary manner. On the one
hand, we will first need to give a criterion for when a quotient of a formally smooth ring
is formally smooth.

Theorem 2.4 Let A be a ring, B an A-algebra. Suppose B is formally smooth over A,
and let I ⊂ B be an ideal. Then C = B/I is a formally smooth A-algebra if and only if
the canonical map

I/I2 → ΩB/A ⊗B C
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has a section. In other words, C is formally smooth precisely when the conormal sequence

I/I2 → ΩB/A ⊗B C → ΩC/A → 0

is split exact.

This result is stated in more generality for topological rings, and uses some functors
on ring extensions, in [GD], 0-IV, 22.6.1.

Proof. Suppose first C is formally smooth over A. Then we have a map B/I2 → C given
by the quotient. The claim is that there is a section of this map. There is a diagram of
A-algebras

B/I B/I2oo

C

=

OO ;;w
w

w
w

w

and the lifting s : C → B/I2 exists by formal smoothness. This is a section of the natural
projection B/I2 → C = B/I.

In particular, the combination of the natural inclusion I/I2 → B/I2 and the section s
gives an isomorphism of rings (even A-algebras) B/I2 ' C ⊕ I/I2. Here I/I2 squares to
zero.

We are interested in showing that I/I2 → ΩB/A⊗BC is a split injection of C-modules.
To see this, we will show that any map out of the former extends to a map out of the
latter. Now suppose given a map of C-modules

φ : I/I2 →M

into a C-module M . Then we get an A-derivation

δ : B/I2 →M

by using the splitting B/I2 = C ⊕ I/I2. (Namely, we just extend the map by zero on
C.) Since I/I2 is imbedded in B/I2 by the canonical injection, this derivation restricts
on I/I2 to φ. In other words there is a commutative diagram

I/I2

φ

��

// B/I2

δ{{wwwwwwwww

M

.

It follows thus that we may define, by pulling back, an A-derivation B →M that restricts

on I to the map I → I/I2 φ→ M . By the universal property of the differentials, this is
the same thing as a homomorphism ΩB/A → M , or equivalently ΩB/A ⊗B C → M since
M is a C-module. Pulling back this derivation to I/I2 corresponds to pulling back via
I/I2 → ΩB/A ⊗B C.

It follows that the map

HomC(ΩB/A ⊗B C,M)→ HomC(I/I2,M)
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is a surjection. This proves one half of the result.
Now for the other. Suppose that there is a section of the conormal map. This trans-

lates, as above, to saying that any map I/I2 →M (of C-modules) for a C-module M can
be extended to an A-derivation B →M . We must deduce from this formal smoothness.

Let E be any A-algebra, and J ⊂ E an ideal of square zero. We suppose given an
A-homomorphism C → E/J and would like to lift it to C → E; in other words, we must
find a lift in the diagram

C

}}{
{

{
{

{

��
E // E/J

.

Let us pull this map back by the surjection B � C; we get a diagram

B

φ

���
�

�
�

�
�

�
�

��
C

}}{
{

{
{

{

��
E // E/J

.

In this diagram, we know that a lifting φ : B → E does exist because B is formally smooth
over A. So we can find a dotted arrow from B → E in the diagram. The problem is that
it might not send I = ker(B → C) into zero. If we can show that there exists a lifting
that does factor through C (i.e. sends I to zero), then we are done.

In any event, we have a morphism of A-modules I → E given by restricting φ : B → E.
This lands in J , so we get a map I → J . Note that J is an E/J-module, hence a C-
module, because J has square zero. Moreover I2 gets sent to zero because J2 = 0, and we
have a morphism of C-modules I/I2 → J . Now by hypothesis, there is an A-derivation
δ : B → J such that δ|I = φ. Since J has square zero, it follows that

φ− δ : B → E N

is an A-homomorphism of algebras, and it kills I. Consequently this factors through C
and gives the desired lifting C → E.

Corollary 2.5 If A→ B is formally smooth, then ΩB/A is a projective B-module.

The intuition is that projective modules correspond to vector bundles over the Spec (unlike
general modules, the rank is locally constant, which should happen in a vector bundle).
But a smooth algebra is like a manifold, and for a manifold the cotangent bundle is very
much a vector bundle, whose dimension is locally constant.

Proof. Indeed, we can write B as a quotient of a polynomial ring D over A; this is formally
smooth. Suppose B = D/I. Then we know that there is a split exact sequence

0→ I/I2 → ΩD/A ⊗D B → ΩB/A → 0.

But the middle term is free as D/A is a polynomial ring; hence the last term is projective.N
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In particular, we can rewrite the criterion for formal smoothness of C = B/I, if B is
formally smooth over A:

1. ΩC/A is a projective C-module.

2. I/I2 → ΩB/A ⊗B C is a monomorphism.

Indeed, these two are equivalent to the splitting of the conormal sequence (since the middle
term is always projective by Corollary 2.5).

In particular, we can check that smoothness is local :

Corollary 2.6 Let A be a ring, B a finitely presented A-algebra. Then B is smooth over
A if and only if for each q ∈ SpecB with p ∈ SpecA the inverse image, the map Ap → Bq

is formally smooth.

Proof. Indeed, we see that B = D/I for a polynomial ring D = A[x1, . . . , xn] in finitely
many variables, and I ⊂ D a finitely generated ideal. We have just seen that we just
need to check that the conormal map I/I2 → ΩD/A ⊗D B is injective, and that ΩB/A is
a projective B-module, if and only if the analogs hold over the localizations. This follows
by the criterion for formal smoothness just given above.

But both can be checked locally. Namely, the conormal map is an injection if and only
if, for all q ∈ SpecB corresponding to Q ∈ SpecD, the map (I/I2)q → ΩDQ/Ap

⊗DQ
Bq

is an injection. Moreover, we know that for a finitely presented module over a ring, like
ΩB/A, projectivity is equivalent to projectivity (or freeness) of all the stalks (??). So we
can check projectivity on the localizations too. N

In fact, the method of proof of Corollary 2.6 yields the following observation: formal
smoothness “descends” under faithfully flat base change. That is:

Corollary 2.7 If B is an A-algebra, and A′ a faithfully flat algebra, then B is formally
smooth over A if and only if B ⊗A A′ is formally smooth over A′.

We shall not give a complete proof, except in the case when B is finitely presented over
A (so that the question is of smoothness).

Proof. One direction is just the “sorite” (see ??). We want to show that formal smoothness
“descends.” The claim is that the two conditions for formal smoothness above (that ΩB/A

be projective and the conormal map be a monomorphism) descend under faithfully flat
base-change. Namely, the fact about the conormal maps is clear (by faithful flatness).

Now let B′ = B⊗A A′. So we need to argue that if ΩB′/A′ = ΩB/A⊗B B′ is projective
as a B′-module, then so is ΩB/A. Here we use the famous result of Raynaud-Gruson
(see [RG71]), which states that projectivity descends under faithfully flat extensions, to
complete the proof.

If B is finitely presented over A, then ΩB/A is finitely presented as a B-module. We
can run most of the same proof as before, but we want to avoid using the Raynaud-Gruson
theorem: we must give a separate argument that ΩB/A is projective if ΩB′/A′ is. However,
for a finitely presented module, projectivity is equivalent to flatness, by Theorem 4.13.
Moreover, since ΩB′/A′ is B′-flat, faithful flatness enables us to conclude that ΩB/A is
B-flat, and hence projective. N
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2.3 The Jacobian criterion

Now we want a characterization of when a morphism is smooth. Let us motivate this with
an analogy from standard differential topology. Consider real-valued functions f1, . . . , fp ∈
C∞(Rn). Now, if f1, f2, . . . , fp are such that their gradients ∇fi form a matrix of rank p,
then we can define a manifold near zero which is the common zero set of all the fi. We
are going to give a relative version of this in the algebraic setting.

Recall that a map of rings A → B is essentially of finite presentation if B is the
localization of a finitely presented A-algebra.

Proposition 2.8 Let (A,m) → (B, n) be a local homomorphism of local rings such that
B is essentially of finite presentation. Suppose B = (A[X1, . . . , Xn])q/I for some finitely
generated ideal I ⊂ A[X1, . . . , Xn]q, where q is a prime ideal in the polynomial ring.

Then I/I2 is generated as a B-module by polynomials f1, . . . , fk ∈ I ⊂ A[X1, . . . , Xn]
whose Jacobian matrix has maximal rank in C/q = B/n if and only if B is formally
smooth over A. In this case, I/I2 is even freely generated by the fi.

The Jacobian matrix ∂fi
∂Xj

is a matrix of elements of A[X1, . . . , Xn], and we can take

the associated images in B/n.

Example 2.9 Suppose A is an algebraically closed field k. Then I corresponds to some
ideal in the polynomial ring k[X1, . . . , Xn], which cuts out a variety X. Suppose q is a
maximal ideal in the polynomial ring.

Then B is the local ring of the algebraic variety X at q. Then Proposition 2.8 states
that q is a “smooth point” of the variety (i.e., the Jacobian matrix has maximal rank) if
and only if B is formally smooth over k. We will expand on this later.

Proof. Indeed, we know that polynomial rings are formally smooth. In particular D =
A[X1, . . . , Xn]q is formally smooth over A, because localization preserves formal smooth-
ness. Note also that ΩD/A is a free D-module, because this is true for a polynomial ring
and Kähler differentials commute with localization.

So Theorem 2.4 implies that

I/I2 → ΩD/A ⊗D B

is a split injection precisely when B is formally smooth over A. Suppose that this holds.
Now I/I2 is then a summand of the free module ΩD/A⊗DB, so it is projective, hence free
as B is local. Let K = B/n. It follows that the map

I/I2 ⊗D K → ΩD/A ⊗D K = Kn

is an injection. This map sends a polynomial to its gradient (reduced modulo q, or n).
Hence the assertion is clear: choose polynomials f1, . . . , fk ∈ I that generate (I/I2)q, and
their gradients in B/n must be linearly independent.

Conversely, suppose that I/I2 has such generators. Then the map

I/I2 ⊗K → Kn, f 7→ df
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is a split injection. However, if a map of finitely generated modules over a local ring, with
the target free, is such that tensoring with the residue field makes it an injection, then it is
a split injection. (We shall prove this below.) Thus I/I2 → ΩD/A⊗DB is a split injection.
In view of the criterion for formal smoothness, we find that B is formally smooth. N

Here is the promised lemma necessary to complete the proof:

Lemma 2.10 If (A,m) is a local ring with residue field k, M a finitely generated A-
module, N a finitely generated projective A-module, then a map φ : M → N is a split
injection if and only if M ⊗A k → N ⊗A k is an injection.

Proof. One direction is clear, so it suffices to show that M → N is a split injection if the
map on fibers is an injection.

Let L be a “free approximation” to M , that is, a free module L together with a map
L→M which is an isomorphism modulo k. By Nakayama’s lemma, L→M is surjective.
Then the map L → M → N is such that the L ⊗ k → N ⊗ k is injective, so L → N is a
split injection (by an elementary criterion). It follows that we can find a splitting N → L,
which when composed with L→M is a splitting of M → N . N

2.4 The fiberwise criterion for smoothness

We shall now prove that a smooth morphism is flat. In fact, we will get a general “fiber-
wise” criterion for smoothness (i.e., a morphism is smooth if and only if it is flat and the
fibers are smooth), which will enable us to reduce smoothness questions, in some cases, to
the situation where the base is a field.

We shall need some lemmas on regular sequences. The first will give a useful criterion
for checking M -regularity of an element by checking on the fiber. For our purposes, it will
also give a criterion for when quotienting by a regular element preserves flatness over a
smaller ring.

Lemma 2.11 Let (A,m) → (B, n) be a local homomorphism of local noetherian rings.
Let M be a finitely generated B-module, which is flat over A.

Let f ∈ B. Then the following are equivalent:

1. M/fM is flat over A and f : M →M is injective.

2. f : M ⊗A k →M ⊗A k is injective where k = A/m.

For instance, let us consider the case M = B. The lemma states that if multiplication
by f is regular on B ⊗A k, then the hypersurface cut out by f (i.e., corresponding to the
ring B/fB) is flat over A.

Proof. All Tor functors here will be over A. If M/fM is A-flat and f : M → M is
injective, then the sequence

0→M
f→M →M/fM → 0
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leads to a long exact sequence

Tor1(k,M/fM)→M ⊗A k
f→M ⊗A k → (M/fM)⊗A k → 0.

But since M/fM is flat, the first term is zero, and it follows that M ⊗ k f→ M ⊗ k is
injective.

The other direction is more subtle. Suppose multiplication by f is a monomorphism
on M ⊗A k. Now write the exact sequence

0→ P →M
f→M → Q→ 0

where P,Q are the kernel and cokernel. We want to show that P = 0 and Q is flat over
A.

We can also consider the image I = fM ⊂M , to split this into two exact sequences

0→ P →M → I → 0

and
0→ I →M → Q→ 0.

Here the map M⊗Ak → I⊗Ak →M⊗Ak is given by multiplication by f , so it is injective
by hypothesis. This implies that M⊗Ak → I⊗Ak is injective. So M⊗k → I⊗k is actually
an isomorphism because it is obviously surjective, and we have just seen it is injective.
Moreover, I ⊗A k →M ⊗A k is isomorphic to the homothety f : M ⊗A k →M ⊗A k, and
consequently is injective. To summarize:

1. M ⊗A k → I ⊗A k is an isomorphism.

2. I ⊗A k →M ⊗A k is an injection.

Let us tensor these two exact sequences with k. We get

0→ Tor1(k, I)→ P ⊗A k →M ⊗A k → I ⊗A k → 0

because M is flat. We also get

0→ Tor1(k,Q)→ I ⊗A k →M ⊗A k → Q⊗A k → 0.

We’ll start by using the second sequence. Now I ⊗A k → M ⊗A k was just said to be
injective, so that Tor1(k,Q) = 0. By the local criterion for flatness, it follows that Q is a
flat A-module as well. But Q = M/fM , so this gives one part of what we wanted.

Now, we want to show finally that P = 0. Now, I is flat; indeed, it is the kernel of a
surjection of flat maps M → Q, so the long exact sequence shows that it is flat. So we
have a short exact sequence

0→ P ⊗A k →M ⊗A k → I ⊗A k → 0,

which shows now that P ⊗A k = 0 (as M ⊗A k → I ⊗A k was just shown to be an
isomorphism earlier). By Nakayama P = 0. This implies that f is M -regular. N

441



The CRing Project, §17.2.

Corollary 2.12 Let (A,m) → (B, n) be a morphism of noetherian local rings. Suppose
M is a finitely generated B-module, which is flat over A.

Let f1, . . . , fk ∈ n. Suppose that f1, . . . , fk is a regular sequence on M ⊗A k. Then it
is a regular sequence on M and, in fact, M/(f1, . . . , fk)M is flat over A.

Proof. This is now clear by induction. N

Theorem 2.13 Let (A,m) → (B, n) be a morphism of local rings such that B is the
localization of a finitely presented A-algebra at a prime ideal, B = (A[X1, . . . , Xn])q/I.
Then if A→ B is formally smooth, B is a flat A-algebra.

The strategy is that B is going to be written as the quotient of a localization of a
polynomial ring by a sequence {fi} whose gradients are independent (modulo the maximal
ideal), i.e. modulo B/n. If we were working modulo a field, then we could use arguments
about regular local rings to argue that the {fi} formed a regular sequence. We will use
Corollary 2.12 to bootstrap from this case to the general situation.

Proof. Let us first assume that A is noetherian.
Let C = (A[X1, . . . , Xn])q. Then C is a local ring, smooth over A, and we have

morphisms of local rings
(A,m)→ (C, q)� (B, n).

Moroever, C is a flat A-module, and we are going to apply the fiberwise criterion for
regularity to C and a suitable sequence.

Now we know that I/I2 is aB-module generated by polynomials f1, . . . , fm ∈ A[X1, . . . , Xn]
whose Jacobian matrix has maximal rank in B/n (by the Jacobian criterion, Proposi-
tion 2.8). The claim is that the fi are linearly independent in q/q2. This will be the first
key step in the proof. In other words, if {ui} is a family of elements of C, not all non-units,
we do not have ∑

uifi ∈ q2.

For if we did, then we could take derivatives and find∑
ui∂jfi ∈ q

for each j. This contradicts the gradients of the fi being linearly independent in B/n =
C/q.

Now we want to show that the {fi} form a regular sequence in C. To do this, we
shall reduce to the case where A is a field. Indeed, let us make the base-change A→ k =
A/m, B → B = B ⊗A k,C → C = C ⊗A k where k = A/m is the residue field. Then B,C
are formally smooth local rings over a field k. We also know that C is a regular local ring,
since it is a localization of a polynomial ring over a field.

Let us denote the maximal ideal of C by q; this is just the image of q.
Now the {fi} have images in C that are linearly independent in q/q2 = q/q2. It follows

that the {fi} form a regular sequence in C, by general facts about regular local rings (see,
e.g. Corollary 1.10); indeed, each of the successive quotients C/(f1, . . . , fi) will then be
regular. It follows from the fiberwise criterion (C being flat) that the {fi} form a regular
sequence in C itself, and that the quotient C/(fi) = B is A-flat. N
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The proof in fact showed a bit more: we expressed B as the quotient of a localized
polynomial ring by a regular sequence. In other words:

Corollary 2.14 (Smooth maps are local complete intersections) Let (A,m)→ (B, n)
be an essentially of finite presentation, formally smooth map. Then there exists a localiza-
tion of a polynomial ring, C, such that B can be expressed as C/(f1, . . . , fn) for the {fi}
forming a regular sequence in the maximal ideal of C.

We also get the promised result:

Theorem 2.15 Let A→ B be a smooth morphism of rings. Then B is flat over A.

Proof. Indeed, we immediately reduce to Theorem 2.13 by checking locally at each prime
(which gives formally smooth maps). N

In fact, we can get a general criterion now:

Theorem 2.16 Let (A,m) → (B, n) be a (local) morphism of local noetherian rings
such that B is the localization of a finitely presented A-algebra at a prime ideal, B =
(A[X1, . . . , Xn])q/I. Then B is formally smooth over A if B is A-flat and B/mB is for-
mally smooth over A/m.

Proof. One direction is immediate from what we have already shown. Now we need to
show that if B is A-flat, and B/mB is formally smooth over A/m, then B is itself formally
smooth over A. This will be comparatively easy, with all the machinery developed. This
will be comparatively easy, with all the machinery developed.

As before, write the sequence

(A,m)→ (C, q)� (B, n),

where C is a localization of a polynomial ring at a prime ideal, and in particular is formally
smooth over A. We know that B = C/I, where I ⊂ q.

To check that B is formally smooth over A, we need to show (C being formally smooth)
that the conormal sequence

I/I2 → ΩC/A ⊗C B → ΩC/B → 0. (17.3)

is split exact.

Let A,C,B be the base changes of A,B,C to k = A/m; let I be the kernel of C � B.
Note that I = I/mI by flatness of B. Then we know that the sequence

I/I
2 → ΩC/k/IΩC/k → ΩC/B → 0 (17.4)

is split exact, because C is a formally smooth k-algebra (in view of Theorem 2.4).

But (17.4) is the reduction of (17.3). Since the middle term of (17.3) is finitely
generated and projective over B, we can check splitting modulo the maximal ideal (see
Lemma 2.10). N
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In particular, we get the global version of the fiberwise criterion:

Theorem 2.17 Let A→ B be a finitely presented morphism of rings. Then B is a smooth
A-algebra if and only if B is a flat A-algebra and, for each p ∈ SpecA, the morphism
k(p)→ B ⊗A k(p) is smooth.

Here k(p) denotes the residue field of Ap, as usual.

Proof. One direction is clear. For the other, we recall that smoothness is local : A → B
is smooth if and only if, for each q ∈ SpecB with image p ∈ SpecA, we have Ap → Bq

formally smooth (see Corollary 2.6). But, by Theorem 2.16, this is the case if and only
if, for each such pair (p, q), the morphism k(p)→ Bq ⊗Ap k(p) is formally smooth. Now if
k(p)→ B ⊗A k(p) is smooth for each p, then this condition is clearly satisfied. N

2.5 Formal smoothness and regularity

We now want to explore the connection between formal smoothness and regularity. In
general, the intuition is that a variety over an algebraically closed field is smooth if and
only if the local rings at closed points (and thus at all points by ??) are regular local rings.
Over a non-algebraically closed field, only one direction is still true: we want the local
rings to be geometrically regular. So far we will just prove one direction, though.

Theorem 2.18 Let (A,m) be a noetherian local ring containing a copy of its residue field
A/m = k. Then if A is formally smooth over k, A is regular.

Proof. We are going to compare the quotients A/mm to the quotients of R = k[x1, . . . , xn]
where n is the embedding dimension of A. Let n ⊂ k[x1, . . . , xn] be the ideal (x1, . . . , xn).
We are going to give surjections

A/mm � R/nm

for each m ≥ 2.

Let t1, . . . , tn ∈ m be a k-basis for m/m2. Consider the map A � R/n2 that goes
A � A/m2 ' k ⊕ m/m2 ' R/n2, where ti is sent to xi. This is well-defined, and gives
a surjection A � R/n2. Using the infinitesimal lifting property, we can lift this map to
k-algebra maps

A→ R/nm

for each k, which necessarily factor through A/mm (as they send m into n). They are
surjective by Nakayama’s lemma. It follows that

dimkA/m
m ≥ dimkR/n

m,

and since Rn is a regular local ring, the last term grows asymptotically like mn. It follows
that dimR ≥ n, and since dimR is always at most the embedding dimension, we are
done. N
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2.6 A counterexample

It is in fact true that a formally smooth morphism between arbitrary noetherian rings is
flat, although we have only proved this in the case of a morphism of finite type. This is
false if we do not assume noetherian hypotheses. A formally smooth morphism need not
be flat.

Example 2.19 Consider a field k, and consider R = k[T x]x∈Q>0 . This is the filtered
colimit of the polynomial rings k[T 1/n] over all n. There is a natural map R→ k sending
each power of T to zero. The claim is that R→ k is a formally smooth morphism which is
not flat. It is a surjection, so it is a lot different from the intuitive idea of a smooth map.

Yet it turns out to be formally smooth. To see this, consider an R-algebra S and an
ideal I ⊂ S such that S2 = 0. The claim is that an R-homomorphism k → S/I lifts to
k → S. Consider the diagram

S

��
R

77ooooooooooooooo // k

==|
|

|
|

|
// S/I,

in which we have to show that a dotted arrow exists.

However, there can be at most one R-homomorphism k → S/I, since k is a quotient of
R. It follows that each T x, x ∈ Q>0 is mapped to zero in S/I. So each T x, x ∈ I maps to
elements of I (by the map R→ S assumed to exist). It follows that T x = (T x/2)2 maps to
zero in S, as I2 = 0. Thus the map R → S annihilates each T x, which means that there
is a (unique) dotted arrow.

Note that R→ k is not flat. Indeed, multiplication by T is injective on R, but it acts
by zero on k.

This example was described by Anton Geraschenko on MathOverflow; see [Ger]. The
same reasoning shows more generally:

Proposition 2.20 Let R be a ring, I ⊂ R an ideal such that I = I2. Then the projection
R→ R/I is formally étale.

For a noetherian ring, if I = I2, then we know that I is generated by an idempotent in
R (see Proposition 1.21), and the projection R→ R/I is projection on the corresponding
direct factor (actually, the complementary one). In this case, the projection is flat, and
this is to be expected: as stated earlier, formally étale implies flat for noetherian rings.
But in the non-noetherian case, we can get interesting examples.

Example 2.21 We shall now give an example showing that formally étale morphisms do
not necessarily preserve reducedness. We shall later see that this is true in the étale case
(see Proposition 3.19).
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Let k be a field of characteristic 6= 2. Consider the ring R = k[T x]x∈Q>0 as before.
Take S = R[X]/(X2 − T ), and consider the ideal I generated by all the positive powers
T x, x > 0. As before, clearly I = I2, and thus S → S/I is formally étale. The claim is that
S is reduced; clearly S/I = k[X]/(X2) is not. Indeed, an element of S can be uniquely
described by α = P (T ) + Q(T )X where P,Q are “polynomials” in T—in actuality, they
are allowed to have terms T x, x ∈ Q>0. Then α2 = P (T )2 + Q(T )2T + 2P (T )Q(T )X. It
is thus easy to see that if α2 = 0, then α = 0.

§3 Étale morphisms

3.1 Definition

The definition is just another nilpotent lifting property:

Definition 3.1 Let S be an R-algebra. Then S is formally étale over R (or the map
R → S is formally étale) if given any R-algebra A and ideal I ⊂ A of square zero, the
map

HomR(S,A)→ HomR(S,A/I)

is a bijection. A ring homomorphism is étale if and only if it is formally étale and of finite
presentation.

So S is formally étale over R if for every commutative solid diagram

S //

!!B
B

B
B

B A/I

R //

OO

A

OO

where I ⊂ A is an ideal of square zero, there exists a unique dotted arrow making the
diagram commute. As before, the functor of points can be used to test formal étaleness.
Moreover, clearly a ring map is formally étale if and only if it is both formally smooth
and formally unramified.

We have the usual:

Proposition 3.2 Étale (resp. formally étale) morphisms are closed under composition
and base change.

Proof. Either a combination of the corresponding results for formal smoothness and formal
unramifiedness (i.e. Proposition 1.6, Proposition 1.7, and Proposition 2.3), or easy to
verify directly. N

Filtered colimits preserve formal étaleness:

Lemma 3.3 Let R be a ring. Let I be a directed partially ordered set. Let (Si, ϕii′) be a
system of R-algebras over I. If each R → Si is formally étale, then S = colimi∈I Si is
formally étale over R
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The idea is that we can make the lifts on each piece, and glue them automatically.

Proof. Consider a diagram as in Definition 3.1. By assumption we get unique R-algebra
maps Si → A lifting the compositions Si → S → A/I. Hence these are compatible with
the transition maps ϕii′ and define a lift S → A. This proves existence. The uniqueness
is clear by restricting to each Si. N

Lemma 3.4 Let R be a ring. Let S ⊂ R be any multiplicative subset. Then the ring map
R→ S−1R is formally étale.

Proof. Let I ⊂ A be an ideal of square zero. What we are saying here is that given a ring
map ϕ : R→ A such that ϕ(f) mod I is invertible for all f ∈ S we have also that ϕ(f) is
invertible in A for all f ∈ S. This is true because A∗ is the inverse image of (A/I)∗ under
the canonical map A→ A/I. N

We now want to give the standard example of an étale morphism; geometrically, this
corresponds to a hypersurface in affine 1-space given by a nonsingular equation. We will
eventually show that any étale morphism looks like this, locally.

Example 3.5 Let R be a ring, P ∈ R[X] a polynomial. Suppose Q ∈ R[X]/P is such
that in the localization (R[X]/P )Q, the image of the derivative P ′ ∈ R[X] is a unit. Then
the map

R→ (R[X]/P )Q

is called a standard étale morphism.

The name is justified by:

Proposition 3.6 A standard étale morphism is étale.

Proof. It is sufficient to check the condition on the Kähler differentials, since a standard
étale morphism is evidently flat and of finite presentation. Indeed, we have that

Ω(R[X]/P )Q/R = Q−1Ω(R[X]/P )/R = Q−1 R[X]

(P ′(X), P (X))R[X]

by basic properties of Kähler differentials. Since P ′ is a unit after localization at Q, this
last object is clearly zero. N

Example 3.7 A separable algebraic extension of a field k is formally étale. Indeed, we
just need to check this for a finite separable extension L/k, in view of Lemma 3.3, and
then we can write L = k[X]/(P (X)) for P a separable polynomial. But it is easy to see
that this is a special case of a standard étale morphism. In particular, any unramified
extension of a field is étale, in view of the structure theory for unramified extensions of
fields (Theorem 1.12).

Example 3.8 The example of Example 2.19 is a formally étale morphism, because we
showed the map was formally smooth and it was clearly surjective. It follows that a
formally étale morphism is not necessarily flat!
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We also want a slightly different characterization of an étale morphism. This criterion
will be of extreme importance for us in the sequel.

Theorem 3.9 An R-algebra S of finite presentation is étale if and only if it is flat and
unramified.

This is in fact how étale morphisms are defined in [SGA03] and in [Har77].

Proof. An étale morphism is smooth, hence flat (Theorem 2.15). Conversely, suppose S is
flat and unramified over R. We just need to show that S is smooth over R. But this follows
by the fiberwise criterion for smoothness, Theorem 2.16, and the fact that an unramified
extension of a field is automatically étale, by Example 3.7. N

Finally, we would like a criterion for when a morphism of smooth algebras is étale. We
state it in the local case first.

Proposition 3.10 Let B,C be local, formally smooth, essentially of finite presentation
A-algebras and let f : B → C be a local A-morphism. Then f is formally étale if and only
if and only if the map ΩB/A ⊗B C → ΩC/A is an isomorphism.

The intuition is that f induces an isomorphism on the cotangent spaces; this is analogous
to the definition of an étale morphism of smooth manifolds (i.e. one that induces an
isomorphism on each tangent space, so is a local isomorphism at each point).

Proof. We prove this for A noetherian.
We just need to check that f is flat if the map on differentials is an isomorphism. Since

B,C are flat A-algebras, it suffices (by the general criterion, Proposition 4.10), to show
that B⊗A k → C ⊗A k is flat for k the residue field of A. We will also be done if we show
that B ⊗A k → C ⊗A k is flat. Note that the same hypotheses (that

So we have reduced to a question about rings essentially of finite type over a field.
Namely, we have local rings B,C which are both formally smooth, essentially of finite-
type k-algebras, and a map B → C that induces an isomorphism on the Kähler differentials
as above.

The claim is that B → C is flat (even local-étale). Note that both B,C are regular
local rings, and the condition about Kähler differentials implies that they of the same
dimension. Consequently, B → C is injective: if it were not injective, then the dimension
of Im(B → C) would be less than dimB = dimC. But since C is unramified over
Im(B → C), the dimension can only drop: dimC ≤ dim Im(B → C).1 This contradicts
dimB = dimC. It follows that B → C is injective, and hence flat by ?? below (one can
check that there is no circularity).

3.2 The local structure theory

We know two easy ways of getting an unramified morphism out of a ring R. First, we
can take a standard étale morphism, which is necessarily unramified; next we can take a
quotient of that. The local structure theory states that this is all we can have, locally.

1This follows by the surjection of modules of Kähler differentials, in view of ??.
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Warning: this section will use Zariski’s Main Theorem, which is not in this
book yet.

For this we introduce a definition.

Definition 3.11 Let R be a commutative ring, S an R-algebra of finite type. Let q ∈
SpecS and p ∈ SpecR be the image. Then S is called unramified at q (resp. étale at
p) if ΩSq/Rp

= 0 (resp. that and Sq is Rp-flat).

Now when works with finitely generated algebras, the module of Kähler differentials is
always finitely generated over the top ring. In particular, if ΩSq/Rp

= (ΩS/R)q = 0, then
there is f ∈ S − q with ΩSf/R = 0. So being unramified at q is equivalent to the existence
of f ∈ S − q such that Sf is unramified over R. Clearly if S is unramified over R, then it
is unramified at all primes, and conversely.

Theorem 3.12 Let φ : R → S be morphism of finite type, and q ⊂ S prime with p =
φ−1(q). Suppose φ is unramified at q. Then there is f ∈ R− p and g ∈ S − q (divisible by
φ(f)) such that the morphism

Rf → Sg

factors as a composite
Rf → (Rf [x]/P )h � Sg

where the first is a standard étale morphism and the second is a surjection. Moreover, we
can arrange things such that the fibers above p are isomorphic.

Proof. We shall assume that R is local with maximal ideal p. Then the question reduces
to finding g ∈ S such that Sg is a quotient of an algebra standard étale over R. This
reduction is justified by the following argument: if R is not necessarily local, then the
morphism Rp → Sp is still unramified. If we can show that there is g ∈ Sp− qSp such that
(Sp)g is a quotient of a standard étale Rp-algebra, it will follow that there is f /∈ p such
that the same works with Rf → Sgf .

We shall now reduce to the case where S is a finite R-algebra. Let R be local, and let
R → S be unramified at q. By assumption, S is finitely generated over R. We have seen
by ?? that S is quasi-finite over R at q. By Zariski’s Main Theorem (??), there is a finite
R-algebra S′ and q′ ∈ SpecS′ such that S near q and S′ near q′ are isomorphic (in the
sense that there are g ∈ S − q, h ∈ S′ − q′ with Sg ' S′h). Since S′ must be unramified at
q′, we can assume at the outset, by replacing S by S′, that R→ S is finite and unramified
at q.

We shall now reduce to the case where S is generated by one element as R-algebra.
This will occupy us for a few paragraphs.

We have assumed that R is a local ring with maximal ideal p ⊂ R; the maximal ideals
of S are finite, say, q, q1, . . . , qr because S is finite over R; these all contain p by Nakayama.
These are no inclusion relations among q and the qi as S/pS is an artinian ring.

Now S/q is a finite separable field extension of R/p by Theorem 1.12; indeed, the mor-
phism R/p→ S/pS → S/q is a composite of unramified extensions and is thus unramified.
In particular, by the primitive element theorem, there is x ∈ S such that x is a generator
of the field extension R/p → S/q. We can also choose x to lie in the other qi by the
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Chinese remainder theorem. Consider the subring C = R[x] ⊂ S. It has a maximal ideal
s which is the intersection of q with C. We are going to show that locally, C and S look
the same.

Lemma 3.13 (Reduction to the monogenic case) Let (R, p) be a local ring and S a
finite R-algebra. Let q, q1, . . . , qr ∈ SpecS be the prime ideals lying above p. Suppose S is
unramified at q.

Then there is x ∈ S such that the rings R[x] ⊂ S and S are isomorphic near q: more
precisely, there is g ∈ R[x]− q with R[x]g = Sg.

Proof. Choose x as in the paragraph preceding the statement of the lemma. Define s in
the same way. We have morphisms

R→ Cs → Ss

where Ss denotes S localized at C − s, as usual. The second morphism here is finite.
However, we claim that Ss is in fact a local ring with maximal ideal qSs; in particular,
Ss = Sq. Indeed, S can have no maximal ideals other than q lying above s; for, if qi lay
over s for some i, then x ∈ qi ∩ C = s. But x /∈ s because x is not zero in S/q.

It thus follows that Ss is a local ring with maximal ideal qSs. In particular, it is equal
to Sq, which is a localization of Ss at the maximal ideal. In particular, the morphism

Cs → Ss = Sq

is finite. Moreover, we have sSq = qSq by unramifiedness of R → S. So since the residue
fields are the same by choice of x, we have sSq +Cs = Sq. Thus by Nakyama’s lemma, we
find that Ss = Sq = Cs.

There is thus an element g ∈ C − r such that Sg = Cg. In particular, S and C are
isomorphic near q. N

We can thus replace S by C and assume that C has one generator.

With this reduction now made, we proceed. We are now considering the case where S
is generated by one element, so a quotient S = R[X] for some monic polynomial P . Now
S = S/pS is thus a quotient of k[X], where k = R/p is the residue field. It thus follows
that

S = k[X]/(P )

for P a monic polynomial, as S is a finite k-vector space.

Suppose P has degree n. Let x ∈ S be a generator of S/R. We know that 1, x, . . . , xn−1

has reductions that form a k-basis for S ⊗R k, so by Nakayama they generate S as an R-
module. In particular, we can find a monic polynomial P of degree n such that P (x) = 0.
It follows that the reduction of P is necessarily P . So we have a surjection

R[X]/(P )� S

which induces an isomorphism modulo p (i.e. on the fiber).
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Finally, we claim that we can modify R[X]/P to make a standard étale algebra. Now,
if we let q′ be the preimage of q in R[X]/P , then we have morphisms of local rings

R→ (R[X]/P )q′ → Sq.

The claim is that R[X]/(P ) is unramified over R at q′.

To see this, let T = (R[X]/P )q′ . Then, since the fibers of T and Sq are the same at p,
we have that

ΩT/R ⊗R k(p) = ΩT⊗Rk(p)/k(p) = Ω(Sq/pSq)/k(p) = 0

as S is R-unramified at q. It follows that ΩT/R = pΩT/R, so a fortiori ΩT/R = qΩT/R;
since this is a finitely generated T -module, Nakayama’s lemma implies that is zero. We
conclude that R[X]/P is unramified at q′; in particular, by the Kähler differential criterion,
the image of the derivative P ′ is not in q′. If we localize at the image of P ′, we then get
what we wanted in the theorem. N

We now want to deduce a corresponding (stronger) result for étale morphisms. Indeed,
we prove:

Theorem 3.14 If R → S is étale at q ∈ SpecS (lying over p ∈ SpecR), then there are
f ∈ R− p, g ∈ S − q such that the morphism Rf → Sg is a standard étale morphism.

Proof. By localizing suitably, we can assume that (R, p) is local, and (in view of ??),
R→ S is a quotient of a standard étale morphism

(R[X]/P )h � S

with the kernel some ideal I. We may assume that the surjection is an isomorphism
modulo p, moreover. By localizing S enough2 we may suppose that S is a flat R-module
as well.

Consider the exact sequence of (R[X]/P )h-modules

0→ I → (R[X]/P )h/I → S → 0.

Let q′ be the image of q in Spec(R[X]/P )h. We are going to show that the first term
vanishes upon localization at q′. Since everything here is finitely generated, it will follow
that after further localization by some element in (R[X]/P )h−q′, the first term will vanish.
In particular, we will then be done.

Everything here is a module over (R[X]/P )h, and certainly a module over R. Let us
tensor everything over R with R/p; we find an exact sequence

I → S/pS → S/pS → 0;

we have used the fact that the morphism (R[X]/P )h → S was assumed to induce an
isomorphism modulo p.

2We are not assuming S finite over R here,
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However, by étaleness we assumed that S was R-flat, so we find that exactness holds
at the left too. It follows that

I = pI,

so a fortiori
I = q′I,

which implies by Nakayama that Iq′ = 0. Localizing at a further element of (R[X]/P )h−q′,
we can assume that I = 0; after this localization, we find that S looks precisely a standard
étale algebra. N

3.3 Permanence properties of étale morphisms

We shall now return to (more elementary) commutative algebra, and discuss the properties
that an étale extension A→ B has. An étale extension is not supposed to make B differ
too much from A, so we might expect some of the same properties to be satisfied.

We might not necessarily expect global properties to be preserved (geometrically, an
open imbedding of schemes is étale, and that does not necessarily preserve global proper-
ties), but local ones should be.

Thus the right definition for us will be the following:

Definition 3.15 A morphism of local rings (A,mA) → (B,mB) is local-unramified
mAB is the maximal ideal of B and B/mB is a finite separable extension of A/mA.

A morphism of local rings A→ B is local-étale if it is flat and local-unramified.

Proposition 3.16 Let (R,m)→ (S, n) be a local-étale morphism of noetherian local rings.
Then dimR = dimS.

Proof. Indeed, we know that mS = n because R→ S is local-unramified. Also R/m→ S/n
is a finite separable extension. We have a natural morphism

m⊗R S → n

which is injective (as the map m⊗R S → S is injective by flatness) and consequently is an
isomorphism. More generally, mn⊗R S ' nn for each n. By flatness again, it follows that

mn/mn+1 ⊗R/m (S/n) = mn/mn+1 ⊗R S ' nn/nn+1. (17.5)

Now if we take the dimensions of these vector spaces, we get polynomials in n; these
polynomials are the dimensions of R,S, respectively. It follows that dimR = dimS. N

Proposition 3.17 Let (R,m)→ (S, n) be a local-étale morphism of noetherian local rings.
Then depthR = depthS.

Proof. We know that a nonzerodivisor in R maps to a nonzerodivisor in S. Thus by
an easy induction we reduce to the case where depthR = 0. This means that m is an
associated prime of R; there is thus some x ∈ R, nonzero (and necessarily a non-unit)
such that the annihilator of x is all of m. Now x is a nonzero element of S, too, as the
map R→ S is an inclusion by flatness. It is then clear that n = mS is the annilhilator of
x in S, so n is an associated prime of S too. N
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Corollary 3.18 Let (R,m) → (S, n) be a local-étale morphism of noetherian local rings.
Then R is regular (resp. Cohen-Macaulay) if and only if S is.

Proof. The results Proposition 3.17 and Proposition 3.16 immediately give the result about
Cohen-Macaulayness. For regularity, we use (17.5) with n = 1 to see at once that the
embedding dimensions of R and S are the same. N

Recall, however, that regularity of S implies that of R if we just assume that R → S
is flat (by Serre’s characterization of regular local rings as those having finite global
dimension).

We shall next show that reducedness is preserved under étale extensions. We shall
need another hypothesis, though, that the map of local rings be essentially of finite type.
This will always be the case in situations of interest, when we are looking at the map on
local rings induced by a morphism of rings of finite type.

Proposition 3.19 Let (R,m)→ (S, n) be a local-étale morphism of noetherian local rings.
Suppose S is essentially of finite type over R. Then S is reduced if and only if R is reduced.

Proof. As R→ S is injective by (faithful) flatness, it suffices to show that if R is reduced,
so is S. Now there is an imbedding R →

∏
p minimalR/p of R into a product of local

domains. We get an imbedding of S into a product of local rings
∏
S/pS. Each S/pS is

essentially of finite type over R/p, and local-étale over it too.
We are reduced to showing that each S/pS is reduced. So we need only show that a

local-étale, essentially of finite type local ring over a local noetherian domain is reduced.
So suppose A is a local noetherian domain, B a local-étale, essentially of finite type

local A-algebra. We want to show that B is reduced, and then we will be done. Now A
imbeds into its field of fractions K; thus B imbeds into B⊗AK. Then B⊗AK is formally
unramified over K and is essentially of finite type over K. This means that B ⊗A K is
a product of fields by the usual classification, and is in particular reduced. Thus B was
itself reduced. N

To motivate the proof that normality is preserved, though, we indicate another proof
of this fact, which does not even use the essentially of finite type hypothesis. Recall that
a noetherian ring A is reduced if and only if for every prime p ∈ SpecA of height zero, Ap

is regular (i.e., a field), and for every prime p of height > 0, Rp has depth at least one.
See ??.

So suppose R → S is a local-étale and suppose R is reduced. We are going to apply
the above criterion, together with the results already proved, to show that S is reduced.

Let q ∈ SpecS be a minimal prime, whose image in SpecR is p. Then we have a
morphism

Rp → Sq

which is locally of finite type, flat, and indeed local-étale, as it is formally unramified (as
R→ S was). We know that dimRp = dimSq by Proposition 3.16, and consequently since
Rp is regular, so is Sq. Thus the localization of S at any minimal prime is regular.

Next, if q ∈ SpecS is such that Sq has height has positive dimension, then Rp →
Sq (where p is as above) is local-étale and consequently dimRq = dimSq > 0. Thus,
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depthRp = depthSq > 0 because R was reduced. It follows that the above criterion is
valid for S.

Recall that a noetherian ring is a normal domain if it is integrally closed in its quotient
field, and simply normal if all its localizations are normal domains; this equates to the
ring being a product of normal domains. We want to show that this is preserved under
étaleness. To do this, we shall use a criterion similar to that used at the end of the last
section. We have the following important criterion for normality.

Theorem 3.20 (Serre) Let A be a noetherian ring. Then A is normal if and only if for
all p ∈ SpecR:

1. If dimAp ≤ 1, then Ap is regular.

2. If dimAp ≥ 2, then depthAp ≥ 2.

This is discussed in ??.

From this, we will be able to prove without difficulty the next result.

Proposition 3.21 Let (R,m)→ (S, n) be a local-étale morphism of noetherian local rings.
Suppose S is essentially of finite type over R. Then S is normal if and only if R is normal.

Proof. This is proved in the same manner as the result for reducedness was proved at
the end of the previous subsection. For instance, suppose R normal. Let q ∈ SpecS be
arbitrary, contracting to p ∈ SpecR. If dimSq ≤ 1, then dimRp ≤ 1 so that Rp, hence Sq
is regular. If dimSq ≥ 2, then dimRp ≥ 2, so depthSq = depthRp ≥ 2. N

We mention a harder result:

Theorem 3.22 If f : (R,m) → (S, n) is local-unramified, injective, and essentially of
finite type, with R normal and noetherian, then R → S is local-étale. Thus, an injective
unramified morphism of finite type between noetherian rings, whose source is a normal
domain, is étale.

A priori, it is not obvious at all that R → S should be flat. In fact, proving flatness
directly seems to be difficult, and we will have to use the local structure theory for un-
ramified morphisms together with nontrivial facts about étale morphisms to establish this
result.

Proof. We essentially follow [Mil80] in the proof. Clearly, only the local statement needs
to be proved.

We shall use the (non-elementary, relying on ZMT) structure theory of unramified
morphisms, which implies that there is a factorization of R→ S via

(R,m)
g→ (T, q)

h→ (S, n),

where all morphisms are local homomorphisms of local rings, g : R→ T is local-étale and
essentially of finite type, and h : T → S is surjective. This was established in ??.
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We are going to show that h is an isomorphism, which will complete the proof. Let K
be the quotient field of R. Consider the diagram

R

��

g // T
h //

��

S

��
K

g⊗1// T ⊗R K
h⊗1 // S ⊗R K.

Now the strategy is to show that h is injective. We will prove this by chasing around the
diagram.

Here R → S is formally unramified and essentially of finite type, so K → S ⊗R K is
too, and S ⊗RK is in particular a finite product of separable extensions of K. The claim
is that it is nonzero; this follows because f : R → S is injective, and S → S ⊗R K is
injective because localization is exact. Consequently R → S ⊗R K is injective, and the
target must be nonzero.

As a result, the surjective map h ⊗ 1 : T ⊗R K → S ⊗R K is nonzero. Now we claim
that T ⊗R K is a field. Indeed, it is an étale extension of K (by base-change), so it is a
product of fields. Moreover, T is a normal domain since R is (by Proposition 3.21) and
R → T is injective by flatness, so the localization T ⊗R K is a domain as well. Thus it
must be a field. In particular, the map h⊗ 1 : T ⊗R K → S ⊗R K is a surjection from a
field to a product of fields. It is thus an isomorphism.

Finally, we can show that h is injective. Indeed, it suffices to show that the composite
T → T ⊗R K → S ⊗R K is injective. But the first map is injective as it is a map from a
domain to a localization, and the second is an isomorphism (as we have just seen). So h
is injective, hence an isomorphism. Thus T ' S, and we are done. N

Note that this fails if the source is not normal.

Example 3.23 Consider a nodal cubic C given by y2 = x2(x − 1) in A2
k over an alge-

braically closed field k. As is well-known, this curve is smooth except at the origin. There
is a map C → C where C is the normalization; this is a finite map, and a local isomorphism
outside of the origin.

The claim is that C → C is unramified but not étale. If it were étale, then C would
be smooth since C is. So it is not étale. We just need to see that it is unramified, and for
this we need only see that the map is unramified at the origin.

We may compute: the normalization of C is given by C = A1
k, with the map

t 7→ (t2 + 1, t(t2 + 1)).

Now the two points ±1 are both mapped to 0. We will show that

OC,0 → OA1
k,1

is local-unramified; the other case is similar. Indeed, any line through the origin which
is not a tangent direction will be something in mC,0 that is mapped to a uniformizer in
OA1

k,1
. For instance, the local function x ∈ OC,0 is mapped to the function t 7→ t2 + 1 on

A1
k, which has a simple zero at 1 (or −1). It follows that the maximal ideal mC,0 generates

the maximal ideal of OA1
k,1

(and similarly for −1).
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3.4 Application to smooth morphisms

We now want to show that the class of étale morphisms essentially determines the class
of smooth morphisms. Namely, we are going to show that smooth morphisms are those
that look étale-locally like étale morphisms followed by projection from affine space. (Here
“projection from affine space” is the geometric picture: in terms of commutative rings,
this is the embedding A ↪→ A[x1, . . . , xn].)

Here is the first goal:

Theorem 3.24 Let f : (A,m)→ (B, n) be an essentially of finite presentation, local mor-
phism of local rings. Then f is formally smooth if and only if there exists a factorization

A→ C → B

where (C, q) is a localization of the polynomial ring A[X1, . . . , Xn] at a prime ideal with
A→ C the natural embedding, and C → B a formally étale morphism.

For convenience, we have stated this result for local rings, but we can get a more
general criterion as well (see below). This states that smooth morphisms, étale locally,
look like the imbedding of a ring into a polynomial ring. In [SGA03], this is in fact how
smooth morphisms are defined.

Proof. First assume f smooth. We know then that ΩB/A is a finitely generated projective
B-module, hence free, say of rank n. There are t1, . . . , tn ∈ B such that {dti} forms a basis
for ΩB/A: namely, just choose a set of such elements that forms a basis for ΩB/A ⊗B B/n
(since these elements generate ΩB/A).

Now these elements {ti} give a map of rings A[X1, . . . , Xn] → B. We let q be the
pre-image of n (so n contains the image of m ⊂ A), and take C = C = A[X1, . . . , Xn]q.
This gives local homomorphisms A → C,C → B. We only need to check that C → B is
étale. But the map

ΩC/A ⊗C B → ΩB/A

is an isomorphism, by construction. Since C,B are both formally smooth over A, we find
that C → B is étale by the characterization of étaleness via cotangent vectors (Proposi-
tion 3.10).

The other direction, that f is formally smooth if it admits such a factorization, is clear
because the localization of a polynomial algebra is formally smooth, and a formally étale
map is clearly formally smooth. N

Corollary 3.25 Let (R,m)→ (S, n) be a formally smooth, essentially of finite type mor-
phism of noetherian rings. Then if R is normal, so is S. Ditto for reduced.

Proof.
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3.5 Lifting under nilpotent extensions

In this subsection, we consider the following question. Let A be a ring, I ⊂ A an ideal of
square zero, and let A0 = A/I. Suppose B0 is a flat A0-algebra (possibly satisfying other
conditions). Then, we ask if there exists a flat A-algebra B such that B0 ' B ⊗A A0 =
B/IB. If there is, we say that B can be lifted along the nilpotent thickening from B0 to
B—we think of B as the mostly the same as B0, but with some additional “fuzz” (given
by the additional nilpotents).

We are going to show that this can always be done for étale algebras, and that this
always can be done locally for smooth algebras. As a result, we will get a very simple
characterization of what finiteétale algebras over a complete (and later, henselian) local
ring look like: they are the same as étale extensions of the residue field (which we have
classified completely).

In algebraic geometry, one spectacular application of these ideas is Grothendieck’s
proof in [SGA03] that a smooth projective curve over a field of characteristic p can be
“lifted” to characteristic zero. The idea is to lift it successively along nilpotent thickenings
of the base field, bit by bit (for instance, Z/pnZ of Z/pZ), by using the techniques of
this subsection; then, he uses hard existence results in formal geometry to show that this
compatible system of nilpotent thickenings comes from a curve over a DVR (e.g. the p-adic
numbers). The application in mind is the (partial) computation of the étale fundamental
group of a smooth projective curve over a field of positive characteristic. We will only
develop some of the more basic ideas in commutative algebra.

Namely, here is the main result. For a ring A, let Et(A) denote the category of étale
A-algebras (and A-morphisms). Given A→ A′, there is a natural functor Et(A)→ Et(A′)
given by base-change.

Theorem 3.26 Let A → A0 be a surjective morphism whose kernel is nilpotent. Then
Et(A)→ Et(A0) is an equivalence of categories.

SpecA and SpecA0 are identical topologically, so this result is sometimes called the
topological invariance of the étale site. Let us sketch the idea before giving the proof.
Full faithfulness is the easy part, and is essentially a restatement of the nilpotent lifting
property. The essential surjectivity is the non-elementary part, and relies on the local
structure theory. Namely, we will show that a standard étale morphism can be lifted (this
is essentially trivial). Since an étale morphism is locally standard étale, we can locally lift
an étale A0-algebra to an étale A-algebra. We next “glue” the local liftings using the full
faithfulness.

Proof. Without loss of generality, we can assume that the ideal defining A0 has square
zero. Let B,B′ be étale A-algebras. We need to show that

HomA(B,B′) = HomA0(B0, B
′
0),

where B0, B
′
0 denote the reductions to A0 (i.e. the base change). But HomA0(B0, B

′
0) =

HomA(B,B′0), and this is clearly the same as HomA(B,B′) by the definition of an étale
morphism. So full faithfulness is automatic.
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The trickier part is to show that any étale A0-algebra can be lifted to an étale A-
algebra. First, note that a standard étale A0-algebra of the form (A0[X]/(P (X))Q can be
lifted to A—just lift P and Q. The condition that it be standard étale is invertibility of
P ′, which is unaffected by nilpotents.

Now the strategy is to glue these appropriately. The details should be added at some
point, but they are not. TO BE ADDED: details N
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Chapter 18

Complete local rings

This chapter (barely started) is intended to give various results about complete local rings
(e.g. the Cohen structure theorems) and results relating rings to their completions (e.g.
material on excellent rings).

§1 The Cohen structure theorem

We want now a classification of complete local rings containing a field; it states that they
are the homomorphic images of power series rings:

Theorem 1.1 (Cohen structure theorem) Let (R,m) be a complete local noetherian
ring, which contains a field. Then R ' K[[x1, . . . , xn]/I for some ideal I ⊂ K[[x1, . . . , xn]]
and some field K.

We have already shown that this result is true when R contains a copy of its own
residue field; that is, when the map R→ R/m admits a section.

We are going to show that this is the case if R contains a field.

Remark The condition that R should contain a field means that if R/m is of characteristic
p, then pR = 0. For, if p > 0, then R contains a copy of Z/pZ. If p = 0, R automatically
contains a copy of Q, as each n ∈ Z− {0} is automatically invertible in R.

Proof. We just need to show that R contains a copy of its own residue field. To do this,
let κ be the prime field contained in R, so κ = Q or Fp. Let k be the residue field R/m.
We have a diagram:

R

��
R/m

;;v
v

v
v

v
id // R/m,

in which we seek a lift; then we can apply ??, because R will contain a copy of its residue
field.
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Now, R is complete, so R = lim←−R/m
i. So it suffices to give a compatible sequence of

lifts

R/mi

��
R/m

;;x
x

x
x

id // R/m,

,

which we will show exists. That is, given a section R/m→ R/mi, we will lift it to a section
R/m→ R/mi+1, and these will glue to give the desired section R/m→ R.

Now, everything here is a κ-algebra, and we are looking at a nilpotent lifting property
for κ-algebras. It follows that if we can prove that R/m is formally smooth over κ, then
we will be able to do the lifting at each stage, and R will contain a copy of its residue
field. Thus, we must show:

Proposition 1.2 Let κ be a perfect field, and let K/κ be any field extension. Then K is
formally smooth over κ.

Proof. To see this, we will use the fact that K/κ is separably generated. Namely, there is
a transcendence basis T ⊂ K such that K/κ({T}) is a separable algebraic extension. We
will show that K/κ({T}) and κ({T})/κ are each formally smooth, which will imply the
result.

Now, we know that κ({T})/κ is formally smooth: it is the localization of a formally
smooth κ-algebra (the polynomial algebra κ[{T}]), and localization is always formally
smooth.

Similarly, K/κ({T}) is formally smooth because any separable algebraic extension is in
fact formally étale. We have shown this for finite algebraic extensions (??), and a limiting
argument establishes it for infinite algebraic extensions. Namely, if A is a κ({T})-algebra
and I a square-zero ideal, then if we have a map K → A/I, the restriction to each finite
subextension lifts uniquely to A. As a result of this uniqueness, we can glue the liftings
to get a lift of K → A/I to K → A. N

Corollary 1.3 Let (R,m) be a local ring containing a copy of its residue field k. Then
R is formally smooth over k if and only if R is geometrically regular: that is, all the
localizations of R⊗k k are regular.

Proof. If R is formally smooth over k, then R ⊗k k is formally smooth over k and conse-
quently all the localizations are regular. N

Ok, need to think some more about this...I am currently leaving it as a comment.
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Chapter 19

Homotopical algebra

In this chapter, we shall introduce the formalism of model categories. Model categories
provide an abstract setting for homotopy theory: in particular, we shall see that topological
spaces form a model category. In a model category, it is possible to talk about notions
such as “homotopy,” and thus to pass to the homotopy category.

But many algebraic categories form model categories as well. The category of chain
complexes over a ring forms one. It turns out that this observation essentially encodes
classical homological algebra. We shall see, in particular, how the notion of derived functor
can be interpreted in a model category, via this model structure on chain complexes.

Our ultimate goal in developing this theory, however, is to study the non-abelian case.
We are interested in developing the theory of the cotangent complex, which is loosely speak-
ing the derived functor of the Kähler differentials ΩS/R on the category of R-algebras. This
is not a functor on an additive category; however, we shall see that the non-abelian version
of derived functors (in the category of simplicial R-algebras) allows one to construct the
cotangent complex in an elegant way.

§1 Model categories

1.1 Definition

We need to begin with the notion of a retract of a map.

Definition 1.1 Let C be a category. Then we can form a new category MapC of maps of
C. The objects of this category are the morphisms A→ B of C, and a morphism between
A→ B and C → D is given by a commutative square

A

��

// C

��
B // D

.

A map in C is a retract of another map in C if it is a retract as an object of MapC.
This means that there is a diagram:
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A //

Id

''

f
��

B

g

��

// A

f
��

X //

Id

@@Y // X

For instance, one can prove:

Proposition 1.2 In any category, isomorphisms are closed under retracts.

We leave the proof as an exercise.

Definition 1.3 A model category is a category C equipped with three classes of maps
called cofibrations, fibrations, and weak equivalences. They have to satisfy five axioms
M1−M5.

Denote cofibrations as ↪→, fibrations as �, and weak equivalences as → ∼.

(M1) C is closed under all limits and colimits.1

(M2) Each of the three classes of cofibrations, fibrations, and weak equivalences is closed
under retracts.2

(M3) If two of three in a composition are weak equivalences, so is the third.

f //

h
��

g
���������

(M4) (Lifts) Suppose we have a diagram

A //
� _

i
��

X

p
����

B //

>>}
}

}
}

Y

Here i : A→ B is a cofibration and p : X → Y is a fibration. Then a lift exists if i
or p is a weak equivalence.

(M5) (Factorization) Every map can be factored in two ways:

1Many of our arguments will involve infinite colimits. The original formulation in [?] required only
finite such, but most people assume infinite.

2Quillen initially called model categories satisfying this axiom closed model categories. All the model
categories we consider will be closed, and we have, following [Hov07], omitted this axiom.
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.
∼
    AAAAAAA

..
�

>>}}}}}}}
p�

∼
  AAAAAAA
f // .

.

>> >>}}}}}}}

In words, it can be factored as a composite of a cofibration followed by a fibration
which is a weak equivalence, or as a cofibration which is a weak equivalence followed
by a fibration.

A map which is a weak equivalence and a fibration will be called an acyclic fibration.
Denote this by � ∼. A map which is both a weak equivalence and a cofibration will be
called an acyclic cofibration, denoted ↪→ ∼. (The word “acyclic” means for a chain
complex that the homology is trivial; we shall see that this etymology is accurate when
we construct a model structure on the category of chain complexes.)

Remark If C is a model category, then Cop is a model category, with the notions of
fibrations and cofibrations reversed. So if we prove something about fibrations, we auto-
matically know something about cofibrations.

We begin by listing a few elementary examples of model categories:

Example 1.4 1. Given a complete and cocomplete category C, then we can give a
model structure to C by taking the weak equivalences to be the isomorphisms and
the cofibrations and fibrations to be all maps.

2. If R is a Frobenius ring, or the classes of projective and injective R-modules coincide,
then the category of modules over R is a model category. The cofibrations are the
injections, the fibrations are the surjections, and the weak equivalences are the stable
equivalences (a term which we do not define). See [Hov07].

3. The category of topological spaces admits a model structure where the fibrations are
the Serre fibrations and the weak equivalences are the weak homotopy equivalences.
The cofibrations are, as we shall see, determined from this, though they can be
described explicitly.

Exercise 19.1 Show that there exists a model structure on the category of sets where
the injections are the cofibrations, the surjections are fibrations, and all maps are weak
equivalences.

1.2 The retract argument

The axioms for a model category are somewhat complicated. We are now going to see that
they are actually redundant. That is, any two of the classes of cofibrations, fibrations,
and weak equivalences determine the third. We shall thus introduce a useful trick that we
shall have occasion to use many times further when developing the foundations.
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Definition 1.5 Let C be any category. Suppose that P is a class of maps of C. A map
f : A → B has the left lifting property with respect to P iff: for all p : C → D in P
and all diagrams

A //

f

��

C

p

��
B

∃
>>~

~
~

~
// D

a lift represented by the dotted arrow exists, making the diagram commute. We abbreviate
this property to LLP. There is also a notion of a right lifting property, abbreviated
RLP, where f is on the right.

Proposition 1.6 Let P be a class of maps of C. Then the set of maps f : A → B that
have the LLP (resp. RLP) with respect to P is closed under retracts and composition.

Proof. This will be a diagram chase. Suppose f : A → B and g : B → C have the LLP
with respect to maps in P . Suppose given a diagram

A

g◦f
��

// X

��
C // Y

with X → Y in P . We have to show that there exists a lift C → X. We can split this
into a commutative diagram:

A

f

��

// X

��

B

>>}
}

}
}

  AAAAAAA
g

��
C // Y

The lifting property provides a map φ : B → X as in the dotted line in the diagram. This
gives a diagram

B

g

��

φ // X

��
C //

>>}
}

}
}

Y N

and in here we can find a lift because g has the LLP with respect to p. It is easy to check
that this lift is what we wanted.

The axioms of a model category imply that cofibrations have the LLP with respect
to trivial fibrations, and acyclic cofibrations have the LLP with respect to fibrations.
There are dual statements for fibrations. It turns out that these properties characterize
cofibrations and fibrations (and acyclic ones).
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Theorem 1.7 Suppose C is a model category. Then:

(1) A map f is a cofibration iff it has the left lifting property with respect to the class of
acyclic fibrations.

(2) A map is a fibration iff it has the right lifting property w.r.t. the class of acyclic
cofibrations.

Proof. Suppose you have a map f , that has LLP w.r.t. all acyclic fibrations and you want
it to be a cofibration. (The other direction is an axiom.) Somehow we’re going to have to
get it to be a retract of a cofibration. Somehow you have to use factorization. Factor f :

A

f

��

� p

  BBBBBBBB

X X ′∼
oooo

We had assumed that f has LLP. There is a lift:

A
� � i //

f

��

X ′

∼
����

X
Id //

>>|
|

|
|

X

This implies that f is a retract of i.

A //

f

��

A� _

i
��

// A

f

��
X

∃ // X ′ // X

N

Theorem 1.8 (1) A map p is an acyclic fibration iff it has RLP w.r.t. cofibrations

(2) A map is an acyclic cofibration iff it has LLP w.r.t. all fibrations.

Suppose we know the cofibrations. Then we don’t know the weak equivalences, or the
fibrations, but we know the maps that are both. If we know the fibrations, we know
the maps that are both weak equivalences and cofibrations. This is basically the same
argument. One direction is easy: if a map is an acyclic fibration, it has the lifting property
by the definitions. Conversely, suppose f has RLP w.r.t. cofibrations. Factor this as a
cofibration followed by an acyclic fibration.

X
Id //

� _

��

X

f

��
Y ′

p

∼
// //

>>}
}

}
}

Y
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f is a retract of p; it is a weak equivalence because p is a weak equivalence. It is a fibration
by the previous theorem.

Corollary 1.9 A map is a weak equivalence iff it can be written as the product of an
acyclic fibration and an acyclic cofibration.

We can always write

.
p

    AAAAAAA

. f //. �

∼
>>}}}}}}} .

By two out of three f is a weak equivalence iff p is. The class of weak equivalences is
determined by the fibrations and cofibrations.

Example 1.10 (Topological spaces) The construction here is called the Serre model
structure (although it was defined by Quillen). We have to define some maps.

(1) The fibrations will be Serre fibrations.

(2) The weak equivalences will be weak homotopy equivalences

(3) The cofibrations are determined by the above classes of maps.

Theorem 1.11 A space equipped with these classes of maps is a model category.

Proof. More work than you realize. M1 is not a problem. The retract axiom is also
obvious. (Any class that has the lifting property also has retracts.) The third property is
also obvious: something is a weak equivalence iff when you apply some functor (homotopy),
it becomes an isomorphism. (This is important.) So we need lifting and factorization. One
of the lifting axioms is also automatic, by the definition of a cofibration. Let’s start with
the factorizations. Introduce two classes of maps:

A = {Dn × {0} → Dn × [0, 1]ß : ßn ≥ 0}

B = A ∪ {Sn−1 → Dnß : ßn ≥ 0, S−1 = ∅}

These are compact, in a category-theory sense. By definition of Serre fibrations, a map
is a fibration iff it has the right lifting property with respect to A. A map is an acyclic
fibration iff it has the RLP w.r.t. B. (This was on the homework.) I need another general
fact:

Proposition 1.12 The class of maps having the left lifting property w.r.t. a class P
is closed under arbitrary coproducts, co-base change, and countable (or even transfinite)
composition. By countable composition

A0 ↪→ A1 → A2 → · · ·

we mean the map A→ colimnßAn.
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Suppose I have a map f0 : X0 → Y0. We want to produce a diagram:

X0
//

f0 !!CCCCCCCC X1

f1
��
Y

We have tV → tD where the disjoint union is taken over commutative diagrams

V

��

// X

��
D // Y

where V → D is in A. Sometimes we call these lifting problems. For every lifting problem,
we formally create a solution. This gives a diagram:

tV //

��

tD

��

��1
11111111111111

X

((QQQQQQQQQQQQQQQQQ // X1
f1

!!BBBBBBBB

Y

where we have subsequently made the pushout to Y . By construction, every lifting problem
in X0 can be solved in X1.

V //

��

X0

��

� � k // X1

��
D //

>>|
|

|
|

66

Y // Y

We know that every map in A is a cofibration. Also, tV → tD is a homotopy equivalence.
k is an acylic cofibration because it is a weak equivalence (recall that it is a homotopy
equivalence) and a cofibration.

Now we make a cone of X0 → X1 → · · ·X∞ into Y . The claim is that f is a fibration:

X
� � ∼ //

!!CCCCCCCC X∞

f

��
Y

by which we mean
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V //

`
��

Xn

��

// Xn+1

��

// X∞

��
D

>>|
|

|
|

// Y // Y // Y

where ` ∈ A. V is compact Hausdorff. X∞ was a colimit along closed inclusions.

So I owe you one lifting property, and the other factorization.
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Chapter 20

GNU Free Documentation License

Version 1.2, November 2002

Copyright c©2000, 2001, 2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and
useful document ”free” in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or noncom-
mercially. Secondarily, this License preserves for the author and publisher a way to get
credit for their work, while not being considered responsible for modifications made by
others.

This License is a kind of ”copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals provid-
ing the same freedoms that the software does. But this License is not limited to software
manuals; it can be used for any textual work, regardless of subject matter or whether it
is published as a printed book. We recommend this License principally for works whose
purpose is instruction or reference.

§1 APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The ”Document”, below, refers to any such
manual or work. Any member of the public is a licensee, and is addressed as ”you”. You
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accept the license if you copy, modify or distribute the work in a way requiring permission
under copyright law.

A ”Modified Version” of the Document means any work containing the Document
or a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A ”Secondary Section” is a named appendix or a front-matter section of the Doc-
ument that deals exclusively with the relationship of the publishers or authors of the
Document to the Document’s overall subject (or to related matters) and contains nothing
that could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The ”Invariant Sections” are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it
is not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The ”Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A ”Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for re-
vising the document straightforwardly with generic text editors or (for images composed
of pixels) generic paint programs or (for drawings) some widely available drawing editor,
and that is suitable for input to text formatters or for automatic translation to a variety
of formats suitable for input to text formatters. A copy made in an otherwise Transparent
file format whose markup, or absence of markup, has been arranged to thwart or dis-
courage subsequent modification by readers is not Transparent. An image format is not
Transparent if used for any substantial amount of text. A copy that is not ”Transparent”
is called ”Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed for
human modification. Examples of transparent image formats include PNG, XCF and JPG.
Opaque formats include proprietary formats that can be read and edited only by propri-
etary word processors, SGML or XML for which the DTD and/or processing tools are not
generally available, and the machine-generated HTML, PostScript or PDF produced by
some word processors for output purposes only.

The ”Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, ”Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.
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A section ”Entitled XYZ” means a named subunit of the Document whose title
either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ
in another language. (Here XYZ stands for a specific section name mentioned below,
such as ”Acknowledgements”, ”Dedications”, ”Endorsements”, or ”History”.)
To ”Preserve the Title” of such a section when you modify the Document means that
it remains a section ”Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

§2 VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or non-
commercially, provided that this License, the copyright notices, and the license notice
saying this License applies to the Document are reproduced in all copies, and that you
add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make or
distribute. However, you may accept compensation in exchange for copies. If you dis-
tribute a large enough number of copies you must also follow the conditions in section
3.

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

§3 COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover.
Both covers must also clearly and legibly identify you as the publisher of these copies.
The front cover must present the full title with all words of the title equally prominent
and visible. You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and satisfy these
conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest
onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If you use
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the latter option, you must take reasonably prudent steps, when you begin distribution of
Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible
at the stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

§4 MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled ”History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section Entitled ”History” in the Document,
create one stating the title, year, authors, and publisher of the Document as given
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on its Title Page, then add an item describing the Modified Version as stated in the
previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
”History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled ”Acknowledgements” or ”Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section
titles.

M. Delete any section Entitled ”Endorsements”. Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled ”Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their titles
to the list of Invariant Sections in the Modified Version’s license notice. These titles must
be distinct from any other section titles.

You may add a section Entitled ”Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties–for example, statements of peer
review or that the text has been approved by an organization as the authoritative definition
of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace
the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.
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§5 COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in
the combination all of the Invariant Sections of all of the original documents, unmodified,
and list them all as Invariant Sections of your combined work in its license notice, and
that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled ”History” in the various
original documents, forming one section Entitled ”History”; likewise combine any sections
Entitled ”Acknowledgements”, and any sections Entitled ”Dedications”. You must delete
all sections Entitled ”Endorsements”.

§6 COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents
with a single copy that is included in the collection, provided that you follow the rules of
this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

§7 AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
”aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.
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§8 TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in
the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers.
In case of a disagreement between the translation and the original version of this License
or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled ”Acknowledgements”, ”Dedications”, or ”His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

§9 TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided for under this License. Any other attempt to copy, modify, sublicense or distribute
the Document is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance.

§10 FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License ”or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.

§11 ADDENDUM: How to use this License for your docu-
ments

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:
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Copyright c©YEAR YOUR NAME. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free Documenta-
tion License, Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-
Cover Texts. A copy of the license is included in the section entitled ”GNU
Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
”with...Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover
Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releas-
ing these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.
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